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Although the emerging of immunotherapy conferred a new landscape of gastric cancer (GC) treatment, its response rate was of
significant individual differences. Insight into GC immune microenviroment may contribute to breaking the dilemma. To this
end, the enrichment score of NF-κB signaling pathway was calculated in each GC sample from The Cancer Genome Atlas
(TCGA) via ssGSEA algorithm, and its association with immune infiltration was estimated. Based on NF-κB-related genes, a
risk score was established and its involvement in immune infiltration, tumor mutational burden (TMB), and N6-
methyladenosine (M6A) modification was analyzed in GC. The results showed that NF-κB signaling pathway promoted the
infiltration of immune cells in GC. In addition, GC samples were divided into low- and high-risk groups according to a seven-
gene (CARD11, CCL21, GADD45B, LBP, RELB, TRAF1, and VCAM1) risk score. Although the high-risk group displayed high
immune infiltration and high expression of M6A regulatory genes, it remains in an immunosuppressive microenviroment and
whereby suffers a poorer outcome. Of note, most of hub genes were related to immune infiltration and could serve as an
independent prognostic biomarker. Conclusively, our study emphasized the crucial role of NF-κB signaling pathway in GC
immune microenviroment and provided several candidate genes that may participate in immune infiltration.

1. Introduction

Although the incidence of gastric cancer (GC) decreased in the
past decades, it still remains as a major tumor burden all over
the world, especially in East Asian regions [1]. Development of
the oncotherapy provides more options to GC patients, while
patients with advanced GC frequently suffer a tragic outcome.
The emerging of immune checkpoint inhibitors (ICIs) is pro-
foundly altering the therapeutic landscape across a spectrum
of cancers, including GC [2]. Programmed death-1 (PD1)
inhibitor Pembrolizumab is recommended by the 2021NCCN
guideline for the posterior line treatment in GC patients who

had programmed death ligand − 1 ðPD − L1Þ combined
positive score ðCPSÞ ≥ 1, tumor mutational burden- (TMB-)
high (TMB-H, ≥10 mutations per megabase), microsatellite
instability-high (MSI-H), or deficient mismatch repair
(dMMR) [3]. Unfortunately, even under this standard, the
response rate to ICIs varies greatly among distinct individuals,
due to the fiendishly complicated tumor immune microenvi-
ronment. For this reason, insight of the regulatory mecha-
nisms of cancer immunity is of paramount importance to
guiding immunotherapy.

NF-κB family consists of five distinct DNA-binding pro-
teins that form various homodimers and heterodimers and
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thereby drives a series of signaling pathways that could con-
trol cell differentiation, proliferation, survival, invasion,
angiogenesis during tumorigenesis, and progression [4].
Convincing evidences indicated that NF-κB signaling path-
way acts as a driver role during carcinogenesis and progres-
sion of GC [5]. It was considered as a potential therapeutic
target for GC patients. More recent progress revealed that
NF-κB signaling pathway was involved in cancer immune
evasion [6, 7]. These studies indicated that NF-κB signaling
pathway functions in most of cells in tumor microenviron-
ment, such as tumor-associated macrophages (TAMs), den-
dritic cells (DCs), myeloid-derived suppressor cells
(MDSCs), natural killer (NK) cells, natural killer T (NKT)
cells, T cells, and B cells, and regulates the expression of
immune checkpoints, such as PD-L1 [4, 6, 7]. However, rare
studies investigated the effect of NF-κB signaling pathway on
GC immunity, as well as the involving mechanisms.

Interdisciplinary collaboration has been widely applied
to the prevention, diagnosis, and therapy in various diseases
[8, 9]. For instance, rational mathematical modeling may
help in controlling infection diseases, such as the novel
corona virus (COVID-19) and hepatitis B [10–12]. The
rapid progress of cancer genetics and genomics boosts the
establishment of a growing body of public databases, such
as The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) [13]. These databases greatly accelerated
the application of bioinformatics to the field of cancers.
Here, the single-sample gene set enrichment analysis
(ssGSEA) was employed to calculate the enrichment score
of NF-κB signaling pathway in each GC sample from TCGA,
and its correlation with immune infiltration was analyzed in
GC. Based on NF-κB-related genes, a seven-gene risk score
was further established by using least absolute shrinkage
and selection operator (LASSO). Then, the immune infiltra-
tion and TMB as well as N6-methyladenosine (M6A) mod-
ification were evaluated in different risk score groups.
Finally, the association was investigated between the seven
genes and prognosis as well as immune infiltration in GC.

