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This network meta-analysis aimed at evaluating the effectiveness of different

velocity-based (VBT) and traditional 1RM-based resistance training (TRT)

interventions on strength and power indices in healthy participants. The

research was conducted until December 2021 using the online electronic

databases PubMed, Web of Science, PsycNet, and SPORTDiscus for studies

with the following inclusion criteria: 1) controlled VBT trials, 2) strength and/or

jump and/or sprint parameters as outcomes (c), participants aged between

18 and 40 years, and 4) peer-reviewed and published in English. Standardized

mean differences (SMD) using a random effects models were calculated.

Fourteen studies with 311 healthy participants were selected and 3 networks

(strength, jump, and sprint) were achieved. VBT, TRT, repetitions in reserve (RIR),

low velocity loss (lowVL), and high velocity loss (highVL) were ranked for each

network. Based on P-score rankings, lowVL (P-score ≥ 0.59; SMD ≥ 0.33) and

highVL (P-score ≥ 0.50; SMD ≥ 0.12) revealed favorable effects on strength,

jump, and sprint performance compared to VBT (P-score ≤ 0.47; SMD ≤0.01),
TRT (P-score ≤0.46; SMD ≤ 0.00), and RIR (P-score ≤ 0.46; SMD ≤ 0.12). In

conclusion, lowVL and highVL showed notable effects on strength, jump, and

sprint performance. In particular for jump performance, lowVL induced

favorable improvements compared to all other resistance training approaches.
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Introduction

Resistance training is considered an important part of an

athlete’s weekly training schedule in both individual and team

sports (Healy et al., 2019; Drury et al., 2021). Besides

morphological and functional adaptations at the muscular

level (Grgic et al., 2021), relevant performance abilities such

as strength, jumping, and sprinting ability relevantly benefit from

adequate resistance training (Suchomel et al., 2016). Traditional

resistance training mainly relies on training approaches based on

a certain percentage of the one repetition maximum (1RM) or

autoregulative (perceived exertion or reps in reserve) (Zourdos

et al., 2016).

Within the last decades, velocity-based resistance training

(VBT) as an alternative strength training approach has gained

increasing attention (González-Badillo and Sánchez-Medina,

2010). During VBT the training intensity is controlled by

monitoring the mean concentric velocity (MCV) of each

repetition (González-Badillo and Sánchez-Medina, 2010) using

inertial sensors (Held et al., 2021b) or linear position transducers

(Held et al., 2021a). In general, the level of fatigue increases

gradually as a function of increasing effort during a training set

(Sánchez-Medina and González-Badillo, 2011). Therefore, a

decreasing MCV across repetitions within a set provides a

feasible, simple, and promising tool to clearly objectify levels

of fatigue (Sánchez-Medina and González-Badillo, 2011). Hence,

VBT allows the application of a homogeneous stimulus across

individuals (Pareja-Blanco et al., 2020) and resistance training

control without excessive exhaustion (Padulo et al., 2012).

Further, employing the “two-point method” (García-Ramos

et al., 2018), the load-velocity relationship enables an athlete’s

1RM prediction without applying maximum loads. Compared to

traditional 1RM-based strength training with large within subject

day-to-day variability (Kiely, 2012; Jovanović and Flanagan,

2014), this relationship has been reported to be load- and

exercise-specific (Beck et al., 2020), but robust over long-term

training progress (González-Badillo and Sánchez-Medina, 2010).

The term VBT covers a variety of approaches (Weakley et al.,

2021), with the two main approaches employing velocity zones

(i.e., completing a set of repetitions within a pre-defined

individual or generic velocity range) or velocity loss

thresholds (i.e., performing repetitions within a set until the

velocity drops below a predefined threshold) (Orange et al.,

2022). In this context, qualitative assessment of the literature

in two recently published systematic reviews (Włodarczyk et al.,

2021; Baena-Marín et al., 2022) indicates superior adaptational

potential in terms of 1RM, sprinting, and jumping performance

for VBT approaches employing a velocity loss threshold of

10–20%. Therefore, combining different VBT approaches (e.g.,

employing velocity zones and velocity loss thresholds) to allow

comparison with traditional strength training methods in the

context of a meta-analysis (Liao et al., 2021; Orange et al., 2022)

may impede well-informed decision making for trainers, athletes,

and practitioners in the field of velocity-based strength training

due to the partial heterogeneity of the studies (Liao et al., 2021).

