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Image Quality and Dose Reduction by Dual
Source Computed Tomography Coronary
Angiography: Protocol Comparison
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Roberto De Rosa3, Teresa Infante1, Carlo Cavaliere1, Filippo Cademartiri1,
Marco Salvatore1, Christian Stroszczynski2, and Carlo Tedeschi2,3

Abstract

Purpose: To compare image quality and radiation dose among different protocols in patients who underwent a 128-slice dual
source computed tomography coronary angiography (DSCT-CTCA).

Methods: Ninety patients were retrospectively grouped according to heart rate (HR): 26 patients (group A) with stable HR
�60 bpm were acquired using high pitch spiral mode (FLASH); 48 patients (group B) with irregular HR �60 bpm or stable HR
between 60 and 70 bpm using step and shoot mode; and 16 patients (group C) with irregular HR >60 bpm or stable HR�70 bpm
by retrospective electrocardiogram pulsing acquisition. Signal to noise ratio (SNR) and contrast to noise ratio (CNR) were
measured for the main vascular structures. Moreover, the dose-length product and the effective dose were assessed.

Results: Both SNR and CNR were higher in group A compared to group C (18.27 + 0.32 vs 11.22 + 0.50 and 16.75 + 0.32 vs
10.17 + 0.50; P ¼ .001). The effective dose was lower in groups A and B (2.09 + 1.27 mSv and 4.60 + 2.78 mSv, respectively)
compared to group C (9.61 + 5.95 mSv) P < .0001.

Conclusion: The correct selection of a low-dose, HR-matched CTCA scan protocol with a DSCT scanner provides substantial
reduction of radiation exposure and better SNR and CNR.

Keywords
image quality, radiation dose, computed tomography coronary angiography, dual source computed tomography, coronary artery
disease

Introduction

Computed tomography coronary angiography (CTCA) has

emerged as the elective noninvasive imaging modality to rule

out the presence of significant obstructive coronary artery dis-

ease (CAD); thanks to its high negative predictive value.1 This

imaging modality allows to characterize coronary plaques and

assess the atherosclerotic burden and stenosis severity, hence

playing a key role for patient risk stratification.2 The handling

of the acquired data allows a versatile postprocessing such as

maximum intensity projections (MIPs), curved multiplanar

reformations (c-MPRs), and 3D volume rendering (VR) that

define the vessel course and its anatomical relationships with

the surrounding structures.3,4 However, the expanding applica-

tion of CTCA has raised concerns about radiation exposure,

since it has been widely demonstrated to be related to an even-

tual increased risk of carcinogenesis.5,6 Several strategies have

been developed to reduce patient radiation exposure, such as

retrospective electrocardiogram (ECG) pulsing acquisition

with tube current modulation, prospectively ECG-gated CTCA

also called step and shoot mode (SAS), and high pitch spiral

mode (FLASH).7 Lowering of radiation dose is therefore a
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clinical priority that has to be balanced with the need to obtain

diagnostic examinations according to the principle of dose

optimization. Moreover, in order to have an adequate image

quality, these low-dose acquisition methods require a low and

stable heart rate (HR), which is not always possible to obtain in

all patients.8-11 The purpose of this study was to compare image

quality and radiation dose using different CTCA scan protocols

with a second-generation dual source CT (DSCT) scanner in

order to define the parameters for an efficient fine-tuning of a

CTCA examination.

Materials and Methods

Study Population

The anonymized records of 90 patients who underwent a 128-

slice DSCT-CTCA were retrospectively examined. Patients

with history of percutaneous intervention and/or bypass sur-

gery and persistent arrhythmias were excluded. Thirteen

patients had typical chest pain, 32 patients had atypical chest

pain, 23 patients had nonanginal symptoms, and 22 patients

were asymptomatic. Different protocols (FLASH, SAS, and

retrospective) were selected according to patient’s HR at pre-

sentation. Patients were divided into 3 groups: group A

(FLASH) composed by 26 patients with stable HR �60 bpm;

group B (SAS with acquisition during 66%-75% of RR [inter-

beat] interval) composed of 48 patients with irregular HR �60

bpm or stable HR between 60 and 70 bpm; and group C (retro-

spective ECG pulsing modulation acquisition) composed of 16

patients with irregular HR >60 bpm or stable HR �70 bpm.

