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Abstract: In this paper, a novel implementation of the Lattice Discrete Element Method (LDEM)
is proposed: in particular, the LDEM is implemented in the Ansys LS-DYNA finite element code.
Such an implementation is employed to evaluate the fracture behaviour of sandwich panels under
bending. First, the novel hybrid model proposed is validated by simulating some three-point bending
experimental tests carried out at the University of Parma, and then it is used to model the fracture
behaviour of sandwich panels under four-point bending. Failure mechanisms, damage locations,
and load-deflection curves are numerically determined by employing such a novel model, and the
results show a good agreement with the available experimental findings.
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1. Introduction

Composite materials consist of at least two phases with different physical, mechanical,
and chemical properties, which are combined in order to improve a specific property [1]. In
the last decades, composite materials have become increasingly used in many engineering
applications, due to their improved properties with respect to those of traditional materials.

Three different categories of composite materials may be distinguished [2]: fibre-
reinforced materials, particle-reinforced materials, and layered materials.

Relatively to both fibre-reinforced and particle-reinforced materials, one or more types
of fibres or particles (reinforcing phase) are employed in order to improve either mechanical
or physical properties of a specific base material (matrix). A reinforcing phase made of
steel, glass, carbon, synthetic, or natural fibres is commonly embedded in a matrix that
could be, for example, either cementitious or polymeric [3–9].

As far as layered materials are concerned, several layers made of different materials
are stacked, and may be characterised by different orientations and thickness [10–13]. Each
layer or group of layers is devoted to a specific task, ranging from structural strength to
insulation or lightening.

Among layered materials, sandwich panels are noteworthy as they are generally
light, with excellent properties in terms of load-bearing capacity, thermal and acoustic
insulation, and waterproofing. They consist of a soft, thick core between two thin sheets
held together by means of adhesive layers. The core, which may be characterised by either
a continuous or a discrete periodic geometry (such as honeycomb and corrugated cores),
plays an important role in sandwich panels [12]. For instance, a higher rigidity of the entire
composite can be achieved by increasing the thickness of the core, with a consequent slight
increase in terms of weight [14]. Moreover, the use of specific materials as core materials
(such as rock wool) may provide good fireproof performance.
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Nowadays, sandwich panels are widespread in the fields of both aerospace [15], ship-
building [16], automotive [14], civil engineering [12], and furniture industry [17]. Extensive
experimental research has been recently carried out in order to understand the mechani-
cal behaviour of such materials subjected to specific loadings, such as through-thickness
compression [18], longitudinal compression [19], bending moment [20], torsion [21], inden-
tation [22], and dynamic loading [23].

Due to the large number of variables affecting the properties of sandwich panels,
numerical models are generally employed for design practises. For instance, finite element
models have been recently used by Bunyawanichakul et al. [24] to simulate the failure
modes of a local-reinforced sandwich structure. Moreover, Styles et al. [25] analysed the
influence of core thickness on the flexural behaviour of a composite sandwich structure
with an aluminium foam core.

The Finite Element Method (FEM) has the advantage of a great versatility in modelling
both complex geometries and nonlinearities involved in the process. The FE models are
particularly useful for structures which do not contain discontinuities (for example, cracks).
In order to simulate bodies characterised by discontinuities, some strategies exist for
employing FEM, for example, the cohesive interfaces method [26] and the extended finite
element method [27]. However, FEM is not able to accurately simulate the dynamic process
of damage nucleation and propagation, and thus to predict the nonlinear deformation and
failure modes of sandwich panels [28].

When the material damaging (in terms of cracks nucleation, propagation, and inter-
actions) needs to be taken into account, numerical models based on the Discrete Element
Method (DEM) have proved to be more suitable than FEM. In more detail, the appearance
of discontinuities within the materials is considered in a natural way as a degradation of
the interactions among elements in the DE model, without any need to introduce external
criteria.

In the present research work, the Lattice Discrete Element Method (LDEM) originally
proposed by Riera [29] is employed to evaluate the fracture behaviour of sandwich panels
subjected to bending. Note that the novelty of the paper is represented by the hybrid model
proposed (named LDEM-DYNA model), obtained by using Ansys LS-DYNA finite element
code [30] in conjunction with the LDEM [31–41].

In more detail, the LDEM model employed consists of a set of masses joined by bar
elements, characterised by a regular cubic arrangement. Moreover, the bars have a bilinear
constitutive law, based on the Hillerborg model [42], which allows the breaking of the bar
elements themselves, thus taking into account the degradation of the material.