2. Materials and Methods

The overall study processes are shown in Figure 1.

2.1. Data Download. GC RNA sequencing (RNA-seq) data
(32 normal and 375 tumor) and related clinical data were
downloaded from TCGA database, among which 42 samples
were excluded for their follow-up time or survival time less
than 30 days. GSE62254 (n = 300) and GSE84437 (n = 433)
with survival data were downloaded from GEO database.
The clinical characteristics of GC samples were displayed
in Table S1.

2.2. Differentially Expressed Genes and NF-κB-Related Genes.
Differentially expressed genes (DEGs) were identified by
using “limma” package of R (version 4.1.0) [14]. The cutoff
values were set as follows: ∣log2FC ðfold changeÞ ∣ >1 and
adj:p:val ðadjusted p valueÞ < 0:05. NF-κB related genes
(n = 104) were obtained from Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (Figure S1) [15].

2.3. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was used to reveal the underlying pathways
[16]. Based on the median enrichment score, GC samples
were classified into low (C1) and high (C2) NF-κB signaling
pathway groups. The “clusterProfiler” package of R was
applied to conduct the biological process (BP) analysis
[17]. ∣NES ∣ >1 and adj:p:val < 0:05 were considered as a sig-
nificant result.

2.4. Gene Set Variation Analysis. Gene set variation analysis
(GSVA) was employed to quantify the involvement of BP in
each sample using “GSVA” package of the R software [18].
The “limma” package was further employed to calculate
the differentially enriched BP between C1 and C2 [14]. The
cutoff values were as follows: ∣log2FC ∣ >0:5 and adj:p:val <
0:05.

2.5. Immune Microenvironment Estimation. The immune
microenvironment estimation was conducted by ESTI-
MATE, ssGSEA, MCPcounter, QUANTISEQ, and TIMER
algorithms [19–23]. The association between hub genes
and immune infiltration was also analyzed by applying
TIMER 2.0 database [23]. Tumor immune dysfunction and
exclusion (TIDE) algorithm was used to predict the response
to ICIs [24].

2.6. Construction and Validation of a Risk Score. According
to patients’ survival, LASSO algorithm was employed to
establish a risk score in TCGA dataset, which was achieved
by the “lars” package of R [25]. Subsequently, samples were
divided into low- and high-risk groups. Survival analysis was
achieved by the “survival” package. In addition, its prognos-
tic value was validated in GSE62254 and GSE84437 datasets.
As for the hub genes, their association with GC survival was
estimated by the Kaplan-Meier Plotter online tool [26].

2.7. Somatic Mutation Analysis. To investigate the somatic
mutation in GC, the tumor mutational data were down-
loaded from TCGA and analyzed by the “maftools” package
of R [27]. TMB was also calculated in each GC sample from
TCGA.

2.8. Relationship between M6A Genes and Risk Score. M6A
regulatory genes are comprised of readers (YTHDC1,
YTHDC1, YTHDF1, YTHDF2, YTHDF3, HNRNPC,
HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3, FMR1), writers
(METTL3, METTL14, METTL16, WTAP, METL16, RBM15,
RBM15B, VIRMA, and ZC3H13) and erasers (ALKBH3,
ALKBH5, and FTO) [28]. The association between M6A reg-
ulatory genes and risk score was accessed by Pearson corre-
lation analysis and visualized by “ggplot2” package of R.

2.9. Statistical Analysis. The R software (version 4.1.0) or
IBM SPSS Statistics 23 was used to conduct statistical analy-
ses. The t-test was applicable to normally distributed data
and Mann–Whitney test to nonnormally distributed data.
Survival time represented the time from diagnosis to the last
follow-up or death. Unless otherwise specified, p < 0:05 was
considered as a statistically significant result.
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3. Results

