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Asymmetric rotators with a 1,4-bis(ethynyl)bicyclo[2.2.2]octane (BCO) core are needed for engineering crystalline arrays of func-

tional molecular rotors. Their synthesis uses carbinol, 2-methyl-3-butyn-2-ol, as a protecting group because of its polar character

and its ability to sustain orthogonal functionalization with the further advantage of being readily removed. The synthesis in good

yields of unprecedented asymmetric rotors and polyrotors demonstrates the efficiency of this strategy.

Findings

Synthesis-informed design [1] of rotors is essential to
the development of molecular machines [2-5]. Recent
advances in the chemistry of functional rotors with a 1,4-
bis(ethynyl)bicyclo[2.2.2]octane (BCO) rotator core have
included the design of ultra-fast rotors [6-8], the evocation of
the phenomena of quantum dissipation in a hybrid system of
BCO and organic conductors [9], and the discovery of a corre-
lated motion in cogwheel pairs of BCO rotators [10], that may
be switched on and off [11], in one-dimensional arrays of crys-
talline dirotors. Although the latter system has been created by a
designed [10,12], albeit not general, synthesis based on the
asymmetrical (4-pyridylethynyl)-4-ethynylbicyclo[2.2.2]octane

[13], this chemistry has remained centered on symmetric
precursors and targets. We disclose in this paper an efficient
route that provides a general entry into asymmetric 1,4-
bis(ethynyl)bicyclo[2.2.2]octane (BCO) rotators. The impor-
tance of this synthetic advance is illustrated by three examples
demonstrating the ready accessibility to an even larger diver-
sity of polyrotors.

The salient feature of this synthesis lies in its generic character
because 4-(4-ethynylbicyclo[2.2.2]octan-1-yl)-2-methylbut-3-
yn-2-ol, (1) (Scheme 1), the single precursors of many diverse

targets, is readily obtained. The choice of the carbinol
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yield = 44-50%
yield = 64% with recycling

1. 1.2 equiv n-BuLi/ Et,0, —78 °C +

2. 1.2 equiv acetone
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3. 2hat-50°C
BCO yield = 20%
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2 h reflux, toluene
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Scheme 1: Synthesis of the asymmetric rotor 1.

protecting group was dictated on account of its notable polar
character that makes for efficient chromatographic separation
steps. In addition, the carbinol group offers large opportunities
for orthogonal functionalization and it is readily removed
[14,15]. As reported herein, this proved quite efficient in the
development of a large variety of functionalization sequences of
BCO rotators by performing nucleophilic reactions on the
terminal alkyne [16] as well as Sonogashira coupling reactions
[17].

One way to synthesize 1 is via a catalytic reaction to achieve the
deprotection of a single 2-methyl-3-butyn-2-ol and transform
the biscarbinol 2 into the asymmetrical monocarbinol deriva-
tive 1. The procedure requires only minute amounts, that is less
than 10 mol % of base, in order to prevent the full deprotection;
in our hands, this yielded only small amounts of materials, as
reported for other systems in the literature [18]. Therefore, we
have chosen to explore the nucleophilic addition to acetone of
the monometallated acetylenide, a reaction that requires a
precise control of both the amount of n-BuLi/acetone reactants
and temperature. Thus, after chromatographic separation, 1 is
readily obtained with excellent purity and good yields (44-50%,
Scheme 1). One notable advantage of this strategy lies in its
ability to recycle the side compound 2 back to BCO, the starting
material, allowing to increase the yield of the monocarbinol 1
up to 64% (Scheme 1).

The benefit of this simple approach is illustrated by the syn-
thesis of dirotors in higher yield than our former [10,12] syn-

— N\
U
2

yield = 26%

thesis of 6 and with very diverse functional groups (Scheme 2).
Hence, large quantities of the diyne diester dirotor, 9 are
obtained (Scheme 2) providing ready, on-demand access to 10.

The dirotors 3, 6 and 9 are synthesized by palladium-catalyzed
homocoupling [19] of the mono-terminated alkene BCOs 1, 5
and 8, respectively (Scheme 2). Note that the scope of our
earlier synthesis was much narrower since it only allows the
preparation of a monopyridine derivative, 5 subsequently
engaged to yield 6 and could not be upscaled to produce the
targets in gram scale. These limitations are lifted by our novel
strategy. Hence, 5 is obtained in a better yield and a higher
purity. Besides, this novel approach delivers the monosubsti-
tuted BCOs 1 and 8 and, in turn, the alcohol and carboxylate-
functionalized dirotor diynes, 3 and 9. It is important to note
that 8 was obtained from 7 by a modified deprotection proce-
dure of the carbinol group using NaH instead of KOH under dry
conditions, thereby allowing the deprotection to proceed succes-
fully while preventing the ester saponification [19,20]. Indeed,
keeping the ester function is of primary importance for solu-
bility considerations, as it enhances the reactivity in the homo-
coupling reaction and also facilitates the purification of 9 by
chromatography on silica gel. This yielded the dicarboxylate
diyne dirotor 10 with the high purity required for the prepar-
ation of framework solids.

Saponification of the ester function and carbinol deprotection of

7 are carried out in one single step to yield to the carboxylic

acid 11. The tertiary amide 12 was then prepared in good yield
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Scheme 2: Synthesis of dirotors 6 and 10.

and high purity by reacting the activated acyl chloride with
N,N-dimethylamine (Scheme 3).

A further benefit of our synthesis lies in the obtainment of 14
(Scheme 4), a new class of extended alkaloid ligands similar to
isonicotinic acid (of much smaller spatial extension) which was
obtained recently in a synthesis of a simple Li(I) salt with an
extended framework by Abrahams, Robson and co-workers
[21].
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Compound 13 was prepared either from 5 or 8 by Sonogashira
coupling reactions (Scheme 4). Route 1 was preferred on
account of higher yields. The ester function is necessary to
purify the intermediate 13 and isolate 14 with excellent purity.

These results demonstrate the viability of our approach of the
desymmetrization of 1,4-bis(ethynyl)bicyclo[2.2.2]octane rota-
tors. The good yields allow the large amounts required for self-

assembly and subsequent investigations of the dynamics of the
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Scheme 3: Synthesis of the tertiary amide 12.
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Scheme 4: Synthesis of the extended alkaloid ligand 14.
rotors in the solid state to be readily prepare. The chemistry, ACkﬂOWledgmentS

physical chemistry and materials chemistry and physics of
asymmetric rotors and their potential in the development of
molecular machines that can perform mechanical functions can
now be systematically studied.
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