The paper is organised as follows. First, the basic concepts of the LDEM together with
the details of implementation in the Ansys LS-DYNA finite element code are described
in Sections 2 and 3, respectively. Subsequently, Section 4 is devoted to discussing the
experimental three-point bending tests carried out at the University of Parma on sandwich
panels. Then, the LDEM-DYNA model is employed to simulate the above experimental
campaign, as well as some four-point bending tests (Section 5). Finally, conclusions are
summarised in Section 6, highlighting that the novel hybrid model proposed allows us
to obtain quite satisfactory results in terms of failure mechanisms, damage locations, and
load-deflection curves.

2. Lattice Discrete Element Method Description

In Lattice Discrete Element Method (LDEM), the continuum medium is represented
by a cubic arrangement of trusses in which the total mass is concentrated at the nodes [29].
Each node has three degrees of freedom, which correspond to the nodal displacements in
the three directions of an orthogonal coordinate system (XYZ in Figure 1a). The discretisa-
tion strategy employs a basic cubic module with twenty bars (commonly named elements)
and nine nodes, as is shown in Figure 1a. The lengths of the longitudinal and diagonal
elements are Ln = L and Ld =

(√
3/2

)
L, respectively [43], where L is the length of the

cubic module (Figure 1a).
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Figure 1. LDEM: (a) Basic cubic module employed in the discretisation and (b) bilinear constitutive law attributed to
the bars.

The total mass of the basic cubic module is equal to m = ρLn
3, with ρ being the mass

density of the material and Ln
3 the volume of the module. It is assumed that the total mass

is discretised in the nodes (Figure 1a): half of the mass (equal to ρLn
3/2) is concentrated at

the central node, whereas the other half is equally distributed among the eight nodes of the
vertices (ρLn

3/16 at each of such eight nodes).
In the case of an isotropic elastic material, the stiffness of the bars is assumed to be the

same as the continuum. Therefore, the cross-section area An of each longitudinal element
is given by:

An =
1

2(1 + ν)
Ln

2 (1)

where ν is the Poisson ratio of the material, whereas the cross-section area Ad of each
diagonal element is given by:

Ad =
2√
3

δAn (2)

with δ equal to δ = 9ν/(4− 8ν).
Note that the equivalence with the isotropic continuum is complete for ν = 0.25; on

the other hand, a difference arises in terms of shear for ν 6= 0.25, as is detailed in [44]. Such
a difference is very small, and consequently can be neglected in the case of 0.20 ≤ ν ≤ 0.30.
For ν values outside such a range, a different array of elements must be used to form the
basic modulus [45]. Details on the calculation of the equivalent cross-section area for both
longitudinal and diagonal bars can be found in [45].

The system of equations resulting from applying the Newton’s second law to each
node is given by:

Mij
..
xj + Cij

.
xj + Fi(t)− Pi(t) = 0 (3)

where the vectors
..
xj and

.
xj represent the nodal acceleration and velocity, respectively;

Mij and Cij are the mass and damping matrices, respectively; and the vectors Fi(t) and
Pi(t) are the internal and external nodal forces, respectively. As matrices Mij and Cij are
diagonal, the Equation (3) are not coupled, and can be easily integrated in the time domain
using an explicit finite difference scheme. In this way, the nodal coordinates are updated
at each time step, and thus large displacements are accounted for without introducing
any modification in the formulation [46]. By considering such an aspect, discrete element
method is different from finite element method, in which a suitable nonlinear formulation,
such as Lagrangian or total Lagrangian [47], should be employed.
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Furthermore, the maximum time-interval for integration, ∆tmax, can be determined
by applying the Courant–Friedrich–Lewy criterion [48]:

∆tmax ≤
Ld
Cp

(4)

where Cp is defined as follows:
Cp =

√
E/ρ (5)

with E being the Young’s modulus of the material. The relationship (4) between the
maximum time-interval and the element length is important to be satisfied for the numerical
stability of the integration scheme.

The convergence of the solution using LDEM for both linear elastic problems and
elastic stability problems was verified by different researchers as is reported in [49], where a
strategy to provide a consistent equivalence between different regular lattice arrangements
and the represented solid was proposed.