3.1. NF-κB Signaling Pathway Was Significant Association
with Immune Infiltration. At first, NF-κB-related genes
(n = 104) were obtained from the KEGG database and
ssGSEA algorithm was applied to calculating each sample’s
NF-κB signaling pathway score in TCGA dataset. The heat-
map showed the expression of these NF-κB-related genes in
GC (Figure 2(a)). According to the median value, GC sam-
ples were classified into low (C1) and high (C2) NF-κB sig-
naling pathway groups. Compared to C1 type characterized
by low enrichment of NF-κB signaling pathway, C2 type
had more high-grade samples, more advanced cases, and less
adenocarcinoma proportion (Figure 2(b)), indicating that
NF-κB signaling pathway was involved in a worse pheno-
type. The DEGs between C1 and C2 were shown in the vol-
cano plot (Figure 2(c)). Among that, we found that more
immune checkpoint-related genes, such as CD274 (PD-L1),
CTLA4, and LAG3, enriched in C2 type GC. GSVA was next
applied to analyze the differential biology processes between
C1 and C2 type GC. The data indicated that the major
enriched biology processes were related to cancer immunity
(Figure 2(d)). GSEA also demonstrated that these DEGs
mainly enriched in immune-related biology processes
(Figure 2(e)). These data suggested that the NF-κB signaling
pathway was closely concerned in GC’s immune microen-
viroment, being consistent with previous studies [4, 6, 7].

For this reason, we next evaluated the association
between NF-κB signaling pathway score and immune infil-
tration in TCGA dataset. C2 type had a higher immune
score, stromal score, and ESTIMATE score, but a lower
tumor purity than C1 (Figure 3(a)). The results of QUANTI-
SEQ algorithm showed that C2 had higher B cells
(p < 0:0001), CD8 T cells (p < 0:0001), Tregs (p < 0:0001),

M1 macrophage (p < 0:0001), M2 macrophage (p < 0:0001
), and neutrophils (p < 0:05), while C1 had higher uncharac-
terized cells (p < 0:0001) (Figure 3(b)). Further, TIMER and
ssGSEA algorithms found that all estimated immune cells in
C2 were significantly higher than that in C1 (Figures 3(c)
and 3(d)). These results implied that patients with high level
of NF-κB signaling pathway had a high infiltration of
immune cells.

3.2. Establishing a Risk Score Based on NF-κB-Related Genes.
Next, a total of 10451 DEGs (9043 upregulated and 1408
downregulated genes) were identified between tumor and
normal samples in TGCA dataset (Figure 4(a)). The Venn
diagram showed the overlapped genes between these DEGs
and NF-κB-related genes, consisting of 31 upregulated and
3 downregulated genes (Figure 4(b)). Based on these genes,
LASSO algorithm was used to construct a seven-gene risk
score as follows: risk score = ð0:0211 × ExpCARD11Þ + ð
0:0005 × ExpCCL21Þ + ð0:0337 × ExpGADD45BÞ + ð0:0212
× Exp LBPÞ + ð–0:0211 × ExpRELBÞ + ð–0:0075 × ExpTRA
F2Þ + ð0:0009 × ExpVCAM1Þ (Figure 4(c)). Survival analy-
sis revealed that samples with high risk score displayed a
poorer overall survival (OS) than those with low risk score
(median OS, mOS 779vs. 1407 days, p = 0:005;
Figure 4(d)). The high-risk group also showed a shorter
OS than the low-risk group in both validation cohort
GSE84437 (p = 0:023) and GSE62254 (p = 0:00034;
Figures 4(e) and 4(f)). The mOS of the high-risk group
was 2610 and 1162 days in these two cohorts, respectively,
while the mOS of the low-risk group has not reached within
the follow-up time. With increasing risk score, the probabil-
ity of poor prognosis was increased in both discovery and
validation queues (Figures 4(g)–4(i)). Followed heatmap
showed the expression of these seven hub genes
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NF-𝜅B signaling 
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Functional analysis
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Figure 1: The overview of the analytic procedure in this study.
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(Figures 4(j)–4(l)). In addition, the high-risk group had a
higher level of NF-κB signaling pathway score than the
low-risk group (Figure S2). Previous studies have put
forward several risk score models in GC [29–32]. These
risk score models were further analyzed in TCGA cohort
(Table S2), and their efficacy was estimated by receiver
operating characteristic curve (ROC) and area under the
curve (AUC). The results showed that our seven-gene risk
score had the highest AUC value (Figure S3A).
Collectively, a NF-κB-related risk score was constructed for
predicting GC patients’ prognosis.

