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Background: MicroRNAs (miRNAs) play an important role in gastric carcinogenesis
and have been associated with gastric field cancerization; however, their role is not fully
understood in this process. We performed the miRNome sequencing of non-cancerous,
adjacent to tumor and gastric cancer samples to understand the involvement of these
small RNAs in gastric field cancerization.

Methods: We analyzed samples of patients without cancer as control (non-cancerous
gastric samples) and adjacent to cancer and gastric cancer paired samples, and
considered miRNAs with |log2(fold change)| > 2 and Padj < 0.05 to be statistically
significant. The identification of target genes, functional analysis and enrichment in
KEGG pathways were realized in the TargetCompare, miRTargetLink, and DAVID tools.
We also performed receiver operating characteristic (ROC) curves and miRNAs that had
an AUC > 0.85 were considered to be potential biomarkers.

Results: We found 14 miRNAs exclusively deregulated in gastric cancer, of which
six have potential diagnostic value for advanced disease. Nine miRNAs with known
tumor suppressor activities (TS-miRs) were deregulated exclusively in adjacent tissue.
Of these, five have potential diagnostic value for the early stages of gastric cancer.
Functional analysis of these TS-miRs revealed that they regulate important cellular
signaling pathways (PI3K-Akt, HIF-1, Ras, Rap1, ErbB, and MAPK signaling pathways),
that are involved in gastric carcinogenesis. Seven miRNAs were differentially expressed
in both gastric cancer and adjacent regarding to non-cancerous tissues; among them,
hsa-miR-200a-3p and hsa-miR-873-5p have potential diagnostic value for early and
advanced stages of the disease. Only hsa-miR-196a-5p was differentially expressed
between adjacent to cancer and gastric cancer tissues. In addition, the other miRNAs
identified in this study were not differentially expressed between adjacent to cancer
and gastric cancer, suggesting that these tissues are very similar and that share these
molecular changes.
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Conclusion: Our results show that gastric cancer and adjacent tissues have a similar
miRNA expression profile, indicating that studied miRNAs are intimately associated with
field cancerization in gastric cancer. The overexpression of TS-miRs in adjacent tissues
may be a barrier against tumorigenesis within these pre-cancerous conditions prior to
the eventual formation or relapse of a tumor. Additionally, these miRNAs have a great
accuracy in discriminating non-cancerous from adjacent to tumor and cancer tissues
and can be potentially useful as biomarkers for gastric cancer.

Keywords: miRNome, miRNAs, gastric cancer, field cancerization, biomarkers

INTRODUCTION

Gastric cancer (GC) is an aggressive disease that is considered
the third leading cause of cancer death worldwide (Ferlay et al.,
2015). GC is usually diagnosed in late stages, due in part to
the limited efficiency of existing biomarkers, and the 5-year
survival rates of these patients do not exceed 30% (Correa,
2013; Yakirevich and Resnick, 2013). Studies have shown that
microRNAs (miRNAs) have excellent sensitivity/specificity and a
high discriminatory capacity, which make them potentially useful
as molecular biomarkers for this type of cancer (Wu et al., 2014;
Shin et al., 2015; Vidal et al., 2016).

MicroRNAs are small non-coding RNAs (∼18–30 nt) that
regulate gene expression post-transcriptionally, disrupting the
expression of target mRNAs (Bartel, 2004; Wu et al., 2014).
These molecules play an important role in multiple pathways
and the processes responsible for the maintenance of healthy
tissue homeostasis (Schneider, 2012; Runtsch et al., 2014). In
humans, studies suggest that miRNAs are part of the complex
regulatory network of the healthy stomach (Ribeiro-dos-Santos
et al., 2010; Moreira et al., 2014a). Therefore, when miRNAs are
deregulated in the human stomach, they compromise important
pathways that regulate the normal functions of this organ (Zhang
et al., 2014), contributing to the onset and progression of gastric
carcinogenesis (Wu et al., 2014).

In recent years, our research group joined efforts and used
different technologies to understand the relationship between
the deregulation of these small RNAs and gastric carcinogenesis
(Assumpção et al., 2015; Darnet et al., 2015; Vidal et al., 2016;
Magalhães et al., 2018; Pereira et al., 2019). More recently,
we have demonstrated the deregulation of miRNAs during the
evolution of Correa’s cascade (Vidal et al., 2016) and in field
cancerization in GC (Assumpção et al., 2015; Pereira et al., 2019).