Informed consent was obtained from all patients.

Computed Tomography Acquisition and Image
Reconstruction

Imaging was performed with a DSCT system (Definition

FLASH, Siemens Healthcare, Forchheim, Germany). All

patients underwent a sequential scan before contrast adminis-

tration for preliminary quantification of calcium score with the

Agatston method (slice thickness: 3 mm, slice increment:

3 mm, a medium smooth reconstruction kernel (B36f)). Cal-

cium score was evaluated with a dedicated software (CaScore;

Siemens, Germany).

Therefore, CTCA was performed with intravenous contrast

enhancement. Contrast medium was injected in the antecubital

vein using a dual head power injector (Stellant; Medrad, India-

nola, Pennsylvania). To synchronize the acquisition of the

CTCA data set to the arterial enhancement, a “test bolus” pro-

tocol was used: 10 mL of contrast agent of iopromide (Ultravist

370, 370 mgI/mL, Bayer Schering Pharma, Berlin, Germany)

were followed by 60 mL of saline solution, both at flow rates of

5 to 6 mL/s, and the time to peak enhancement in the aorta was

measured using a series of transaxial scans acquired at

2-second increments, with the first image being acquired

15 seconds after the start of injection. During CTCA, all

patients received a dose of 60 mL of contrast agent injected

at a flow rate of 5 to 6 mL/s followed by 60 mL of saline

solution. Image acquisition was started with a delay corre-

sponding to the measured contrast transit time plus 5 seconds.

For FLASH mode, pitch was between 3.2 and 3.4 (table feed:

46 cm/s). Image acquisition was prospectively triggered by

patient ECG and started at 60% of the R–R interval. The total

duration of data acquisition was dependent on the selected

pitch value and the length of the scan volume and varied

between 220 and 300 milliseconds. For SAS mode, the trigger-

ing phase was set at 66% to 75% of RR interval. For spiral

mode, pitch was automatically adapted to HR, and a radiation

exposure-modulation algorithm (ECG pulsing) was used to

minimize the radiation dose outside the pulsing temporal win-

dow. Full exposure was set to 35% to 75% of the RR interval

and decreased to 20% of the peak mAs outside this temporal

window. The kV and mA were adapted to patient size by auto-

matic exposure control. Reconstructed slice thickness was 0.6

mm, slice increment was 0.3 mm, a medium soft reconstruction

kernel was used (B26f), and the field of view was 20 cm.

Subjective and Objective Image Quality

For analysis, image data sets were transferred to an off-line

workstation (Multimodality Workplace; Siemens Healthcare).

Both objective image quality and subjective image quality

were assessed for all patients. Subjective image quality was

independently evaluated on a per-vessel basis by 2 independent

physicians with experience in cardiovascular imaging of more

than 5 years. During the CT image interpretation session, the

overall quality of axial slices, MPR, c-MPR, MIP and VR were

assessed. A 4-point scale was used (1 excellent ¼ absence of

artifacts; 2 good ¼ minimal artifacts, mild blurring or structure

discontinuity but fully evaluable; 3 suboptimal ¼ moderate

artifacts and blurring or structure discontinuity; 4 not diagnos-

tic ¼ doubling or discontinuity in the course of the segment

preventing diagnostic evaluation; Figure 1).12 In case of dis-

agreement between the observers, consensus was reached in a

joint reading to determine the final image quality score. A per-

patient image quality score was defined as the worst score

found in any coronary artery for each patient.

Quantitative image quality was assessed evaluating objec-

tive parameters such as mean arterial attenuation, image noise,

signal to noise ratio (SNR), and contrast to noise ratio (CNR).