3.3. High-Risk Group Had High Immune Infiltration but Low
Response to Immunotherapy. Then, the immune infiltration
was estimated between the two risk groups. Obviously, the
high-risk group had a higher stromal score (p < 0:0001),

immune score (p < 0:05), and ESTIMATE score (p < 0:001)
compared with the low-risk group (Figure 5(a)). Instead,
its tumor purity was lower than the low-risk group
(p < 0:001). The correlation was estimated between the
seven-gene risk score and immune score, stromal score,
and ESTIMATE score as well as tumor purity. The results
showed that only the seven-gene risk score was significant
association with all of the four scores (Figure S3B).
QUANTISEQ algorithm indicated that the high-risk group
possessed more immune cell infiltration, including B cells
(p < 0:01), M2 macrophage (p < 0:0001), monocyte
(p < 0:01), Tregs (p < 0:01), CD8 T cells (p < 0:001), and
nonregulatory CD4 T cells (p < 0:01), but less
uncharacterized cells (p < 0:001) compared with the low-
risk group (Figure 5(b)). MCPcounter algorithm could
calculate the absolute abundance of eight immune cells (T
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charts showed the proportions of different grade, T, pathology, and stage in C1 and C2 type. (c) Volcano plot showed the DEGs between C1
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cells, NK cells, neutrophils, myeloid dendritic cells,
monocytic lineage, cytotoxic lymphocytes, CD T cells, and
B lineage) and two stromal cells (fibroblasts and

endothelial cells) in heterogeneous tissues from
transcriptomic data [21]. Our data showed that all of those
cell populations had a more significant infiltration in the
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Figure 4: Construction of a seven-gene risk score. (a) Volcano plot showed the DEGs between normal and tumor samples in TCGA. (b)
Venn plot showed the overlapping genes between DEGs and NF-κB-related genes. (c) The parameters of LASSO algorithm. (d–f).
Survival analysis of the risk score in (d) discovery cohort and (e, f) validation cohort. (g–i). Risk score, survival status, survival time in
(g) TCGA, (h) GSE84437, and (i) GSE62254 dataset. (j–l). The expression of the seven hub genes in (j) TCGA, (k) GSE84437, and (l)
GSE62254 dataset. DEGs: differentially expressed genes; TCGA: The Cancer Genome Atlas; LASSO: least absolute shrinkage and
selection operator.
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high-risk group than in the low-risk group (Figure 5(c)).
Further, ssGSEA algorithm reinforced the high level of
immune infiltration in the high-risk group (Figure 5(d)).
In a word, the high-risk group had a higher infiltration of
immune cells than the low-risk group.

Unfortunately, high immune infiltration has not brought
a favourable outcome for the high-risk group, implying
higher probability of immune evasion. To this end, we eval-
uated TIDE score—an estimation of two distinct immune
evasion mechanisms in tumor, that is dysfunction of tumor
infiltration cytotoxic T lymphocytes (CTL) and immuno-
suppressive factors drove exclusion of CTL, between the
two groups [24]. Compared to the low-risk group, the
high-risk group had a higher TIDE score (p < 0:01), indicat-
ing more probabilities of immune evasion occurred in this
group (Figure 5(e)). Of note, the low-risk group had a higher
predicted response to ICIs than the high-risk group (47.59%
vs. 28.14%, p < 0:001; Figure 5(f)).

3.4. High-Risk Group Possessed Low Tumor Mutational
Burden. Theoretically, the more mutations, the more neoan-
tigens, the higher probabilities for T cell recognition, and the
better ICI response [33]. Here, GC mutational data was
obtained from TCGA database to evaluate somatic muta-
tions. We found a higher TMB in the low-risk group, which
may be the reason for its higher response rate to ICIs
(Figures 6(a) and 6(b)). We also investigated the mutation
of the seven hub genes in GC and observed that these genes
displayed low mutational rate in GC, ranging from 0% to 6%
(Figure 6(c)). Then, patients were divided into low- and
high-TMB cohorts based on the optimal cutoff value calcu-
lated by “survival” package (Figure S3). Results showed
that patients with high TMB have a better prognosis than
those with low TMB (1686 vs. 801 days, p = 0:015;

Figure 6(d)). Further stratified analysis indicated that the
low-risk group has a significant longer OS than the high-
risk group in low-TMB (mOS 1407 vs. 640 days; p = 0:017)
cohort, but no significant difference was observed in the
high-TMB cohort (p = 0:8; Figures 6(e) and 6(f)), which
may be due to the small samples in the high-TMB cohort.
These data suggested that low TMB in high-risk score may
be an another factor that caused its poor outcome.