Field cancerization assumes that the tissues adjacent to the
tumor have molecular changes (e.g., genetic and/or epigenetic)
that make them susceptible to the onset of tumors or recurrences
(Slaughter et al., 1953; Chai and Brown, 2009; Curtius et al.,
2018). The preexisting molecular changes in this tissue (which
may be caused by an insult to the healthy epithelium) are
precursors of carcinogenesis and serve as background for
the establishment and progression of the tumor (Hattori and
Ushijima, 2016; Padmanabhan et al., 2017; Curtius et al., 2018).
In fact, studies have shown that adjacent to the tumor tissues
have similar molecular changes to those found in the tumor as
well as unique and exclusive changes, which distinguish them

from non-cancerous tissues (Assumpção et al., 2015; Takeshima
et al., 2015; Aran et al., 2017; Vidal et al., 2017; Yoshida et al.,
2017; Pereira et al., 2019). Recently, miRNAs were related to
field cancerization in GC (Assumpção et al., 2015; Pereira et al.,
2019), however, little is known about the true role played by
these small non-coding RNAs in this process. The use of robust
large-scale sequencing technologies is an excellent strategy in
both the discovery of new biomarkers and in providing an
overview of the complex relationship between miRNAs and
field cancerization.

In this study, we used deep sequencing to evaluate the
overall expression profile of miRNAs in non-cancerous gastric
tissues, adjacent to cancer and with cancer tissues in order to
identify miRNAs involved in the field cancerization. In addition,
we evaluated the discriminatory performance of miRNAs as
biomarkers of gastric carcinogenesis. Our results show new
deregulated miRNAs, which are potentially useful as biomarkers
for this cancer and suggest a new molecular mechanism involved
in the biology of field cancerization.

MATERIALS AND METHODS

Biological Material
A total of 45 fresh samples of stomach antrum tissues were
included in the present study. The non-cancerous control (NC)
samples were collected from 15 patients without cancer (chronic
gastritis; ± H. pylori; mean age = 59.2) during an upper digestive
endoscopy (tissue fragments of approximately 4 millimeters). In
addition, 15 tumor-adjacent tissues (histopathologically without
cancer) and 15 gastric adenocarcinoma samples were collected
from patients with gastric cancer. The tumor-adjacent (ADJ)
and gastric adenocarcinoma (GC) samples were all paired
(± H. pylori; mean age = 59.9).

The tissues were obtained from patients treated at the
Hospital Universitário João de Barros Barreto (HUJBB),
Belém, Pará, Brazil. Samples were collected prior to antibiotic,
chemotherapeutic, and/or radiotherapeutic treatment.
Immediately after collection, all samples were frozen and
stored in liquid nitrogen until analysis.

Histopathological characterization of the samples, such as
tumor subtype, degree of differentiation, depth of invasion,
involvement of lymph nodes, and/or distant metastases
were extracted from pathological reports performed by the
HUJBB Department of Pathology. Histopathological analysis
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of the tumor fragments was performed according to Lauren’s
classification (Lauren, 1965).

Ethics Statement
This study was reviewed and approved by the Ethics Committee
of the Center of Oncology Research of the Federal University
of Pará (Protocol No. 1.081.340). All study participants or their
legal guardian provided informed written consent in accordance
with the Helsinki Declaration of 1964, the Nuremberg Code,
in compliance with the National Health Council’s Research
Guidelines Involving Human Beings (Res. CNS 466/12).

RNA Extraction, Small RNA Library
Construction, and Sequencing
Total RNA was extracted using TRIzol R© reagent (Thermo Fisher
Scientific). After isolation, total RNA was stored at −80◦C until
further analysis. The total RNA amount was determined using
a Qubit R©2.0 (Life Technologies, Foster City, CA, United States),
and an Agilent RNA ScreenTape assay and 2200 TapeStation
Instrument (Agilent Technologies, United States) were used to
detect RNA integrity. Samples with an RNA integrity number
(RIN) ≥ 5 were sequenced.

For small RNA-seq, 1 µg of total RNA per sample was
used for library preparation utilizing TruSeq Small RNA Sample
Prep Kits (Illumina, San Diego, CA, United States). A DNA
ScreenTape assay in a 2200 TapeStation Instrument (Agilent
Technologies, United States) and real-time PCR with a KAPA
Library Quantification Kit (KAPABIOSYSTEM, United States)
were used to validate and quantify each library. A 4-nM library
pool comprising all samples was sequenced using a MiSeq reagent
kit v3 150 cycle on a MiSeq System (Illumina, San Diego,
CA, United States).

The raw sequencing reads of all libraries have been deposited
at EBI-ENA (PRJEB27213).

Bioinformatics Analysis
The resulting reads were pre-processed and quality filtered
(qv > 25). We used STAR (Dobin et al., 2013) aligner to map the
reads to the human genome reference (GRCH37). We quantified
mature miRNA sequencing using miRBase human annotation
(v20). Counting expression data was performed with HTSeq
(Anders et al., 2015).