When a bar breaks, that is, the bar strain reaches its ultimate value εu, an equivalent
fracture area is generated, causing a release of fracture energy. Such an energy depends on
both the fracture area and the material constitutive law. Different shapes of the constitutive
law may be assumed for the bars. More precisely, the law proposed for quasi-brittle
materials [42] was employed in [29,50], so that the LDEM could be applied to solve brittle
fracture problems. Another law that can be used is that shown in Figure 1b, which allows
to take into account the irreversible effects of crack nucleation and propagation, which
produce material plasticity.

The bilinear law shown in Figure 1b directly depends on three local parameters: EAi,
εu, and εp. The bar specific stiffness EAi is a function of both the Young’s modulus E and
the cross-section area of the bar Ai, where the subscript i is equal to n for normal bar and
equal to d for diagonal bar. The ultimate strain εu is the strain value for which the element
loses its load bearing capacity (that is, the bar breaks), whereas the critical strain εp is the
strain at the crack initiation.

The value of εu is computed by considering the dissipated energy released when the
element fails [51]:

εu∫
0

F(ε)dε =
G f A∗i

Li
(6)

where F(ε) is the force in the bar (see Figure 1b), A∗i is the equivalent fracture area of the i-th
element, G f is the fracture energy, and Li is the element length. As the dissipated energy is
represented by the area of the OAB triangle in Figure 1b, which is equal to εuεpEAi/2, the
ultimate strain for the i-th element is given by:

εu =
G f

εpE

(
A∗i
Ai

)(
2
Li

)
(7)

By equating the fracture energy dissipated by the continuum with its discrete counter-
part, the equivalent fracture area A∗i of the i-th element can be determined: A∗i =

( 3
22
)

L2
i .

Details may be found in [46,51].
The value of εp is computed as follows. As is well-known, according to the classical

fracture mechanics, the material fracture toughness Kc is given by [52]:

Kc = σ∗p Y
√

πq (8)

where σ∗p is the critical stress and Y is a parameter that accounts for the influence of
boundary conditions, load, and orientation of the critical crack, having a length equal to q.
By assuming that the behaviour is linear up to the crack initiation, then σp = Eεp. Note
that such a stress value may vary for the different bars forming the model, that is, σp is a
local parameter referring to the i-th bar.
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By recalling the relationship between the fracture toughness Kc and the fracture energy
G f , the following equation is obtained:√

G f E = EεpY
√

πq (9)

In order to simplify Equation (9), an equivalent length deq is defined as follows:

deq = qπY2 (10)

and, by substituting Equation (9) in Equation (10), we get:

deq =
G f(

εp
)2E

(11)

Equation (11) indicates that deq may be regarded as a material property, as it does not
depend on the discretisation level but represents a characteristic length of the material
(similar to the width of the plasticity region at crack tip in the Dugdale model). Therefore,
εp can be obtained from Equation (11):

εp =

√
G f

deqE
(12)

Finally, by combining Equation (11) with Equation (7), εu may also be expressed as
follows:

εu = εpdeq

(
A∗i
Ai

)(
2
Li

)
(13)

Under compression, the element behaviour remains linear and elastic (Figure 1b).
As can be seen in Figure 1b, the constitutive law allows to capture the residual

deformation due to the initial stiffness elements conservation. Examples of this elementary
constitutive law implementation can be found in [44,53].

Some observations can be made on Equation (13). When εp is equal to εu, the minimum
area of bilinear constitutive law is obtained, as εu has to be larger or equal to εp in order to
ensure the energy equilibrium into the element. In such a condition, a limit relationship
between the equivalent length deq and the element length Li can be found [51]:

deq ≥ 1.439Li (14)

The equivalent length deq can be also determined by exploiting the concept of the
stress brittleness number s proposed by Carpinteri [54], given by:

s =
Kc

σpRe1/2 (15)

where σp is the material strength and Re is the structure characteristic size. Note that s is
able to represent the structure behaviour, that is, a fragile behaviour is expected for s→ 0 ,
whereas a ductile behaviour is expected for s→ ∞ .

Equation (15) can be thus rewritten by combining Equations (7), (8), and (13):

deq = s2Re (16)

In a LDE model, the material intrinsic inhomogeneity can be implemented by con-
sidering a three-dimensional stochastic field for the fracture energy G f . In general, the
correlation lengths Lcx, Lcy, and Lcz, along the three directions x, y, z, are used to define
the linear spatial correlation of the fracture energy. More precisely, a Weibull probability
distribution is assumed along each direction. Details may be found in [36].
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Note that other properties can also be implemented as random fields, such as the
Young’s modulus and the Poisson ratio, as is reported in [55]. Although the parameters deq
and E are constants, εp and εu are random parameters depending on the G f random field.
Therefore, each element is assigned a randomly different bilinear constitutive law. Details
about the random field are presented and discussed in [56].