3.5. Association between the Risk Score and M6A. As a
reversible epigenetic modification, M6A could affect both
messenger RNA and noncoding RNAs in eukaryotes and
play crucial roles in diverse cancer pathological processes,
including immune evasion [28]. M6A regulatory genes are
divided into writers, erasers, and readers, which are often
dysregulated in various cancer types [28]. The heatmap
showed the expression of common M6A regulatory genes
in high- and low-risk groups (Figure 7(a)). The results of
Pearson correlation analysis showed that the risk score was
positively correlated with the expression of most M6A regu-
latory genes, such as IGF2BP1, FTO, and ZC3H13
(Figure 7(b)). The expression of the seven hub genes also sig-
nificantly related to the expression of M6A regulatory genes,
and the majority of which was positive correlation. Among
that, TRAF2 was most correlated with M6A regulatory
genes. Further analysis indicated that the high-risk group
had higher expression of METTL16 (p < 0:01), RBM15B
(p < 0:05), ZC3H13 (p < 0:001), IGF2BP1 (p < 0:0001),
PRRC2A (p < 0:05), YTHDF1 (p < 0:01), ALKBH3 (p < 0:01
), ALKBH5 (p < 0:05), and FTO (p < 0:0001) compared to
the low-risk group (Figure 7(c)). These results suggested
the close implication of NF-κB signaling pathway in M6A
regulatory genes.
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Figure 5: High-risk group possessed a high immune infiltration and TIDE score. (a–d) The immune infiltration was evaluated by (a)
ESTIMATE, (b) QUANTISEQ, (c) MCPcounter, and (d) ssGSEA algorithms between low- and high-risk groups. (e) TIDE score in low-
and high-risk groups. (f) The proportion of patients who may response to ICIs in low- and high-risk groups. TIDE: tumor immune
dysfunction and exclusion; ssGSEA: single-sample gene set enrichment analysis; immune checkpoint inhibitors: ICIs; ∗p < 0:05, ∗∗p <
0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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3.6. Most of Hub Genes Had an Independent Prognostic
Significance. Subsequently, we evaluated the potential prog-
nostic value of these seven hub genes in GC through retriev-
ing Kaplan-Meier Plotter online tool. As shown, nearly all
the hub genes displayed a prognostic significance for GC
patients except VCAM1 (Figure 8(a)). In particular, high
expression of CARD11 had a shorter OS than low expression
(mOS, 32.6 vs. 93.2 months; p < 0:0001), which was consis-
tent with the predictive significance of other five hub genes,
including CCL21 (mOS, 26.8 vs. 36.2 months; p < 0:01),
GADD45B (mOS, 26.3 vs. 35.4 months; p < 0:001), LBP
(mOS, 22.0 vs. 57.6 months; p < 0:0001), RELB (mOS, 23.9

vs. 65.0 months; p < 0:0001), and TRAF1 (mOS, 36.4 vs.
93.2 months; p < 0:0001). In addition, patients with high
CARD11 had shorter time of first progression (FP) and post-
progression survival (PPS) than those with low CARD11
(Figures 8(b) and 8(c)). Similar results were observed when
analyzing CCL21, GADD45B, LBP, RELB, and TRAF1, but
not VCAM1. These data indicated that the hub genes other
than VCAM1 may be an independent prognostic signature
for GC.