Hence, a network meta-analysis (NMA) that enables effect

size estimation based on both direct and indirect study

comparison can serve as a proper alternative to synthesize

available evidence in the field of velocity-based strength

training. Specifically, this method allows estimating

comparative effects of treatment arms that have not been

directly compared in randomized trials (Caldwell et al., 2005).

Thus, employing a NMA allows the comparison of VBT

approaches with different velocity loss thresholds or velocity

zones against traditional strength training methods. Therefore,

the present network meta-analysis aimed at examining and

comparing the effects of different strength training

interventions by distinguishing between traditional and

velocity-based training approaches based on maximal and

explosive performance indices. We hypothesized that the VBT

approaches in general might lead to superior effects on relevant

performance surrogates compared to traditional 1RM-based

training. We furthermore assume that limiting the loss of

MCV to a lower limit will improve speed strength

performance adaptations. The overall results of this NMA

might help coaches and researchers to better select their

training regime based on the intended training adaptations.

Materials and methods

Search and screening procedures

This review was conducted in accordance with Preferred

Reporting Items for Systematic Reviews and Meta-Analyses for

Network Meta-Analyses (PRISMA-NMA) (Hutton et al., 2015).

The literature search and screening were independently

conducted by two researchers (KS and HB). Four health-

related, biomedical, and psychological databases (PubMed,

Web of Science, PsycNet and SPORTDiscus) were screened

from inception of the respective journal until December 6,

2021. Relevant search terms (operators) were combined with

Boolean conjunctions (OR/AND) and applied on two search

levels (Table1).

The researchers also tracked cited articles and hand searched

relevant primary articles and reviews. Duplicates were removed

and the remaining studies underwent a manual screening. They

were gradually screened using 1) the titles, 2) abstracts, and 3)

full-texts of the potentially eligible articles. The final decision for

inclusion or exclusion was made by two independent researchers

(KS and SH). The following inclusion criteria based on the

PICOS approach [population (P), intervention (I),

comparators (C), main outcome (O), and study design (S)]

were used: Full-text article published in English in a peer-

reviewed journal; participants were healthy adults between

18 and 40 years (P), without any cognitive, neurological,
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orthopedic, and/or cardiac conditions that could affect physical

testing and training; velocity-based training served as the

interventional strategy of interest (I); active control group(s)

that performed non velocity or velocity loss based resistance

training and/or inactive control group(s) that did not receive any

intervention served as a comparator (C); at least one outcome of

strength (1RM), jump (CMJ or SJ), and sprint (10–30 m)

performance had to be evaluated in the study (O); and

prospective two- or multi-armed controlled intervention study

with pre- and post-testing and more than 7 days duration (S).

The exclusion criteria were: No adequate control conditions,

which made integration into the network impossible.

Assessment of the methodological quality
of included studies

The methodological quality (including risk of bias) of the

included studies was independently rated using the PEDro

(Physiotherapy Evidence Database) scale (Maher et al., 2003).

The PEDro scale contains 11 dichotomous (yes or no) items, in

which the criteria 2–9 rate randomization and internal validity

and the criteria 10–11 rate the presence of statistically replicable

results. Criterion 1 relates to external validity, but will not be used

to calculate the PEDro score. Studies were rated independently by

two non-blinded reviewers (KS and HB) who needed to obtain

consensus on every item. Discordant study ratings were

discussed point to point by two reviewers (KS and SH) who

then came to a decision. To represent a high-quality study, the

PEDro score had to be ≥6 on a scale from 0 to 10 (Maher et al.,

2003).