Mean arterial attenuation (in Hounsfield Units, HU) was mea-

sured by placing regions of interest (ROIs) in the ascending

aorta at the pulmonary bifurcation and in the proximal seg-

ments of the right coronary artery, the left main artery, the left

anterior descending artery, and the left circumflex artery. A

circular ROI as large as possible was placed in the lumen of

the target vessel taking care of not including vessel walls,

calcifications, or plaques.13 The attenuation values of 3 ROIs,

2 cm2 sized and placed in the air surrounding the patient, were

averaged in order to calculate the background noise.14 The

mean attenuation of the central parts of pectoral muscles and

the deep paraspinal muscles was measured on both sides, and

values were averaged so that obtaining the muscle attenuation
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was useful for calculating the CNR.15 Both SNR and CNR were

calculated as follows using the above-mentioned parameters:

SNR¼Mean arterial attenuation

Background noise
; ð1Þ

and

CNR¼ ðMean arterial attenuation�Mean musle attenuationÞ
Background nosie

:

ð2Þ

The overall SNR and CNR were finally computed averaging

the respective values for vascular structures. A comprehensive

workflow is reported in Figure 2.

Radiation Dose

For each patient, the dose length product (DLP) was recorded

from the automatically generated patient protocol. The effec-

tive radiation dose was calculated by multiplying the total DLP

by a conversion factor for the chest (k¼ 0.017 mSv�mGy-1�
cm�1) as previously suggested and adopted in large trials as

effective dose.16

Statistical Analysis

Statistical analysis was conducted using R Core Team (version

3.03; Austria, Vienna) and a P � .05 was considered statisti-

cally significant. Quantitative variables were expressed as

mean + standard deviation; categorical variables were

expressed as percentage; and ordinal qualitative variables were

expressed as median (1 quartile and 3 quartile). Data were

tested for normality and homoscedasticity using the Shapiro-

Wilk test and the Levene test, respectively. If data were normal

and the variances were equal, the 1-way analysis of variance

was performed and, in case of statistical significance, a Tukey

post hoc test was utilized. If homoscedasticity was met but data

were not gaussian, the Kruskal-Wallis test was applied and, in

case of statistical significance, the Nemenyi test was used for

multiple comparisons. Finally, if both normality and homosce-

dasticity were not met, the Friedman test was used, and the

Conover test was considered as post hoc test in case of statis-

tical significance.

Results

Clinical characteristics of patients (age, sex, body mass index,

pretest probability, and calcium score) are listed and compared

in Table 1: no significant difference was found among the 3

groups (P > .05). The pretest probability of CAD for the entire

population was 38.27 + 28.21. The HR for the entire popula-

tion was 57.88 + 8.65 bpm, and the calcium score was 67.91

(range: 0-892). The effective dose was 2.09 + 1.27 mSv in

group A, 4.60 + 2.78 mSv in group B, and 9.61 + 5.95 mSv

in group C, with a statistically significant difference (P <

.0001). The DLP was significantly lower in groups A and B

(123 + 74.96 mGy � cm and 270 + 163.87 mGy � cm,

respectively) in comparison to group C (565 + 350.09 mGy

� cm); P < .0001 (Figure 3A). Prescan HR was 51.85 + 5.69

bpm for group A, 58.17 + 8.27 bpm for group B, and 69.19 +
8.12 bpm for group C (P < .0001; Figure 3B). The overall SNR

and CNR were significantly higher in group A compared to

group C (18.27 + 0.32 vs 11.22 + 0.50 and 16.75 + 0.32 vs

10.17 + 0.50, respectively; P ¼ .001; Figure 3C). Subjective

quality, regardless of the effective HR during the examination,

was similar in the 3 groups (median: 1 for group A, 1 for group B

and 1.5 for group C, respectively, P ¼ .34; Figure 3D). Mean

arterial attenuation was not significantly different among

the 3 protocols, while background noise was lower in group

A compared to group C (30.01 + 8.87 HU vs. 44.23 + 21.45

HU; P ¼ .049; Tables 2 and 3). In detail, for ascending aorta,

Figure 1. Curved multiplanar reformations (c-MPRs) of the right coronary artery illustrating the 4-point scale used for image quality. From left
to right: (A) the image was given a score 1 because of absence of any artifacts; (B) the image was given a score 2 because of mild blurring; (C) the
image was given a score 3 because of structure discontinuity and moderate blurring; and (D) the image was given a score 4 because of doubling
and discontinuity in the course of the vessel preventing diagnostic evaluation.
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SNR was 17.92 + 6.33 versus 10.55 + 4.03, P¼ .01, and CNR

was 16.40 + 5.80 versus 9.50 + 3.64, P ¼ .0043; for left main

coronary artery, SNR was 18.03 + 6.40 versus 11.08 + 4.33,

P ¼ .01 and CNR was 16.51 + 5.86 versus 10.04 + 3.96,

P ¼ .009; for left anterior descending artery, SNR was 18.25 +
7.33 versus 11.11 + 4.76, P¼ .016 and CNR was 16.73 + 6.54

Figure 2. Objective image quality workflow. LM indicates left main coronary artery; LAD, left anterior descending coronary artery; CX, left
circumflex coronary artery; RCA, right coronary artery; SNR, signal to noise ratio; CNR, contrast to noise ratio.