Differential expression analysis of all processed data was
performed using the bioconductor-DESeq2 package (Love et al.,
2014) in R software, with a detection threshold of 10 counts
per miRNA (present at least 10 read counts in at least of the
libraries). Comparison between (i) gastric cancer (GC) vs. non-
cancerous (NC) samples; (ii) adjacent to gastric cancer (ADJ) vs.
NC samples; and (iii) GC vs. ADJ samples were made separately.
Adjusted P-values ≤ 0.05 and |log2(fold change)| > 2 were
considered statistically significant.

For graphical analysis of miRNAs, expression data was
normalized to RPKM. Heatmaps were used for hierarchical
clustering of differentially expressed miRNAs. The area under the
curve (AUC > 0.85) from the receiver operating characteristic
(ROC) curves was used to identify biomarkers with the best

FIGURE 1 | Differentially expressed miRNAs in all comparisons made among
the studied groups. Venn’s Diagram of the differentially expressed miRNAs
shared between GC vs. ADJ, GC vs. NC, and ADJ vs. NC analysis.

sensitivity/specificity relation, and a discriminant analysis of
principal components (DAPC) was constructed to infer the
number of clusters of epigenetically related samples. All graphical
analyses were performed using the R statistical platform.

Identification of Differentially Expressed
miRNA Target Genes
We used two online tools to identify the differentially expressed
(D. E.) miRNA target genes: (i) TargetCompare (Moreira et al.,
2014b) and (ii) miRTargetLink Human (Hamberg et al., 2016).
TargetCompare database allows the user to filter miRNAs and its
targets genes that are associated with determined diseases, such
as GC. miRTargetLink Human is a tool that allows the search
for interactions between target genes and miRNAs that have been
experimentally validated by molecular biology techniques.

The identified target genes were submitted to functional
annotation and enrichment in KEGG pathways using
DAVID Bioinformatics Resources v.6.8 online tool
(Huang et al., 2009a,b).

RESULTS

After quality control (Supplementary Figure S1), alignment
and transcript quantitation, several small non-coding RNAs
(sncRNAs) and other transcript fragments were identified. From
them, ∼30% (∼9.5 million reads) were recognized as microRNAs
reads, identifying 1,144 mature miRNAs. Approximately 90% of
the miRNA reads (∼8.5 million reads) were concentrated on the
35 most expressed miRNAs. The number and representativity
of D. E. expressed miRNAs identified in this study is
similar to other studies that performed miRNome analysis
(Hou et al., 2011; Maltseva et al., 2014; Liu et al., 2015;
Castro-Magdonel et al., 2017; Liang et al., 2017).

Differentially Expressed miRNAs in GC
vs. NC Analysis
We found 21 differentially expressed (D. E.) miRNAs when
we compared gastric cancer samples (GC) with non-cancerous
gastric samples (NC) (Figure 1 and Supplementary Table S1),
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FIGURE 2 | Differentially expressed miRNAs in GC vs. NC and ADJ vs. NC analysis. (A) Heatmap of the 21 most highly expressed miRNAs in each of the two
distinct groups: GC (in purple) and NC (in green). (B) Heatmap of the 16 most highly expressed miRNAs in each of the two groups: ADJ (in purple) and NC (in green)
samples.

of which eight were down-regulated and 13 were up-regulated in
GC (Supplementary Table S1). The heatmap obtained from the
normalized expression of the D. E. miRNAs perfectly clustered
the GC and NC samples together (Figure 2A).

Fourteen miRNAs were exclusively D. E. in the GC vs. NC
analysis: nine were up-regulated (six oncomiRs, one TS-miR
and two with unknown functions in GC) and five were down-
regulated (all TS-miRs) in GC (Figure 1 and Table 1). Six
miRNAs, of which five were down-regulated (hsa-miR-141-3p,
-miR-148a-3p, -miR-148a-5p, -miR-153-3p, and -miR-375) and
one were up-regulated (hsa-miR-196a-5p), presented the best
sensitivity/specificity relation (AUC > 0.85) and were considered
as potential biomarkers to identify GC (Figure 3).

Differentially Expressed miRNAs in ADJ
vs. NC Analysis
Comparing adjacent to gastric cancer samples (ADJ)
with NC revealed 16 D. E. miRNAs (Figure 1 and
Supplementary Table S2), of which two were down-regulated
and 14 were up-regulated (Supplementary Table S2). The
heatmap obtained from the normalized expression of the
D. E. miRNAs clustered ADJ and NC samples together
(Figure 2B). Furthermore, nine miRNAs (eight TS-miRs and
one with unknown function in GC) were exclusively D. E. in
the ADJ vs. NC analysis: they were all up-regulated in ADJ
(Figure 1 and Table 2).

Five D. E. miRNAs (hsa-miR-99a, -miR-100-5p, -miR-
125b-5p, -miR-145-3p, and -miR-145b-5p, all up-regulated
in ADJ) presented the best sensitivity/specificity relation
(AUC > 0.85) and were considered as potential early biomarkers
for GC (Figure 4).