3. LDEM Implementation in Ansys LS-DYNA

The LDEM described in Section 2 can be implemented in the Ansys LS-DYNA finite
element code [30].

A LDEM-DYNA model allows the use of both discrete elements and finite elements
in a unique model, thus creating a hybrid model. More precisely, the region where the
fracture is expected to occur is modelled by means of discrete elements, whereas the rest of
the body is discretised by using finite elements.

The main steps to create the hybrid model are summarised in Figure 2 and hereafter
detailed.

Figure 2. Schematisation of the procedure employed to create the hybrid model.
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The regions where Discrete Elements (DEs) are employed is generated firstly. The
input data needed consist in the bar element length L and some material properties (E, ν, ρ,
G f , σp, Re).

Then, the nodal coordinates and the connectivity of the bars are generated within the
LDEM-DYNA code. The bars that make up the basic modules are modelled in Ansys LS-
DYNA by using discrete spring elements, named Explicit Spring-Damper (COMBI165) [30].
Each COMBI165 is a two-node 1-D element, and its behaviour is that of a simple spring or
damper system.

Subsequently, a random field is introduced for G f and, as a consequence, randomness
is indirectly assigned to the critical strain (see Equation (12)). In this way, the maximum
stress of each element is also random. Note that G f is the most influential setting on the
model response.

The possibility of including the material heterogeneity is also available in a LDEM-
DYNA model. The spatial correlation of a random field is defined by means of a correlation
length. Details may be found in Refs. [44,56,57].

Then, the bilinear constitutive law (see Figure 1b) is attributed to each bar of the model.
To represent a mass/spring system, it is also needed to add a mass element. In a

LDEM-DYNA model, the mass of the simulated body is discretised and concentrated in
the COMBI165 nodes, where the mass value depends on the node position within the
basic module, as is discussed in Section 2. The mass discretisation is performed by using the
Explicit 3-D Structural Mass (MASS166) element.

After the DEs are built, the FEM region is generated. Note that Explicit 3-D Structural
Solid (SOLID164) elements [30] are used for such a region.

Then, LDEM and FEM regions are linked together, thus originating a hybrid model.
More precisely, the CPINTF command is used in order to couple the degrees of freedom
(displacements and rotations) of coincident nodes, that is, the four nodes of each LDEM
cubic module are connected with the four nodes of the corresponding finite element.

Finally, the boundary conditions of the problem are defined.

4. Experimental Campaign Examined
4.1. Testing Apparatus

Now, the flexural behaviour of sandwich panels is experimentally examined. Three-
point bending tests have been carried out at the Materials and Structures Testing Labo-
ratory of the University of Parma, in accordance with the ASTM C393/C393M, ASTM
D7249/D7249M, and ASTM D7250/D7250M standard specifications [58–60]. The tests
have been performed by means of an electronically controlled hydraulic machine with a
capacity of 200 kN (Figure 3).

The tests have been carried out under displacement control. More in detail, a vertical
displacement d is imposed by means of a piston with speed equal to 15 mm/min, until the
panel failure condition is reached. The vertical load is directly measured by the actuator
and recorded automatically during testing.

4.2. Specimen Geometry and Material Properties

A total number of three specimens (named T1, T2, and T3) are subjected to three-point
bending testing. The thickness, width and length of such specimens are equal to 103 mm,
500 mm, and 2000 mm, respectively, and the span between the supports is equal to 1900 mm.
In Figure 4, both specimen geometry (Figure 4a) and testing setup (Figure 4b) are shown.
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Figure 3. Electronically controlled hydraulic machine employed.

The sandwich panels consist of extruded polystyrene foam core (with a thickness equal
to 100 mm) between two thin sheets (also named skins) of fiberglass composite material
GRP (each sheet with a thickness equal to 1.5 mm). The Young’s modulus E and the tensile
strength σP of the polystyrene foam are equal to 28 MPa and 0.7 MPa, respectively [61].
Moreover, the density ρ of the core is equal to 40 kg/m3, whereas the GRP is characterised
by a density equal to 1300 kg/m3 and an elastic modulus equal to 7 GPa [61]. The skins are
coupled to the central core through a two-component polyurethane glue. The glue density
is 1500 kg/m3, whereas the tensile strength and the Young’s modulus are equal to 13 MPa
and 162 MPa, respectively [61].