Table 1. Clinical Patients Characteristics and Dosimetric Parameters.

Group A Group B Group C P Value

Age 53.54 + 11.78 56.25 + 10.54 59.19 + 12.53 .49
Male, % 57.7 45.8 50 .63
BMI 27.84 + 4.30 25.94 + 4.78 28.35 + 5.45 .11
Pre-test Probability 32.42 + 26.67 43.77 + 30.22 30.12 + 20.45 .21
HR 51.85 + 5.69 58.17 + 8.27 69.19 + 8.12 <.0001
DLP 123 + 74.96 270 + 163.87 565 + 350.09 <.0001
Effective dose 2.09 + 1.27 4.60 + 2.78 9.61 + 5.95 <.0001
kVa 120 (100-120) 120 (100-120) 120 (100-120) .28
Calcium scoreb 70.41 (0-892) 64 (0-602) 75.53 (0-520) .44

Abbreviations: BMI, body mass index; HR, heart rate; DLP, dose length product.
aData are expressed as median (1 and 3 quartile).
bData are expressed as mean (minimum–maximum).
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Figure 3. (A) DLP, (B) HR, (C) SNR and CNR, and (D) subjective image quality in FLASH, SAS, and retrospective group. DLP indicates dose
length product; HR, heart rate; SNR, signal to noise ratio; CNR, contrast to noise ratio; FLASH, high pitch mode; SAS, step and shoot mode.

Table 2. Image Quality Assessment.

Group A Group B Group C P Value

Mean attenuation ROI
Ascending aorta 498.97 + 126.74 438.44 + 137.23 402.07 + 71.86 .13
Left main coronary artery 501.67 + 118.04 449.75 + 135.73 422.16 + 83.94 .23
Left anterior descending artery 507.82 + 151.67 436.07 + 163.48 421.89 + 97.59 .21
Left circumflex artery 519.34 + 123.82 430.35 + 123.01 433.98 + 80.75 .055
Right coronary artery 510.94 + 148.48 487.15 + 173.67 451.59 + 11.39 .70
Background noise 30.01 + 8.87 35.24 + 14.91 44.23 + 21.45 .054
Muscle 40.95 + 11.81 42.66 + 9.00 38.77 + 6.49 .52

Signal to noise ratio
Ascending aorta 17.92 + 6.33 13.93 + 5.65 10.55 + 4.03 .014
Left main coronary artery 18.03 + 6.40 14.35 + 5.75 11.08 + 4.33 .012
Left anterior descending artery 18.25 + 7.33 13.97 + 6.29 11.11 + 4.76 .017
Left circumflex artery 18.74 + 6.82 13.81 + 5.79 11.45 + 4.57 .007
Right coronary artery 18.40 + 6.97 15.43 + 6.67 11.9 + 5.13 .049
Overall SNR 18.27 + 0.32 14.30 + 0.67 11.22 + 0.50 .001

Contrast to noise ratio
Ascending aorta 16.40 + 5.80 12.59 + 5.33 9.50 + 3.64 .005
Left main coronary artery 16.51 + 5.86 13.02 + 5.41 10.04 + 3.96 .012
Left anterior descending artery 16.73 + 6.54 12.63 + 5.95 10.07 + 4.36 .017
Left circumflex artery 17.22 + 6.24 12.47 + 5.45 10.41 + 4.16 .006
Right coronary artery 16.88 + 6.48 14.09 + 6.34 10.85 + 4.77 .053
Overall CNR 16.75 + 0.32 12.96 + 0.67 10.17 + 0.50 .001