Functional Analysis of the Up-Regulated
TS-miRs in ADJ Tissue
To evaluate the biological and functional role of the eight up-
regulated TS-miRs and hsa-miR-99a-5p in ADJ tissue (Table 2),

TABLE 1 | Deregulated miRNAs only in gastric cancer.

miRNA Role in GC∗ GC vs. NC ADJ vs. NC GC vs. ADJ

miR-135b-5p OncomiR1,2,3 Up – –

miR-196a-5p OncomiR4,5 Up – Up

miR-196b-5p OncomiR6 Up – –

miR-215-5p OncomiR7 Up – –

miR-224-5p OncomiR8 Up – –

miR-615-3p OncomiR9 Up – –

miR-25-5p OncomiR10,11 Up – –

miR-141-3p TS-miR12,13 Up – –

miR-452-5p TS-miR14 Up – –

miR-135a-5p TS-miR15,16 Down – –

miR-148a-3p TS-miR17 Down – –

miR-148a-5p TS-miR17 Down – –

miR-153-3p TS-miR18,19 Down – –

miR-375 TS-miR20,21,22 Down – –

GC, gastric cancer; ADJ, adjacent to cancer; NC, non-cancerous; Up, up-
regulated; Down, down-regulated; TS-miR, tumor suppressor miRNA; OncomiR,
oncogenic miRNA. (-) Not differentially expressed. (∗) Putative role in GC. (1) Wang
et al., 2012; (2) Lu et al., 2018; (3) Shao et al., 2019; (4) Sun et al., 2012; (5) Pan
et al., 2017; (6) Liao et al., 2012; (7) Deng et al., 2014; (8) He et al., 2017; (9) Wang
et al., 2018; (10) Li B.S. et al., 2015; (11) LArki et al., 2018; (12) Zuo et al., 2015;
(13) Zhou et al., 2019; (14) Gao et al., 2016; (15) Zhang et al., 2016; (16) Xie et al.,
2019; (17) Zheng et al., 2011; (18) Wang and Liu, 2016; (19) Ouyang et al., 2018;
(20) Ding et al., 2010; (21) Chen et al., 2017; (22) Hwang et al., 2018.

we performed enrichment and functional annotation of their
experimentally validated common target genes. We used nine
miRNAs as input in the online tools TargetCompare (Moreira
et al., 2014b) and miRTargetLink Human (Hamberg et al.,
2016), which output five miRNAs (hsa-miR-let7-c-5p, -miR-
99a-5p, -miR-100-5p, -miR-133a-3p, and -miR-145-5p) that
regulate 18 common target genes (Figure 5A). The enrichment
and functional annotation analysis of the 18 target genes
performed in DAVID v.6.8 (Huang et al., 2009a,b) revealed
that 13 genes participate in 23 different biological pathways
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FIGURE 3 | Receiver operating characteristic (ROC) curve analysis identified miRNAs with potential to identify GC. (A) hsa-miR-141-3p (AUC = 1; 95% CI:
1.000–1.000∗); (B) hsa-miR-148a-3p (AUC = 0.88; 95% CI: 0.733–1.000); (C) hsa-miR-148a-5p (AUC = 0.93; 95% CI: 0.840–1.000); (D) hsa-miR-153-3p
(AUC = 0.96; 95% CI: 0.893–1.000); (E) hsa-miR-196a-5p (AUC = 0.89; 95% CI: 0.767–1.000); (F) hsa-miR-375 (AUC = 0.99; 95% CI: 0.970–1.000).

TABLE 2 | Deregulated miRNAs only in adjacent to tumor tissue.

miRNA Role in GC∗ GC vs. NC ADJ vs. NC GC vs. ADJ

miR-let7-c-5p TS-miR1 – Up –

miR-133a-3p TS-miR2,3 – Up –

miR-133b TS-miR2,4 – Up –

miR-143-5p TS-miR5,6 – Up –

miR-145-3p TS-miR5,6 – Up –

miR-145-5p TS-miR5,6 – Up –

miR-99a-5p ? – Up –

miR-100-5p TS-miR7 – Up –

miR-320b TS-miR8 – Up –

GC, gastric cancer; ADJ, adjacent to cancer; NC, non-cancerous; Up, up-
regulated; TS-miR, tumor suppressor miRNA; OncomiR, oncogenic miRNA. (-) Not
differentially expressed. (∗) Putative role in GC. (?) Unknown role in GC. (1) Tsai
et al., 2015; (2) Qiu et al., 2014; (3) Zhang et al., 2018; (4) Yang et al., 2017; (5) Wu
et al., 2013; (6) Lei et al., 2017; (7) Shi et al., 2015; (8) Zhao et al., 2017.

(Supplementary Table S3), and 11 genes are involved in nine
biological pathways that are important for the development and
progression of GC (Figure 5B).