Data extraction

Relevant data (required for calculating effect sizes) were

extracted independently by two researchers (KS and SH) using

a standardized extraction Excel spreadsheet adapted from the

Cochrane Collaboration (Higgins et al., 2022). Means and

standard deviations of pre-test and post-test scores on all

strength, jump, and sprint related tests were extracted, along

with the number of participants assessed in each group. If these

point and variability measures were not reported in the full-text

article, either the means and pooled within-group standard

deviations of change scores were entered in an electronic

spreadsheet or the authors of the article were contacted, and

missing values were requested three times over the course of

2 months. If studies only presented means and standard

deviations in figures, the WebPlotDigitizer Version 4 (Free

Software Foundation, Boston, MA, United States) was used to

extract means with standard deviations. For studies with multiple

outcomes for a single neuromuscular test, the condition with the

highest demand (as determined by two researchers) on the

respective domain was extracted. In the case of multiple

relevant neuromuscular tests, effect sizes and standard errors

were pooled. Subsequently, all neuromuscular tests and

outcomes were categorized into strength, jump, and sprint. In

addition to these outcomes, relevant study information regarding

author, year, number of participants, interventional data (weeks,

frequency, duration per session, type of intervention), control

condition, and PEDro scale scores were also recorded. For the

simplification of the networks, similar treatments have been

summarized into low velocity loss (LowVL), high velocity loss

(HighVL), repetitions in reserve-based training (RIR), velocity-

based resistance training (VBT), and traditional 1RM based

resistance training (TRT). Thereby, LowVL and HighVL were

defined as velocity losses of ≤20% and >20%, respectively.

Statistics

The standardized mean difference (SMD) and its 95%

confidence intervals (95CI) were calculated for all the

interventional treatments as a measure of treatment

effectiveness. Thereby, SMDs were calculated as differences

between means divided by the pooled standard deviations

(trivial: SMD <0.2, small: 0.2 ≤ SMD <0.5, moderate: 0.5 ≤
SMD <0.8, large SMD ≥0.8) (Cohen, 1988). Subsequently, three
separate network models for strength, sprint, and jump were

computed. In order to visualize the networks, a network graph

was created for each of the three networks. The estimations of

treatment effects were calculated based on a random effects

TABLE 1 Search strategy.

Search level Search terms with
Boolean operators

Search #1 “velocity based training” OR “velocity based” OR “vbt” OR “concentric velocity” OR “mean concentric velocity” OR “movement
velocity” OR “barbell velocity” OR “velocity loss” OR “power based training”

Search #2 #2 AND (”1 repetition maximum” OR “1RM” OR “one repetition maximum” OR “MVC” OR “muscle strength” OR “muscular
strength” OR “hypertrophy” OR “muscle hypertrophy” OR “muscular hypertrophy” OR “muscle fibre” OR “muscle fiber” OR
“muscle thickness” OR “CSA” OR “cross-sectional area” OR “muscle size” OR “girth” OR “torque” OR “rate of torque
development” OR “RTD” OR “rate of force development” OR “RFD” OR “strength development rate” OR “SDR” OR “jump” OR
“drop jump” OR “depth jump” OR “DJ” OR “counter movement jump” OR “CMJ” OR “vertical jump”)
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model (Senn, 2007). TRT was defined as reference treatment for

the following network meta-analytical procedure. A ranking was

created based on the P-score of the individual treatments. The

P-score calculation following the surface under cumulative

ranking (SUCRA) protocol of a treatment is obtained from

estimating the effect sizes of pairwise treatment comparisons

and presuming their point estimates are normally distributed.

P-scores range from 0 to 100%, with 0 or 1 being the theoretically

worst and best treatment, respectively, (Rücker and Schwarzer,

2015). P-scores in a frequentist NMA are analogous to the

SUCRA (Mbuagbaw et al., 2017) values found in Bayesian

NMA (Rücker and Schwarzer, 2015). Additionally, a forest

plot was created to further visualize the ranking and effects of

the treatments. The decomposed Q-statistics (within and

between designs) were used to assess potential heterogeneity

and inconsistency. Heterogeneity and inconsistency were further

quantified by I2 (Higgins and Thompson, 2002). Funnel plots

were created to check potential publication bias, whereby Egger’s

test for asymmetry of the funnel plot (Egger et al., 1997) was used.

R software (version 4.1.1; The R Foundation for Statistical

Computing) and the package “netmeta” (Rücker et al., 2021)

was used for all calculations and figures.