Qualitative image qualitya 1 (1-2) 1 (1-2) 1.5 (1-2) .34

Abbreviations: SNR, signal to noise ratio; CNR, contrast to noise ratio.
aData are expressed as median (1 and 3 quartile).
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versus 10.07 + 4.36, P ¼ .016; for left circumflex artery, SNR

was 18.74 + 6.82 versus 11.45 + 4.57, P¼ .008 and CNR was

17.22 + 6.24 versus 10.41 + 4.16, P¼ .008; for right coronary

artery, SNR was 18.40 + 6.97 versus 11.9+ 5.13, P¼ .038 and

CNR was 16.88+ 6.48 versus 10.85+ 4.77, P¼ .042 (Table 3).

A representative case of a 57-year-old-woman is reported:

the effective dose using FLASH scan was 2.38 mSv, the ana-

tomical details are well depicted, and the examination revealed

a mixed mostly soft plaque with significant stenosis (>50%)

confirmed by further CA (Figure 4).

Discussion

The development and spread of DSCT equipment has intro-

duced new outlooks in cardiovascular imaging, exploiting the

potential of 2 X-ray tubes working simultaneously at same or

different energies.17 The CTCA has been confirmed as a robust

clinical tool for diagnosis and noninvasive assessment of CAD1

and, more generally, coronary pathologies.3,4 Several strategies

have been developed to reduce radiation exposure during car-

diac examination adjusting acquisition parameters (scan range,

geometry of scanning, tube voltage, tube current modulation,

pitch, and slice thickness) and using postprocessing filters able

to reduce noise while preserving image quality.18,19

Another exciting development that offers great promise to

further increase CT potential is dual energy CT (DECT) that

can be performed by 3 different technologies: dual-source

DECT, single-source DECT, and detector-based spectral CT.

Dual source DECT utilizes 2 X-ray tubes operating at different

kV (low and high) and 2 detectors to obtain simultaneous DE

acquisition and data processing. Single-source DECT uses a

single X-ray tube that rapidly alternates between low and high

energies (fast-switching) and a single detector that quickly

registers information from both energies. In detector-based

spectral CT, a single X-ray tube with full-dose modulation

capabilities is paired with a detector made of 2 layers (sand-

wich detector) that simultaneously detects 2 energy levels.20

The DECT offers the possibility to obtain virtual unenhanced

images (VUEs), virtual monochromatic images at different

energy levels, and material density images iodine (-water). In

detail, VUE provides an unenhanced series from an enhanced

acquisition thus saving dose exposure. Moreover, VUE images

have been demonstrated to have lower image noise when com-

pared to true enhanced images, and, especially in smaller

patients, rapid switching DECT showed lower radiation dose

when compared to single-energy CT scans, even if misconcep-

tions about the radiation dose from 2 simultaneous X-ray pro-

jections and questions regarding the accuracy of additional

DECT reconstructions have limited the widespread clinical

implementation of this technology.21

As far as DSCT is concerned, the most widespread dose-

saving protocols (retrospective acquisition with ECG-gated

tube current modulation, SAS mode, and FLASH mode) carry

advantages and drawbacks.

Indeed, in retrospective ECG-gated CTCA, radiation dose has

been considered very high22,23 but, on the other hand, it is useful

to assess cardiac function, since data acquisition covers all

phases of the cardiac cycle; in addition, the flexibility and relia-

bility of phase reconstruction is the highest when compared to

other strategies.24 The SAS mode is characterized by turning on

the X-ray tube only at a predefined time point of the cardiac

cycle, usually in mid-to-end diastole, while keeping the patient

table stationary. This has resulted in a significant radiation dose

reduction from over 20 mSv to around 2 mSv by confining the

CT scan to the smallest possible window at only 1 distinct mid-

Table 3. Multiple Comparisons.