Differentially Expressed miRNAs
Common to GC vs. ADJ vs. NC Analysis
hsa-miR-125b-5p, miR-125b-1-3p, -miR-200a-3p, miR-218-1-3p, -
miR-490-3p, -miR-493-5p and -miR-873-5p were D. E. in both
the GC vs. NC (Table 3 and Supplementary Table S1) and
ADJ vs. NC (Table 3 and Supplementary Table S2) analyses.
These miRNAs were not D. E. in the GC vs. ADJ analysis
(Table 3), suggesting that these two tissues are similar regarding
the expression of these miRNAs. In addition, the DAPC plot

(Figure 6) generated by all D. E. miRNAs indicates that GC
and ADJ, despite generating distinct clusters, have much more
similarity in its expression profiles when compared with NC
tissue, which clustered apart. Thus, we assembled the GC
and ADJ samples in a single group to compare to the NC
samples during the ROC curve analysis. Two down-regulated
miRNAs (hsa-miR-200a-3p and hsa-miR-873-5p) had the best
sensitivity/specificity relation and were considered as potential
biomarkers to identify gastric carcinogenesis (Figures 7A,B).

Comparing GC with ADJ, only one miRNA (hsa-miR-
196a-5p) was differentially expressed in GC (Figure 1 and
Table 1). hsa-miR-196a-5p was significantly up-regulated in GC
(P = 0.029) but had a low sensitivity/specificity relation in
the ROC curve analysis (AUC < 0.85). hsa-miR-196a-5p was
also up-regulated in the GC vs. NC comparison (Table 1 and
Supplementary Table S1). The difference in the number of
miRNAs D. E. in GC vs. ADJ compared with the previous analysis
corroborates to premise of that these two tissues have similar
miRNA expression profiles.

DISCUSSION

miRNA deregulation is closely related to gastric cancer
development (Wu et al., 2014; Zhang et al., 2014) and its
relationship to field cancerization becomes evident (Assumpção
et al., 2015; Pereira et al., 2019). In the search for new biomarkers
and a better understanding of epigenetic field cancerization
in GC, we evaluated the global expression profile of miRNAs
in NC, ADJ, and GC gastric samples. Our data showed that
all three types of tissue share many differentially expressed
miRNAs and present miRNAs that occur exclusively in either
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FIGURE 4 | Receiver operating characteristic curve analysis of the five selected miRNAs with potential to predict alterations in ADJ tissue. (A) hsa-miR-99a-5p
(AUC = 0.91; 95% CI: 0.783–1.000); (B) hsa-miR-100-5p (AUC = 0.87, 95% CI: 0.747–0.995); (C) hsa-miR-125b-5p (AUC = 0.88; 95% CI: 0.742–1.000);
(D) hsa-miR-145-3p (AUC = 0.87; 95% CI: 0.721–1.000); (E) hsa-miR-145-5p (AUC = 0.98; 95% CI: 0.944–1.000).

FIGURE 5 | Target genes common to the five up-regulated TS-miRs in adjacent tissue and their relationship to important biological pathways. (A) Network of
interaction among miRNAs and target genes generated by miRTargetLink Human (Hamberg et al., 2016). (B) Enhanced KEGG biological pathways in which the
target genes of the studied miRNAs participate (by DAVID v.6.8). (∗) Important pathway in GC. The target genes involved in important pathways in GC are in white
inside the dark bars.

ADJ or GC tissues, behaving as molecular signatures for those
conditions (Tables 1, 2).

Among the deregulated miRNAs only in GC (Table 1), seven
up-regulated (hsa-miR-135b-5p, -miR-196a-5p, -miR-196b-5p,
-miR-215-5p, -miR-224-5p, -miR-615-3p, and -miR-25-5p) and
five down-regulated (hsa-miR-135a-5p, -miR-148a-3p, -miR-
148a-5p, -miR-153-3p, and -miR-375) miRNAs are likely
oncomiRs and TS-miRs, respectively. In fact, studies demonstrate
that miR-135b (Wang et al., 2012; Lu et al., 2018; Shao et al.,
2019), miR-196a (Pan et al., 2017), miR-196b (Liao et al., 2012),
miR-215 (Deng et al., 2014), miR-224 (He et al., 2017), miR-
615-3p (Wang et al., 2018), and miR-25 (Li B.S. et al., 2015;

LArki et al., 2018) were reported as oncomiRs, while miR-135a
(Zhang et al., 2016; Xie et al., 2019),miR-148a (Zheng et al., 2011),
miR-153 (Wang and Liu, 2016; Ouyang et al., 2018) and miR-375
(Ding et al., 2010; Chen et al., 2017; Hwang et al., 2018) were
reported as TS-miRs in GC. These results suggest that the joint
deregulation of both oncomiRs and TS-miRs is required for the
support and progression of GC.