Results

Trial flow

In total 12,206 potentially relevant articles were initially

found (Figure 1). After removing duplicates, 9,574 article titles

and abstracts were carefully screened for relevance. The full-texts

of the remaining 138 potentially relevant articles were thoroughly

studied. Altogether, 125 papers were excluded as they did not

meet the inclusion criteria or fulfilled the exclusion criteria.

Consequently, quantitative and qualitative data were extracted

from a final set of 13 articles (Table 2).

Study characteristics and quality

Included trials (311 healthy adults) consisted of 24 ±

11 participants per study (range 10 to 55) with an average

age of 23.0 ± 1.7 years (range 19.6 to 26.0 years). The average

study quality was high as indicated by a PEDro score of 5.9 ±

0.3 (range 5 to 6; Figure 2). Apart from one three armed

design (Rodríguez-Rosell et al., 2021), most studies employed

a two-armed design (Pareja-Blanco et al., 2017b; Pérez-

Castilla et al., 2018; Dorrell et al., 2020; Galiano et al.,

2020; Pareja-Blanco et al., 2020; Rodríguez-Rosell et al.,

2020; Shattock and Tee, 2020; Held et al., 2021a; Andersen

et al., 2021; Banyard et al., 2021; Jiménez-Reyes et al., 2021;

Montalvo-Pérez et al., 2021).

Strength, jump, and sprint network

The strength, jump, and sprint networks revealed low

heterogeneity and non-significant heterogeneity inconsistency

(I2 and Q statistics; Figure 3). The funnel plot evaluations and

non-significant Egger’s tests revealed no risk of bias for the

strength, jump, and sprint network (Figure 4). Figures 2, 3

visualize the ranking of treatments and the pairwise

comparison, respectively. In the strength network (Figure 3A),

data from 13 studies (276 participants) representing 15 (pairwise

comparison) effect sizes were included. The most common

comparison was LowVL vs. HighVL (n = 7), followed by VBT

vs. TRT (n = 4), and LowVL vs. TRT (n = 2). The jump network

(Figure 3B) is based on 10 studies (220 participants) representing

10 (pairwise comparison) effect sizes. The most common

comparison was LowVL vs. HighVL (n = 6), followed by VBT

vs. TRT (n = 3). The sprint network (Figure 3C) contained data

from 9 studies (204 participants), representing 9 (pairwise

comparison) effect sizes. The most common comparison was

LowVL vs. HighVL (n = 6), followed by VBT vs. TRT (n = 2).

Discussion

This is the first network meta-analytical review that

investigated and compared the effects of different velocity-

based resistance training approaches with traditional 1RM-

based resistance training settings. Interestingly, (high and low)

velocity loss based resistance training approaches ranked (based

FIGURE 1
Flow chart of the different phases of study screening and
selection.
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TABLE 2 Overview of the included studies.

Study Population Sample
[n]

Age
[yrs]

Training
age [y]

Duration
[w]

Sessions
[n/wk]

Outcome Interventions

Andersen et al.
(2021)

resistance
trained males

10 23.0 ± 4.3 4.5 9 2 1RM leg press LowVL: Velocity Based
Resistance Training with 15%
Velocity Loss, volume matched,
intravidual leg comparison

HighVL: Velocity Based
Resistance Training with 30%
Velocity Loss, volume matched,
intravidual leg comparison

Banyard et al.
(2021)

resistance
trained males

24 25.5 ± 5.0 >2 6 3 1RM squat,
CMJ, sprint
(10m, 20 m)

VBT: Velocity Based Resistance
Training; with progression;
25 reps per session

TRT: Traditional 1RM Based
Resistance Training, progression
from 59 to 85% 1RM; 25 reps per
session

Dorrell et al. (2020) resistance
trained males

16 22.8 ± 4.5 >2 6 2 1RM
squat, CMJ

VBT: Velocity Based Resistance
Training via velocity zones; 12 to
32 reps per exercise and session;
70–90% 1RM squat, benchpress,
overhead press, deadlift

TRT: Traditional 1RM Based
Resistance Training, load
matched to VBT; 12 to 32 reps per
exercise and session; 70–90%
1RM squat, bench press, overhead
press, deadlift

Galiano et al.
(2020)

physically active
male

28 22.1 ± 2.9 >1.5 7 2 1RM squat,
CMJ,
sprint (20 m)