The material properties of core, sheets, and glue are listed in Table 1.

4.3. Experimental Results

The load-deflection curves obtained are plotted in Figure 5a for each tested specimen.
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Figure 4. Specimen: (a) geometry (sizes in mm) and (b) testing setup.

Figure 5. Load-deflection curve under three-point bending: (a) experimental results and (b) numerical simulations by
considering three different G f random fields.
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The maximum load is equal to 11.56 kN, 10.61 kN, and 10.46 kN for test No. T1, T2,
and T3, respectively. Such values are reached in correspondence to a vertical displacement
d equal to 73.93 mm, 67.92 mm, and 66.94 mm for test No. T1, T2, and T3, respectively.
Consequently, the average values of peak load and maximum deflection are 10.88 kN (with
a standard deviation equal to 0.49 kN) and 69.60 mm (with a standard deviation equal to
3.09 mm).

Note that sandwich panels subjected to bending loading may be characterised by
various failure modes, depending on the geometry of the panel, the properties of the
constituent materials and the loading condition [62]. The most common failure modes in
sandwich panels are (i) compressive failure of the top skin and tensile failure of the bottom
skin, (ii) skin debonding, (iii) skin buckling, (iv) skin indentation of the core, and (v) shear
failure of the core. More in detail, skin failure occurs when the ultimate stress of the skin
is reached before that of the core. Skin debonding may occur when the adhesive cannot
withstand the interfacial shear stress between the skin and the core. Skin buckling may
appear at the top compressed side of the panel and is typical of sandwich panels with a
foam core. Indentation and core failure occur when the ultimate stress of the core is reached
before that of the skin. Note that the final rupture of the panel is generally the result of the
interaction of more than one mechanism.

Table 1. Material properties of sandwich panel constituents.

Sandwich Const. Ref. E ν ρ σp [MPa] Gf [N/m]

Core [37,61] 28 0.30 40 0.7 133
Sheets [61] 7000 0.33 1300 - -
Glue [61,63] 162 0.25 1500 13 3324

The failure modes observed during the present experimental campaign are shown in
Figure 6. In particular, the final rupture is caused by the core failure for all the specimens.
Moreover, the foam core is responsible for other failure mechanisms, that is, indentation
(specimens No. T1 and T2, see Figure 6a,c) and buckling (specimen No. T1, see Figure 6a)
of the top GRP layer.

Figure 6. Cont.
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Figure 6. Failure modes observed during the experimental campaign for tests No.: T1 (a–b), T2 (c–d), and T3 (e).

5. Simulations by LDEM-DYNA
5.1. Three-Point Bending Testing

The flexural behaviour of sandwich panels is analysed by means of the LDEM-DYNA
numerical model described in Section 3. In particular, the experimental three-point bending
tests discussed in Section 4 are hereafter simulated.

5.1.1. Numerical Model Description

A 2D model is employed, as the examined configuration is characterised by a plain
strain condition. The discretisation adopted is shown in Figure 7, together with the
reference system Oxyz.

Two different discretisations are employed in the same hybrid model:

(a) In the central region of the specimen (covering a length equal to 300 mm):

- the sheets (up and down layers) are modelled by means of FEs (SOLID164);
- only the upper layer of the glue is modelled, by means of DEs;
- the core is modelled by means of both DEs and FEs (SOLID164).

Perfect adhesion is assumed between the above layers;
(b) Outside the central region of the specimen, only the sheets and the core are modelled:

- the sheets (up and down layers) are modelled by means of FEs (SOLID164);
- the core is modelled by means of FEs (SOLID164).

Perfect adhesion is assumed between the above layers.
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Figure 7. LDEM-DYNA model: discretisation of the sandwich panel under three-point bending.

The lattice discrete element model consists of a symmetric distribution of 45,621 spring
elements. In more detail, 300 cubic modules are employed in the horizontal direction
(x-axis), 10 modules in the vertical direction (y-axis), and one module in the thickness
direction (z-axis). The cubic module length Ln is assumed to be equal to 1 mm.