hsa-miR-196a-5p was up-regulated in GC when comparing to
ADJ and NC tissues; at the same time, it was not differentially
expressed between the ADJ and NC tissues. Deregulation of this
miRNA is important for GC progression because it promotes
cell proliferation by down-regulating the expression of CDKN1B
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TABLE 3 | Deregulated miRNAs considering both adjacent to tumor and
gastric cancer tissues.

miRNA Role in GC∗ GC vs. NC ADJ vs. NC GC vs. ADJ

miR-125b-5p OncomiR1,2 Up Up –

miR-125b-1-3p OncomiR1,2 Up Up -

miR-218-1-3p TS-miR3,4,5,6 Up Up -

miR-490-3p TS-miR7,8,9 Up Up –

miR-200a-3p TS-miR10 Down Down –

miR-873-5p TS-miR11,12 Down Down –

miR-493-5p TS-miR13 Down Up –

GC, gastric cancer; ADJ, adjacent to cancer; NC, non-cancerous; Up, up-
regulated; Down, down-regulated; TS-miR, tumor suppressor miRNA; OncomiR,
oncogenic miRNA. (-) Not differentially expressed. (∗) Putative role in GC. (1) Wu
et al., 2015; (2) Zhang et al., 2017b; (3) Deng et al., 2017; (4) Tang et al., 2016; (5)
Zhang et al., 2017a; (6) Wang et al., 2017; (7) Shen et al., 2015; (8) Qu et al., 2017;
(9) Yu et al., 2019; (10) Cong et al., 2013; (11) Chen et al., 2016; (12) Cao et al.,
2016; (13) Zhou et al., 2015.

(p27kip1) tumor suppressor (Sun et al., 2012) and invasion
and epithelial to mesenchymal transition of cancer stem cells
by down-regulating the expression of SMAD4 in GC (Pan
et al., 2017). In addition, hsa-miR-196a has been associated
with metastasis in lymph nodes and the clinical stage of GC
(Li H.L. et al., 2015).

Nine miRNAs were found to be up-regulated only in ADJ
tissue (hsa-miR-let7-c-5p, -miR-99a-5p, -miR-100-5p, -miR-133a-
3p, -miR-133b-3p, -miR-143-5p, -miR-145-3p, -miR-145-5p, and
-miR-320b) and may act as TS-miRs in this tissue. Studies
have shown that miR-let7-c (Tsai et al., 2015), miR-133a (Qiu
et al., 2014; Zhang et al., 2018), miR-133b (Qiu et al., 2014;
Yang et al., 2017), miR-143-5p (Wu et al., 2013; Lei et al.,
2017), miR-145 (Qiu et al., 2014; Lei et al., 2017), miR-
100-5p (Shi et al., 2015), and miR-320b (Zhao et al., 2017)
are down-regulated in GC and play the role of TS-miRs
because they inhibit proliferation, migration, invasion, and cell
cycle progression.

Gene enrichment analysis in KEGG pathways revealed that
these miRNAs regulate genes involved in important pathways
that contribute to gastric carcinogenesis, such as the PI3K-
Akt, HIF-1, Ras, Rap1, ErbB, and MAPK signaling pathways
(Figures 5A,B). These pathways control important cell functions
such as proliferation, migration, invasion, and progression
of the cell cycle. The overexpression of TS-miRs in ADJ
tissue may be a mechanism to compensate for preexisting
molecular alterations in an attempt to contain the tumorigenesis
process. However, we believe that during the progression
of carcinogenesis in ADJ tissue, the up-regulated TS-miRs
identified herein are inversely deregulated (become down-
regulated), contributing to the eventual onset, establishment
and progression of GC. In a previous study, we reported the
overexpression of the TS-miR hsa-miR-29c in adjacent to the
gastric cancer tissues and its down-regulation in GC and NC
tissues (Pereira et al., 2019).

The intense inflammatory process to which the adjacent
tissue is subjected may be one of the causes of over
representation of these TS-miRs, since inflammation can alter
the local microenvironment by stimulating the expression

of some miRNAs. Studies have shown that IL-6 and IL-
17 pro-inflammatory interleukins activity may stimulate the
expression of miRNAs with known oncogenic activity (miR-21
and miR-135b) in tissues submitted to the intense inflammatory
process (Löffler et al., 2007; Iliopoulos et al., 2010; Matsuyama
et al., 2011; Rozovski et al., 2013; Singh et al., 2015).
Another possibility would be the existence of pre-cancerous
lesions in adjacent tissues (e.g., atrophic and non-atrophic
gastritis and intestinal metaplasia) and/or Helicobacter pylori
infection, since the expression levels of many miRNAs (e.g.,
miR-21, miR-29c, miR-135b, miR-155, miR-204, and miR-223)
may be change under these conditions (Link et al., 2015;
Vidal et al., 2016; Pereira et al., 2019). Therefore, the local
microenvironment and the histopathological characteristics of
these tissues can directly influence the expression of many
miRNAs, making them susceptible to eventual molecular
alterations and carcinogenesis.