LowVL: Velocity Based
Resistance Training with 5%
Velocity Loss, at fixed 1.14 m/s;
total reps 156.9 ± 25.0; 50% 1RM
squat

HighVL: Velocity Based
Resistance Training with 20%
Velocity Loss, at fixed 1.14 m/s;
total reps 480.5 ± 162.0; 50% 1RM
squat

Held et al. (2021a) rowers 21
(4 females)

19.6 ± 2.0 >2 8 2 1RM Squat LowVL: Velocity Based
Resistance Training with 10%
Velocity Loss; total reps 2,145 ±
285; 80% 1RM squat, deadlift,
bench row and bench press

TRT: Traditional 1RM based
training to repetition failure; total
reps 2,825 ± 100; 80% 1RM squat,
deadlift, benchrow and bench
press

Jiménez-Reyes et al.
(2021)

physically active
males

24 23.1 ± 4.2 >2 8 2 1RM squat,
CMJ, sprint
(10m, 20 m)

VBT: Velocity based Training,
load matched; 6 to 32 rpes per
exercise and session; 50–80%
1RM squat

TRT: Traditional 1RM based
Resistance Training; 6 to 32 rpes
per exercise and session; 50–80%
1RM squat

Montalvo-Perez
et al. (2021)

Female cyclists 17
(17 females)

26.0 ± 7.0 >2 6 2 1RM squat VBT: Velocity Based Resistance
Training, at about 65% 1RM;
3 sets per exercise, squat, hip
thrust and lunges

TRT: Traditional 1RM based
Resistance Training, with
progression from 80–90% 1RM;
12 to 32 reps per exercise and
session, squat, hip thrust and
lunges

(Continued on following page)
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TABLE 2 (Continued) Overview of the included studies.

Study Population Sample
[n]

Age
[yrs]

Training
age [y]

Duration
[w]

Sessions
[n/wk]

Outcome Interventions

Pareja-Blanco et al.
(2017b)

male soccer
players

16 23.8 ± 3.5 6 3 1RM squat,
CMJ,
sprint (30 m)

LowVL: Velocity Based
Resistance Training with 15%
Velocity Loss; total reps 251.2 ±
55.4; 50–70% 1RM squat

HighVL: Velocity Based
Resistance Training with 30%
Velocity Loss; total reps 414.6 ±
124.9; 50–70% 1RM squat

Pareja-Blanco et al.
(2020)

resistance
trained male

55 24.1 ± 4.3 1.5-4 8 2 1RM Squat LowVL: Velocity Based
Resistance Training with 0/10%
Velocity Loss; total reps 143.6 ±
40.2; 70–85% 1RM

HighVL: Velocity Based
Resistance Training with 20/40%
Velocity Loss; total reps 237.1 ±
64.6; 70–85% 1RM

Perez-Castilla et al.
(2018)

physically active
males

20 22.1 ± 2.1 >2 4 2 1RM loaded
jump, CMJ,
sprint (15 m)

LowVL: Velocity Based
Resistance Training with 10%
Velocity Loss, volume matched,
drop jump, counter movement
jump and deadlift up to 50% body
mass

HighVL: Velocity Based
Resistance Training with 20%
Velocity Loss, volume matched,
drop jump, counter movement
jump and deadlift up to 50% body
mass

Rodriguez-Rosell
et al. (2020)

physically active
males

25 22.8 ± 3.1 1-3 8 2 1RM squat,
CMJ, sprint
(10m, 20 m)

LowVL: Velocity Based
Resistance Training with 10%
Velocity Loss; total reps 109,6 ±
12.0; 70–85% 1RM squat

HighVL: Velocity Based
Resistance Training with 30%
Velocity Loss; total reps 228.0 ±
76.6; 70–85% 1RM squat

Rodriguez-Rosell
et al. (2021)

physically active
males

35 21.6 ±2.8 1-3 8 2 1RM squat,
CMJ, sprint
(10m, 20 m)

LowVL_ Velocity Based
Resistance Training with 10%
Velocity Loss; total reps 180.8 ±
29.0; 55–70% 1RM squat