3.7. Most of Hub Genes Were Closely Association with
Immune Infiltration. Finally, the correlation between these
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Figure 6: High-risk group had a low TMB. (a) The waterfall plot showed the top 20 frequent mutations that were occurred in GC. (b) The
low-risk group had a higher TMB than the high-risk group. (c) The mutations of the seven hub genes in GC. (d) Survival analysis of TMB in
GC. Samples were divided into low- and high-TMB groups according to the optimal cutoff value. (e, f) Stratified analysis showed that the
high-risk group tended to a poorer outcome than the low-risk group in low-TMB cohort, but not in high-TMB cohort. TMB: tumor
mutational burden; GC: gastric cancer. ∗∗∗∗p < 0:0001.
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hub genes and immune infiltration was investigated. The
results revealed that the hub genes except LBP were posi-
tively correlated with the immune score (Figure 9(a)). Fur-
ther data indicated the significant association of these hub
genes with immune cell infiltration (Figure 9(b)). In detail,
infiltration of B cells was negatively correlated with LBP,
RELB, and TRAF2 but positively correlated with CARD11;
infiltration of CD8 T cells, CD4 T cells, and dentritic cells
was positively associated with CARD11, CCL21, GADD45B,
RELB, and VCAM1; macrophages’ infiltration was positively
correlated with CARD11, CCL21, GADD45B, RELB, and
VCAM1, while negatively correlated with TRAF2; neutro-
phils’ infiltration was positively associated with CCL21,
GADD45B, RELB, and VCAM1. In summary, these hub
genes may play an important role in regulating GC’s
immune microenvironment.

4. Discussion

In this work, ssGSEA algorithm was applied to calculating a
NF-κB signaling pathway score. We found this score was sig-
nificantly associated with immune infiltration in GC. In
addition, a seven-gene risk score was established according
to NF-κB-related genes. High risk score group had a higher
immune infiltration and M6A level, but a lower TMB, com-
pared to the low risk score group. Further results indicated
that the high risk score group tended to an immunosuppres-
sive microenviroment and showed a poor response to ICIs.
Finally, most of the hub genes (CARD11, CCL21, GADD45B,
LBP, RELB, TRAF1, and VCAM1) had an independent prog-
nostic signature and performed a close connection to
immune infiltration in GC.

Deciphering the molecular mechanism of immune eva-
sion in cancer is the lynchpin to achieving the goal of tai-

lored immunotherapy. As abovementioned, NF-κB
signaling pathway worked in almost all of the infiltrated cells
in tumor microenvironment [34–36]. For instance, NF-κB
participates in macrophage polarization and transforms
them from a tumor-promoting M2 phenotype to a M1-like
cytotoxic phenotype [34]; NF-κB plays an essential role in
T cell and B cell activation, as well as development [35,
36]. In GC, IL-1beta activated MDSCs through an IL-1RI/
NF-κB pathway, contributing to an immunosuppressive
microenvironment, and whereby promoted tumor progress
[37]. Our results showed that the high enrichment of NF-
κB signaling pathway tends to increase the infiltration of
various immune cells. These data indicated that NF-κB sig-
naling pathway played an essential role in GC immune
microenvironment. We next constructed a seven-gene risk
score based on NF-κB-related genes and divided the samples
into low- and high-risk groups with the median as cutoff
value. As expected, low- and high-risk groups also displayed
distinct immune infiltration. However, high immune infil-
tration did not bring about a better prognosis in GC. Ana-
lyzing the subtype of the infiltrated immune cells, we
found that both immunosuppressive (e.g., Tregs, MDSCs,
and macrophage M2) and immunostimulative (CD8 T cells,
CD4 T cells, and NK cells) cells were significantly enriched
in the high-risk group. Of note, the high-risk group pos-
sessed a higher TIDE score, indicating more dysfunctional
anticancer immune cells and higher possibility of immune
evasion in this group [24]. Accordingly, although NF-κB sig-
naling pathway brings more infiltration of immune cells, it
may contribute to an immunosuppressive microenviron-
ment in GC, leading to a worse outcome.