Our data (overexpression of nine TS-miRs only in adjacent to
the gastric cancer tissues) corroborate with the findings of Aran
et al. (2017), who used the transcriptomic profile of normal tissue
adjacent to the tumor (NAT) to demonstrate that this tissue has
an intermediate and unique expression profile when compared
to truly normal and cancerous tissues. Therefore, despite the
similarity between adjacent and tumor tissues, the former is not
a malignant tissue, but it is not a molecularly normal tissue either
(De Assumpção et al., 2016; Aran et al., 2017).

Many genetic and epigenetic changes identified in GC are
shared by ADJ tissue (Assumpção et al., 2015; Takeshima et al.,
2015; Aran et al., 2017; Vidal et al., 2017; Yoshida et al., 2017;
Pereira et al., 2019). Probably some of these shared alterations
were already present in the adjacent tissue before the onset of
the tumor in situ and contributed to its establishment, making
this tissue still susceptible to carcinogenesis even after surgical
removal of the tumor.

We found that both ADJ and GC tissues share the up-
regulation of hsa-miR-125b-5p and hsa-miR-125b-1-3p oncomiRs
and the down-regulation of hsa-miR-200a-3p and hsa-miR-
873-5p TS-miRs, suggesting that the joint deregulation of
both oncomiRs and TS-miRs is required for the progression
of gastric carcinogenesis. In addition, seven miRNAs (hsa-
miR-125b-5p, -miR-125b-1-3p, -miR-200a-3p, -miR-218-1-3p, -
miR-490-3p, -miR-873-5p, and -miR-493-5p) are deregulated
in both ADJ and GC tissues when compared to NC tissue;
however, these miRNAs are not D. E. between ADJ and
GC tissues. Our results suggest that these two tissues share
molecular alterations and that ADJ is an epigenetically altered
tissue. Five miRNAs (hsa-miR-125b-5p, -miR-125b-1-3p, -miR-
493-5p, -miR-200a-3p, and -miR-873-5p) can promote tumor
onset and progression, as studies have shown that the
deregulation of miR-125b (Wu et al., 2015; Zhang et al.,
2017b), miR-493-5p (Zhou et al., 2015), miR-200a (Cong
et al., 2013), and miR-873 (Cao et al., 2016; Chen et al.,
2016) contributes to cell proliferation, migration, invasion, and
cell growth in GC.

Although we have not performed further experimental assays
to confirm the deregulation and the functional role of the
identified miRNAs in our study, the literature consistently
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FIGURE 6 | Discriminant analysis of principal component (DAPC) plot shows that NC, ADJ, and GC samples form distinct clusters. The DAPC analysis showed great
similarity between GC and ADJ tissues.

FIGURE 7 | Receiver operating characteristic curve analysis of the two miRNAs with the potential to predict changes in both ADJ and GC tissues.
(A) hsa-miR-200a-3p (AUC = 0.97; 95% CI: 0.983–1.000). (B) hsa-miR-873-5p (AUC = 0.90; 95% CI: 0.807–1.000).

supports and corroborates our findings and hypothesis through
studies that have applied safe, sensitive and reliable techniques
and methods (e.g., RT-qPCR, Western Blot, Cell and/or Reporter
Assays) that provides strong evidences of these miRNAs’
deregulation in GC (Ding et al., 2010; Zheng et al., 2011; Liao
et al., 2012; Sun et al., 2012; Wang et al., 2012, 2017, 2018; Cong
et al., 2013; Wu et al., 2013, 2015; Deng et al., 2014, 2017; Qiu
et al., 2014; Li B.S. et al., 2015; Shen et al., 2015; Shi et al., 2015;

Tsai et al., 2015; Zhou et al., 2015, 2019; Zuo et al., 2015; Cao
et al., 2016; Chen et al., 2016, 2017; Gao et al., 2016; Tang et al.,
2016; Vidal et al., 2016; Wang and Liu, 2016; Zhang et al., 2016,
2017a,b, 2018; He et al., 2017; Lei et al., 2017; Pan et al., 2017; Qu
et al., 2017; Yang et al., 2017; Zhao et al., 2017; Hwang et al., 2018;
LArki et al., 2018; Lu et al., 2018; Magalhães et al., 2018; Ouyang
et al., 2018; Pereira et al., 2019; Shao et al., 2019; Xie et al., 2019;
Yu et al., 2019).