HighVL: Velocity Based
Resistance Training with 30/45%
Velocity Loss; total reps 429.5 ±
84.6; 55–70% 1RM squat

TRT: 1RM based resistance
training with progression from
50–70% 1RM; 55–70% 1RM squat

Shattock and Tee,
(2020)

male rugby
players

20 22.0 ± 3.0 >2 6 3 1RM squat,
CMJ, sprint
(10m, 20 m)

VBT: Velocity Based Resistance
Training, load matched; total
volume 149 270 ± 17 413 kg;
70–90% 1RM squat, bent. Over
row, shoulder press, pull ups,
benchpress, deadlift

RIR: Reps in reserve (RIR) based
resistance training, load matched;
total volume 153 395 ± 13 574 kg;
70–90% 1RM squat, bent. Over
row, shoulder press, pull ups,
benchpress, deadlift

LowVL: low velocity loss (≤20%); HighVL: high velocity loss (>20%); RIR: repetitions in reserve based training; VBT: velocity-based resistance training; TRT: traditional 1RM based

resistance training (TRT).
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FIGURE 2
PEDro Score of each included study.

FIGURE 3
Network plots of the strength (A), jump (B), and sprint (C) network. In addition, I2, Q statistic, and P-score rankings are given. LowVL: low velocity
loss (≤20%); HighVL: high velocity loss (>20%); RIR: repetitions in reserve-based training; VBT: velocity-based resistance training; TRT: traditional 1RM
based resistance training (TRT).
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on P-scores) consistently at the top two for the strength, jump,

and sprint network, respectively. All three networks revealed

small to moderate positive effects for both high and low velocity-

loss-based resistance training approaches compared to a

traditional resistance training approach. Other velocity based

resistance training approaches ranked consistently between third

and fourth place according to the P-score ranking of the strength,

jump, and sprint network. Thereby, these other velocity based

resistance training approaches revealed small negative to trivial

positive effects on strength, jump, and sprint performance.

Traditional 1RM and repetitions in reserve based resistance

training approaches ranked between third and fifth, with

moderate negative to trivial positive effects on strength, jump,

and sprint performance.

A recent meta-analytical review (Liao et al., 2021) revealed

similar effects of VBT and TRF on strength performance (MD =

3.03 kg; 95% CI: −3.55, 9.61; I2 = 0%), despite lower training

volume during VBT approaches. Based on P-scores our findings

revealed favorable effects of both high and low velocity loss based

resistance training approaches (on strength performance)

compared to traditional 1RM or RIR based resistance training

approaches. Overall, traditional 1RM based resistance training to

failure does not necessarily lead to higher strength gains

(Izquierdo-Gabarren et al., 2009). In addition, recent findings

revealed reduced training induced stress and less need of

recovery via low velocity loss based resistance training (Held

et al., 2021a). This finding has been confirmed by other scholars

(Sánchez-Medina and González-Badillo, 2011), who observed a

FIGURE 4
Forest and funnel plots for the strength (A), jump (B), and sprint (C) network. In addition, Egger´s p scores are given. LowVL: low velocity loss
(≤20%); HighVL: high velocity loss (>20%); RIR: repetitions in reserve-based training; VBT: velocity-based resistance training; TRT: traditional 1RM
based resistance training (TRT).
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high correlation between increasing velocity loss and mechanical

or metabolic stress. Furthermore, neuromuscular performance

recovers faster post low velocity loss resistance training rather

than post high velocity loss approaches (Pareja-Blanco et al.,

2019).

In line with a previous systematic review (Włodarczyk et al.,

2021), we observed (based on P-scores) favorable effects of low

velocity loss approaches on jump performance adaptations. In

this context, high velocity loss approaches seem to have negative

effects on the type IIX muscle fibers (Pareja-Blanco et al., 2017a).