P Value P Value A versus B P Value A versus C P Value B vs C

HR <.001 .004 <.0001 .0003
DLP <.001 .29 <.0001 <.0001
Effective dose <.001 .29 <.0001 <.0001
Background noise .054 .73 .049 .13
Signal to noise ratio

Ascending aorta .014 .17 .01 .21
Left main coronary artery .012 .13 .01 .26
Left anterior descending artery .017 .10 .016 .42
Left circumflex artery .007 .034 .008 .51
Right coronary artery .049 .34 .038 0.29
Overall SNR .001 .077 .001 .077

Contrast to noise ratio
Ascending aorta .005 .07 .0043 .23
Left main coronary artery .012 .11 .009 .27
Left anterior descending artery .017 .09 .016 .45
Left circumflex artery .006 .027 .008 .55
Right coronary artery .053 .34 .042 .31
Overall CNR .001 .077 .001 .077

Abbreviations: HR, heart rate; DLP, dose length product; SNR, signal to noise ratio; CNR, contrast to noise ratio; A, maximum intensity projections (MIP); B,
curved multiplanar reformations (c-MPR)R; C, conventional angiography; d, 3D volume rendering images.
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diastolic phase of the cardiac cycle, while the X-ray tube is

turned off during the rest of the cycle.25,26 Nevertheless, it

requires low and regular HR and provides only anatomical data

not allowing left and right ventricle functional analysis.23

Another low-dose technique that has been introduced for

cardiac CTCA with the advent of second-generation DSCT

equipped with two 128-slice acquisition detectors is FLASH

mode.27 This protocol is based on data acquisition prospec-

tively triggered with the ECG, but, unlike SAS, data are

acquired in a spiral mode while the table runs with a very high

pitch of 3.2 to 3.4.28 When FLASH mode is used, the entire

heart can be scanned within one single cardiac cycle, usually

during mid-to-end diastole with a dose for CTCA reduced at 1

mSv or below.12,29 Our results showed a significant reduction

in radiation dose in FLASH mode compared to SAS and, espe-

cially, compared to retrospective protocol.

Although literature data30,31 demonstrated an image quality

similar between retrospective protocol and SAS when using

FLASH mode in patients with high HR without cardiac

arrhythmia and with image acquisition time set at 20% to 30%
of the R-R interval, in our preacquisition HR setting (<60 bpm),

a prospectively triggered acquisition was started at 60% of the R-

R interval. However, with these acquisition parameters, image

quality is maintained only when the HR does not change during

the CTCA.10,32 The use of our scan protocol recommendations

to achieve optimal image quality at lowest dose, while maintain-

ing diagnostic image quality on the whole relevant epicardial

coronary tree, can substantially decrease the radiation dose in

CTCA. In addition, these results emphasize the radiation dose

reduction potential of HR-lowering medication (eg, b-block-

ers and ivabradine)33,34 prior to CTCA in patients with HR

>65 bpm, which can consistently reduce radiation exposure.

Their action is however not only indicated for HR reduction

but it is also aimed to its stabilization during the acquisition.35

Aggressive administration of HR-lowering medication before

scanning may be considered in young patients to induce an

HR <55 bpm, which allows to use a FLASH protocol that is

associated with a very low radiation dose.

Figure 4. Computed tomography coronary angiography (CTCA) performed with high-pith spiral scan (FLASH) protocol in 57-year-old woman
with hypertension and hyperlipidemia with atypical chest pain and family history of CAD. Prescan heart rate was 51 bpm, low pretest probability
(8%), calcium score according Agatston method 134.1, and estimated radiation dose (ED) 2.38 mSv. A, MIP. B, c-MPR. C, Conventional
angiography. D, Three-dimensional volume rendering images. The exam revealed (white arrows) a mixed mostly soft plaque which determines
a significative stenosis (>50%) at the ostium of the right coronary artery. Further conventional coronary angiography, followed by percutaneous
transluminal coronary angioplasty (PTCA), confirmed this result.

Forte et al 7



Our study has some limitations; we included only patients in

sinus rhythm, although there is evidence on the possibility to

use the FLASH acquisition in patients with atrial fibrilla-

tion.36,37 Another limitation is the relatively small number of

patients in particular for retrospective acquisitions. Finally, the

results of this study are valid only for a 128-slice DSCT scanner

and cannot be extended to other CT systems characterized by

higher effective temporal resolution.

In conclusion, the correct selection of a low-dose CTCA

scan protocol according to HR with use of a 128-slice DSCT

scanner results in a significantly reduced radiation dose and

higher SNR and CNR. The major challenge is to obtain optimal

image quality and an as-low-as-reasonably-achievable radia-

tion exposure.
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