The finite element model consists of 12,811 elements.
Note that the LDEM is limited to some regions since it is where cracks are expected to

occur, in accordance to the experimental observations. Moreover, the glue is modelled in
correspondence to the LDEM region where both damage and rupture are expected.

The vertical displacement is fixed in correspondence to the two supports in the lower
part of the specimen. The horizontal displacement is also fixed in correspondence to one
support. Moreover, a prescribed vertical displacement is applied in the upper part of the
middle span region, in accordance with the experiments.

Note that three different analyses have been performed, named NT1, NT2, and NT3,
respectively, in order to analyse the influence of different G f random fields on the numeri-
cal model.

5.1.2. Calibration of the Numerical Model

As far as the parts simulated by FEM are concerned, a linear elastic behaviour is
assumed for both the skins and the core (Table 1).

On the other hand, as far as the parts simulated by LDEM are concerned, the constitu-
tive law for each bar element is deduced as is described in Section 3 (Table 1). More details
are reported in the following.

Regarding the polystyrene foam core, the fracture toughness is computed by means of
the relationship between the specific fracture energy value G f (equal to 133 N/m [40])
and the elastic modulus, thus obtaining Kc = 0.0651MPa

√
m. Then, a stress brittleness
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number s = 0.93 is obtained from Equation (15) (note that the core height is assumed as the
structure characteristic dimension), and an equivalent length deq = 0.00864m is obtained
from Equation (16). Finally, the critical strain, εp = 2.42× 10−2, and the ultimate strain,
εu = 1.32× 10−1 for longitudinal elements and εu = 1.52× 10−1 for diagonal elements, are
computed by means of Equations (12) and (13), respectively.

Regarding the glue, the fracture toughness is computed by means of the relationship
between the specific fracture energy G f (equal to 3324 N/m [63]) and the elastic modulus,
thus obtaining Kc = 0.78MPa

√
m. Then, a stress brittleness number s = 0.98 is obtained

from Equation (15) (note that the glue layer height is assumed as the structure characteristic
dimension, and the ultimate tensile strength is employed instead of the yield stress), and an
equivalent length deq = 0.00363m is obtained from Equation (16). Finally, the critical strain,
εp = 7.50× 10−2, and the ultimate strain, εu = 1.77× 10−1 for longitudinal elements and
εu = 2.04× 10−1 for diagonal elements, are computed by means of Equations (12) and (13),
respectively.

5.1.3. Results and Discussion

The numerical load–displacement curves obtained for the simulations NT1, NT2, and
NT3 are plotted in Figure 5b.

The maximum values of load and vertical displacement are equal to 11.68 kN, 10.53 kN,
12.17 kN, and 74.14 mm, 66.67 mm, 77.34 for numerical test No. NT1, NT2, and NT3,
respectively. Consequently, the average values of peak load and maximum deflection result
11.46 kN (with a standard deviation equal to 0.69 kN) and 72.72 mm (with a standard
deviation equal to 4.47 mm). Note that the numerical results are in good agreement with
the experimental observations in terms of both peak load and maximum deflection, with
errors equal to 5.3% and 4.5%, respectively.

Furthermore, the failure modes observed in the numerical simulations are shown in
Figure 8a–c for the test No. NT1, NT2, and NT3, respectively, whereas the broken bars are
shown in Figure 9a–c for the test No. NT1, NT2, and NT3, respectively.

In Figure 8, it can be observed that the different G f random field, that characterises
each numerical simulation, does not affect the general behaviour of the model, being the
failure mechanisms always represented by the skin buckling.

First, the bar elements highlighted in red break. Such bars are located within the glue
layer (simulation NT1) or within both the glue and the core (simulations NT2 and NT3) at
the edge of the zone where the prescribed vertical displacement is applied. The buckling of
the upper skin is the failure mechanism related to this first break. Note that such a failure
mechanism is experimentally observed in test No. T1 (see Figure 5a).

Subsequently, the final rupture is reached when the bar elements highlighted in blue
break. In simulations NT1 and NT2, such bars are mainly located within the glue layer.
In these cases, the indentation of the upper skin may be recognised. Note that such a
failure mechanism is experimentally observed in tests No. T1 and T2 (see Figure 6a,c).
Moreover, the damage related to the blue bars is more homogeneously spread within both
the core and the glue in simulation NT3. In general, it can be stated that the final rupture is
caused by the core failure in the zone surrounding the prescribed vertical displacement, in
accordance with the experimental observations.