While 8 weeks of low velocity loss based resistance training did

not induce a reduction in type IIX fiber content (of the m. vastus

lateralis), high velocity loss based resistance training produced a

significant reduction in type IIX content (Pareja-Blanco et al.,

2017a). In particular, the rate of force development dependent

jump performance (McLellan et al., 2011; Laffaye et al., 2014;

Maffiuletti et al., 2016) has been attributed at the proportion of

IIX fibers (Andersen et al., 2010). Confirming these previous

findings, Martinez-Canton and colleagues (Martinez-Canton

et al., 2021) revealed increased CAMKII (calmodulin kinase

II) activity via high velocity loss training, which has been

linked to a decrease in IIX isoforms through a change in

calcium handling (Tavi and Westerblad, 2011; Summermatter

et al., 2012; Gehlert et al., 2015). Therefore, Pareja-Blanco and

colleagues (Pareja-Blanco et al., 2017b) concluded in line with

our findings that an optimal velocity loss ranges from 10 to 20%

for jump performance developments.

While Pareja-Blanco and colleagues (Pareja-Blanco et al.,

2017b) emphasize the benefits of low VL for sprint performance

adaptations, a recent meta-analytic review (Liao et al., 2021)

indicates comparable sprint performance adaptations at low and

high velocity loss approaches (MD = 0.01 s; 95% CI: -0.06, 0.07;

I2 = 0%). In contrast, the high velocity loss approach scores best

in our P-score ranking. However, there is a large overlap in the

variances of the low and high velocity loss approaches, which

makes it difficult to clearly distinguish between them in terms of

effectiveness. Nevertheless, our ranking shows a substantial gap

between both low and high velocity loss approaches and RIR,

VBT, and TRT, which again highlights the value of velocity loss

based resistance training.

Apart from high P-scores, the low and the high velocity loss

approaches revealed only small positive mean effects compared

to a traditional resistance training approach. Furthermore, 95%

confidence intervals revealed small negative (−0.42) to large

positive (+1.26) strength, jump and sprint adaptation effects

compared to a traditional resistance training approach.

Nevertheless, considering the lower loads and the resulting

reduced needs for recovery associated with lower velocity loss

training (Sánchez-Medina and González-Badillo, 2011; Pareja-

Blanco et al., 2019; Held et al., 2021a), these small effects are

relevant for athletes and coaches in a short and long term

perspectives on the training process. However, a

corresponding sample size estimation for a randomized

crossover trail (paired t-test; SMD = 0.41; α error = 0.05;

power (1-β error) = 0.90). using G*Power (Version 3.1.9.6)

(Faul et al., 2007) revealed a required sample

size ≥50 participants, which is substantially above the mean

sample size of the included studies of this network meta-

analyses. Therefore, future research on velocity loss

approaches should consider larger sample sizes or

individualized approaches with more frequent repeated

measures (Hecksteden et al., 2015, 2018). based on single-

subject designs (Hecksteden et al., 2015, 2018) and/or

Bayesian statistics using informative priors (Hecksteden et al.,

2022) could tackle these sample sized related limitations

(Hecksteden et al., 2021).

A limitation of the current network meta-analysis is that only

14 studies could be identified that met our inclusion criteria.

These stringent inclusion criteria were necessary to achieve

homogeneous networks. Furthermore, this decision is

confirmed by the finding that our network models show no

evidence of heterogeneity or inconsistency. Nevertheless, the

used network meta-analytical approach enables effect size

estimation based on both direct and indirect study

comparison (Rücker and Schwarzer, 2015). Therefore, our

results are in line with previous reviews and meta-analyses

(Liao et al., 2021; Włodarczyk et al., 2021), despite the

aforementioned limitations.

This network meta-analytical review revealed that (high and

low) velocity loss based resistance training approaches revealed

favorable effects on strength, jump, and sprint performance

compared to other velocity based, traditional 1RM, and

repetitions in reserve based resistance training approaches.

In particular for jump performance, low velocity loss

resistance training approaches induced favorable

improvements compared to all other resistance training

approaches. Overall, these findings indicate that the choice

of resistance training approach and in particular the level of

velocity loss has an impact on the magnitude of the effects and

should, therefore, be carefully considered by coaches and

athletes. In particular, velocity loss based approaches seem

beneficial for increasing strength, jump and sprint

performances. In particular, low velocity loss within a

resistance training seems to be beneficial for strength and

jump performance adaptations. In contrast, sprint

performance seems to benefit from both low and high

velocity loss based resistance training. In this context, future

research should focus on the optimal amount of this

velocity loss.
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