Another observation further explained the reason of the
poor prognosis in the high-risk group, that is, lower TMB in
this group. TMB is considered as a predictive biomarker of
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Figure 7: The expression of M6A regulatory genes in low- and high-risk groups. (a) Heatmap showed the expression of M6A regulatory
genes in GC sample from TCGA. (b) The correlation between M6A regulatory genes and the risk score, as well as seven hub genes. (c)
The expression of the M6A regulatory genes in low- and high-risk groups. M6A: N6-methyladenosine; GC: gastric cancer; TCGA: The
Cancer Genome Atlas; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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Figure 8: The correlation between the hub genes and prognosis of patients. (a) The correlation between the expression of the seven hub
genes and OS in GC. (b) The correlation between the expression of the seven hub genes and FP in GC. (c) The correlation between the
expression of the seven hub genes and PPS in GC. OS: overall survival; GC: gastric cancer; FP: first progression; PPS: postprogression
survival; HR: hazard ratio.
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response to ICIs, which has been verified retrospectively or
prospectively in melanoma, lung cancer, bladder cancer,
etc. [38]. Some study revealed that TMB could also be a pre-
dictive biomarker for predicting the efficacy of chemother-
apy and target therapy [39, 40]. This study agreed that
high TMB predicts a better therapeutic response. A system-
atic pan-cancer analysis estimated the general prognostic
impact of TMB in patients with solid tumors based on
TCGA database and revealed that the predictive value of
TMB varies from different cancer types [41]. Patients with
high TMB had a significantly longer OS than those with
low TMB (p = 0:003) in GC [41], being consistent with our
data. Taken together, high TMB in the low-risk group may
be another factor for their superior prognosis. In addition,

the TIDE algorithm indicated the higher response rate to
ICIs in the low-risk group. Although the different TMB
may be a major determination factor to this phenomenon,
the risk score was also considered as a potential biomarker
for predicting response to ICIs in GC.

As a dynamic and reversible methyl-modification,
increasing evidences indicated the closely connection
between M6A and immune infiltration characterization in
various cancers, including GC [42, 43]. M6A modification
is mainly regulated by its related genes, which can be classi-
fied into readers, writers, and erasers. NF-κB signaling path-
way transcriptionally regulated the expression of a broad
range of target genes. We found our risk score was signifi-
cantly associated with several M6A regulatory genes. What
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Figure 9: The involvement of the hub genes in immune infiltration. (a) The correlation between the seven hub genes and immune score
calculated by ESTIMATE algorithm in GC. (b) The correlation between the seven hub genes and immune infiltration investigated by
TIMER2.0 database.
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is more, the expression of METTL16, RBM15B, ZC3H13,
IGF2BP1, PRRC2A, YTHDF1, ALKBH3, ALKBH5, and
FTO was significantly upregulated in the high-risk group
than in the low-risk group. These genes played a crucial role
in tumor microenviroment. For instance, ALKBH5 regulated
Tregs and MDSC accumulation via modulating the expres-
sion of Mct4/Slc16a3 [44]; FTO facilitated immune invasion
and desensitized tumor cells to T cell cytotoxicity [45];
YTHDF1 was correlated with immune cell infiltration but
attenuated DCs’ cross-presentation capacity [46, 47]. There-
fore, NF-κB signaling pathway may regulate GC’s immune
infiltration via affecting M6A modification.

We next focused on the seven NF-κB related genes
(CARD11, CCL21, GADD45B, LBP, RELB, TRAF1, and
VCAM1). As well known, NF-κB signaling pathway played
a crucial role in Helicobacter Pylori-related gastric carcino-
genesis and progression. Its related genes, TRAF1, VCAM1,
and RELB, also participated in this progress [48–50]. In
addition, CCL21 worked as a driver factor via MALAT1/
SRSF1/mTOR axis during the progression of GC [51]. Nev-
ertheless, little study revealed the function of CARD11,
GADD45B, and LBP in GC. Here, we found that except
LBP, these hub genes performed significant correlation with
immune infiltration in GC. Previous study also indicated the
role of these genes played in immune function [52–54],
which has not been reported in GC yet. To this end, study
of these genes may deepen our understanding of the mecha-
nism underlying GC’s immune microenviroment.

5. Conclusions

In summary, a clear correlation was revealed between GC
immunity and NF-κB signaling pathway, as well as the risk
score based on NF-κB-related genes. We also found that
NF-κB signaling pathway was significant association with
TMB as well M6A level in GC. In addition, most of hub
genes performed an independent prognosis value and signif-
icant correlation with immune infiltration in GC. These
results indicated that NF-κB signaling pathway played a cru-
cial role in GC immunity, and M6A modification may be an
important bridge between them. However, only bioinfor-
matics analyses are not enough to clear the mechanisms
underlying NF-κB signaling pathway mediated cancer
immunity, and further experimental works are necessary.
Accordingly, identified hub genes will be the focus in the
follow-up study, which may deepen the understanding of
cancer immunity and provide a novel strategy for immuno-
therapy in GC.
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