Note that the different G f random fields associated to the numerical simulations do
not affect the general behaviour of the model. However, the sensitivity of the model to the
randomness allows to reproduce the natural scatter of experimental testing, in terms of
both peak load and maximum deflection values, damage location, and failure mechanisms.
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Figure 8. Failure modes obtained by the numerical simulations No.: (a) NT1, (b) NT2, and (c) NT3.

5.2. Four-Point Bending Testing

In this section, the flexural behaviour of sandwich panels subjected to four-point
bending tests is simulated by following the same procedure discussed in Section 5.1.

The sandwich panel has the geometry shown in Figure 4a.

5.2.1. Numerical Model Description

Two different 2D models are employed. Due to the symmetry condition along the mid
span vertical axis, a half of the specimen is modelled by using two different discretisations,
as is detailed in the following.

Model A, shown in Figure 10a, is characterised by the following:

(i) A region on the right-hand side, covering a length equal to 450 mm, where:

- the sheets (up and down layers) are modelled by means of FEs (SOLID164);
- only the upper layer of the glue is modelled, by means of DEs;
- the core is modelled by means of both DEs and FEs (SOLID164).
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Perfect adhesion is assumed between the above layers.

(ii) A region on the left-hand side (outside the above one), where only the sheets and the
core are modelled:

- the sheets (up and down layers) are modelled by means of FEs (SOLID164);
- the core is modelled by means of FEs (SOLID164).

Perfect adhesion is assumed between the above layers.

Figure 9. Broken bars obtained by the numerical simulations No.:(a) NT1, (b) NT2, and (c) NT3.

Figure 10. LDEM-DYNA model: discretisation of sandwich panel under four-point bending testing: (a) model A and
(b) model B.

The lattice discrete element model consists of 68,421 spring elements. In more detail,
450 cubic modules are employed in the horizontal direction (x-axis), 10 modules in the
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vertical direction (y-axis), and one module in the thickness direction (z-axis). The cubic
module length Ln is assumed to be equal to 1 mm.

The finite element model consists of 26,992 elements.
Such a hybrid model is that verified in Section 5.1.3 for the case of three-point bending.
Model B shown in Figure 10b is characterised by two different discretisations:

(i) In the central region (covering a length equal to 300 mm):

- the sheets (up and down layers) are modelled by means of FEs (SOLID164);
- only the upper layer of the glue is modelled by means of DEs;
- the core is modelled by means of both DEs and FEs (SOLID164).

Perfect adhesion is assumed between the above layers.

(ii) Outside the central region, only the sheets and the core are modelled:

- the sheets (up and down layers) are modelled by means of FEs (SOLID164);
- the core is modelled by means of FEs (SOLID164).

Perfect adhesion is assumed between the above layers.

The lattice discrete element model consists of 90,641 spring elements. In more detail,
300 cubic modules are employed in the horizontal direction (x-axis), 20 modules in the
vertical direction (y-axis), and 1 module in the thickness direction (z-axis). The cubic
module length Ln is assumed to be equal to 1 mm.

The finite element model consists of 11,685 elements.
Both A and B models are constrained as follows. The vertical displacement is fixed

in correspondence to the supports in the lower part of the panel. The horizontal displace-
ment is fixed in correspondence to the middle-cross section for the symmetry condition.
Moreover, a prescribed vertical displacement is applied in the upper part.

Note that three different analyses are performed for each model (named NF1, NF2,
and NF3 for A model, and NF4, NF5, and NF6 for B model), in order to examine the
influence of different G f random fields on the numerical model. Note that the G f random
fields employed in simulations NF1, NF2, and NF3 are also adopted for simulations NF4,
NF5, and NF6, respectively.

5.2.2. Calibration of the Numerical Model

The input data are reported in Table 1. The parameters of both the LDEs and FEs are
those shown in Section 5.1.2.

5.2.3. Results and Discussion

The numerical load-displacement curves obtained for simulations NF1, NF2, and NF3,
and NF4, NF5, and NF6 are plotted in Figure 11a,b, respectively.

For A simulations, the average values of peak load and maximum deflection result
13.19 kN (with a standard deviation equal to 0.33 kN) and 53.51 mm (with a standard
deviation equal to 2.51 mm), respectively.