Frontiers in Genetics | www.frontiersin.org 8 June 2019 | Volume 10 | Article 592

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00592 June 17, 2019 Time: 17:32 # 9

Pereira et al. miRNAs in Gastric Field Cancerization

For the evaluation of the studied miRNAs as potential
biomarkers, we selected three different groups of markers with
AUC > 85%. Among the D. E. miRNAs only in GC, six
miRNAs (hsa-miR-141-3p, -miR-148a-3p, -miR-148b-5p, -miR-
153-3p, -miR-196a-5p, and -miR-375) are potentially useful in
identifying patients with advanced disease (Figure 3). Among
the deregulated miRNAs only in ADJ tissue, five (hsa-miR-99a-
5p, -miR-100-5p, -miR-125b-5p, -miR-145-3p, and -miR-145-5p)
are potentially useful in identifying patients susceptible to tumor
development or the early stages of gastric cancer (Figure 4). Two
miRNAs (hsa-miR-200a-3p and hsa-miR-873-5p) are potentially
useful in identifying both patients with established disease and
patients susceptible to developing it (Figure 7). Thus, these
miRNAs may be a potential diagnostic alternative for this type
of cancer because the currently available biomarkers do not have
a good sensitivity/specificity relationship, which makes it difficult
to diagnose the disease early and to start curative treatment.

Studies that analyzed the data from miRNA sequencing in
gastric cancer demonstrated their deregulation in this type of
tumor (Assumpção et al., 2015; Darnet et al., 2015; Liu et al., 2015;
Liang et al., 2017). Among the miRNAs found in these studies,
hsa-miR-99a, -miR-100, -miR-133a/b-3p, -miR-135b, -miR-141,
-miR-143, -miR-145, -miR-148a, -miR-196a/b, -miR-200a, -miR-
218-1, -miR-215, and -miR-490 were also observed in the present
study. In addition to those miRNAs, we also found 16 novel
differentially expressed miRNAs in the gastric field cancerization.

Liu et al. (2015) analyzed miRNome in gastric cancer
downloaded from the TCGA; however, this database basically has
samples from European and Asian populations. These authors
identified 54 D. E. miRNAs (using the Padj < 0.05 and |log2
(fold change)| > 3) and two miRNAs (hsa-miR-133a/b) were the
most D. E. Liang et al. (2017) also analyzed miRNomes in GC
using samples from the same database (TCGA) and identified 43
D. E. miRNAs (using the FDR < 0.001 and |log2 (fold change)|
> 1.5); of these, 5 miRNAs (hsa-miR-30a, -miR-135b, -miR-133b,
-miR-143, and -miR-145) were associated with patient survival
time. We emphasize that the “normal” or “healthy” tissues used
in these two studies are of patients with the disease (adjacent
to the gastric cancer tissues), since the TCGA does not have
expression data of gastric tissues of patients without the history
of GC. By using samples from the Brazilian population (that
has genetic admixture), we identified 30 miRNAs differentially
expressed when comparing patients with GC and individuals
without the history of GC (we considered Padj < 0.05 and
|log2(fold change)| > 2). In addition, we found that the hsa-
miR-196a-5p was D. E. between the GC and ADJ tissues. Many
D. E. miRNAs identified by Liu et al. (2015) and Liang et al.
(2017) were also identified in this study; however, there are
differences in the number of D. E. miRNAs found among these
studies (mainly in GC and ADJ analysis), which may be a
consequence of: (i) the statistical criteria used, (ii) the number of
samples used, and/or (iii) the ethnical and genetic characteristics
of the studied populations. Our data are important because we
analyzed the miRNA sequencing of a larger number of samples
from the Brazilian population. This population has a genetic
contribution from different parental populations, such as the
European, African, Asian, and Amerindian ones (Santos et al.,
2010; Andrade et al., 2018). The strong genetic substructure and

admixture (Santos et al., 2010) of our population may interfere
in the expression profile of some genes (Pinto et al., 2015;
Dluzen et al., 2016). Therefore, this study provides important
and relevant information about the expression profile of miRNAs
associated to gastric field cancerization in populations with
genetic substructure and admixture, such as the Brazilian one.

Overall, our study was able to demonstrate that the tissue
adjacent to gastric cancer shares some epigenetic changes
(miRNAs deregulation) present in the tumor and also has unique
and exclusive alterations; therefore, it should not be used as
a healthy and/or normal tissue as a benchmark for gastric
cancer. Thus, we recommend the use of gastric samples from
patients with no history of GC as a control to exclude any
biases that the adjacent tissue may provide in the miRNAs’
expression profile in GC.

In this study, we also observed that the tissues adjacent to
GC have an over representation of microRNAs with known
tumor suppressor activities, suggesting that these microRNAs
may represent a barrier against tumorigenesis within these pre-
cancerous tissues prior to the eventual formation of a tumor. The
excellent performance of the studied miRNAs in identifying with
good sensitivity and specificity, both early and advanced stages
of the disease, make them potentially useful as biomarkers and
therapeutic targets for GC.
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