For B simulations, the average values of peak load and maximum deflection result
13.67 kN (with a standard deviation equal to 0.91 kN) and 53.60 mm (with a standard
deviation equal to 4.17 mm), respectively. It can be noticed that the results of model B
are in good agreement with those of model A in terms of both peak load and maximum
deflection, with errors equal to 3.69% and 0.17%, respectively.

Furthermore, the failure modes observed in the numerical simulations NF1 and NF4
(characterised by the same G f ) are shown as examples in Figure 12a,b, whereas the broken
bar elements for the same simulations are shown in Figure 13a,b.

In Figure 12, it can be observed that the failure mechanisms are always represented
by the skin buckling, even when the GF random field, that characterises each numerical
simulation, is changed. Such a trend is the same highlighted for the three-point bending
test simulations (see failure mechanisms reported in Figure 8).
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Figure 11. Load-deflection curve under four-point bending obtained by using (a) model A and (b) model B.

Figure 12. Failure modes observed in the numerical simulation No.: (a) NF1 and (b) NF4.

Figure 13. Broken bars in the numerical simulation No.: (a) NF1 and (b) NF4.
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By considering the results of all models, it can be stated that the bars that break first
are within the glue layer (simulations NF2, NF3, NF4, NF5, and NF6) or within both the
glue and the core (simulation NF1) surrounding the edge of the zone where the prescribed
vertical displacement is applied. The buckling of the upper skin is the failure mechanism
related to this first break.

Subsequently, the final rupture is reached when the bar elements highlighted in blue
break. In all the simulations performed, such bars are distributed in the area beneath the
applied vertical displacement, thus highlighting the presence of the indentation of the
upper skin. Then, the final rupture is caused by the core failure in the zone surrounding the
zone where the prescribed vertical displacement is applied. Such a failure mechanism is
also pointed out in Section 5.1.3 for the simulations related to three-point bending testing.

It can be noticed that the LDEM-DYNA model of sandwich panels subjected to four-
point bending testing is able to correctly reproduce the failure mechanisms observed in the
experimental tests, which are typical failure modes for sandwich panels with foam core.
Moreover, failure modes observed in B simulations are similar to those in A simulations.
Therefore, it seems that model B is able to reproduce the four-point bending problem with
the same accuracy but with lower computational costs with respect to A model.

Moreover, as has previously been observed in the simulations of three-point bending
problem (see Section 5.1.3), different G f random fields associated to the numerical simu-
lations allow us to reproduce the natural scatter of experimental testing, in terms of both
peak load and maximum deflection values, damage location, and failure mechanisms.

6. Conclusions

In the present research work, the fracture behaviour of sandwich panels has been
numerically and experimentally analysed. The numerical model employed is a novel
hybrid model, that is, a model developed implementing the LDEM in the Ansys LS-DYNA
finite element code. It allows us to simulate the degradation of the material by considering
the breaking of the discrete elements in the LDEM region.

Three-point bending tests, carried out at the University of Parma on sandwich panels,
have been simulated by means of the above hybrid model. Such a model is able to
reproduce the actual failure mechanisms of the tested panels. More precisely, a final rupture
caused by the core failure has been deduced through these simulations, in accordance to
the experimental observations.

Due to the promising numerical results obtained, the same procedure has been em-
ployed to simulate four-point bending tests. Such simulations have provided the same
failure mechanisms observed in the experimental three-point bending tests, which are
typical failure modes for sandwich panels with foam core.

Moreover, the randomness included in the model allows us to reproduce the natural
scatter of experimental testing, in terms of both peak load and maximum deflection values,
damage location, and failure mechanisms, without altering the general behaviour of the
model.
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Nomenclature

Ad cross-sectional area of diagonal bar elements
An cross-sectional area of longitudinal bar elements
A∗i equivalent fracture area of the i-th bar element
Cij damping matrix
Cp velocity wave
deq equivalent length of the material
E Young’s modulus
Fi(t) internal nodal forces
G f fracture energy
G f fracture energy field
Kc fracture toughness
Ld lengths of diagonal bar elements
Li length of the i-th bar element
Ln lengths of longitudinal bar elements
m mass of the basic cubic modulus
Mij mass matrix
Pi(t) external nodal forces
q critical crack length
Re structure characteristic size
s stress brittleness number
.
xj nodal velocity
..
xj nodal acceleration
∆tmax maximum time-interval for integration
εp critical strain
εu ultimate strain
ν Poisson ratio
ρ mass density
σp material strength (tensile strength)
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