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Abstract: IL-33 is a newly discovered cytokine displaying pleiotropic localizations and functions.
More specifically, it also functions as an alarmin, following its release from cells undergoing cell
death or necrosis, to alert the innate immune system. The role of IL-33 has been underlined in
several inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE). The
expressions of IL-33 as well as its receptor, ST2, are significantly upregulated in SLE patients and in
patients with lupus nephritis. This review discusses the involvement of IL-33 in the pathology of SLE.
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immunity; inflammation

1. Introduction

Systemic lupus erythematosus (SLE) is the prototype of autoimmune connective tissue
disease and affects mainly young women of childbearing age [1]. It is characterized by
chronic and aberrant immune activation against self-antigens, ultimately leading to the
production of autoantibodies and immune complexes (ICs) entailing further damage in
multiple organs such as the joints, skin, kidneys, lungs and brain [2]. Even though the
contribution of the innate and adaptive immune systems to the break of tolerance towards
autoantigens is well established, the exact mechanisms underlying this phenomenon still
remain elusive.

In genetically predisposed individuals exposed to a wide range of environmental
factors [3], products of cell damage are potent activators of endosomal Toll-like receptors
(TLR) and TLR-independent nucleic acid sensors expressed by innate immune cells such
as dendritic cells (DCs). Specifically, TLR-7 and TLR-9 are, respectively, activated by
single-stranded ribonucleic acid (RNA) and unmethylated deoxyribonucleic acid (DNA)
found in products of cell damage and ICs, further leading to strong type I interferon (IFN)
production [4,5]. This goes in line with the so-called “IFN gene signature” observed in
peripheral blood mononuclear cells (PBMCs) of SLE patients [6,7]. More recently, NETosis
has also been incriminated in the pathophysiology of SLE. Neutrophil extracellular traps
(NETs) are a fibrous network extruded by activated neutrophils primarily composed of
DNA and pro-inflammatory proteins. Studies conducted in SLE patients revealed that
NETs induce the production of type I IFN by DCs, serve as self-antigens for presentation to
T lymphocytes and mediate vascular damage and thrombosis [8].

In addition, type I IFN induces the activation of antigen-presenting DCs and drastically
increases their capacity to present autoantigens released from dying cells to T cells. The
ensuing generation of T effector cells results in the production of inflammatory cytokines
and the sustained expression of the cluster of differentiation (CD)40 ligand (CD40L) that
supports the activation of autoreactive B cells [9], which further leads to autoantibody
production, a hallmark of SLE. In addition, T cells of SLE patients are characterized by a
decrease in interleukin (IL)-2 production, which reduces the production of regulatory T
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cells (Treg) [10]. Moreover, some studies have shown an increased number of type 17 helper
(Th17) cells together with increased levels of IL-17 in patients with lupus nephritis [11].

The production of autoreactive B cells leads to the secretion of pathogenic autoanti-
bodies, further perpetuating inflammation and organ damage by IC deposition (containing
nucleic acids, nucleic acid-binding proteins and autoantibodies directed against those
components) and complement and neutrophil activation. Cell debris emerging from cell
damage results in the production of type I IFN and other pro-inflammatory mediators and
further triggers the activation of innate immunity [12]. Furthermore, functional inactiva-
tion of autoreactive B cells fails to eliminate autoreactive B cells from SLE patients [13].
Autoreactive B cells are very efficient antigen-presenting cells and potent activators of
T cells. This results in a phenomenon of cross-activation where both B and T cells can
activate each other, leading to the phenomenon of epitope spreading, reinforcing the loop
of autoimmunity [14].

IL-33 is a cytokine that was first identified approximately 20 years ago as a ligand for
the IL-1 receptor (IL-1R) family member suppression of tumorigenicity 2 (ST2) [15], and
it has been associated with several biological processes and plays a pivotal role in innate
and adaptive immunity, tissue repair, homeostasis and responses to environmental stresses.
IL-33 is believed to act as an alarmin, as it is passively released by damaged or necrotic
barrier cells (endothelial and epithelial cells) [16]. Alarmins mediate intercellular signals
through interactions with chemotactic and pattern recognition receptors (PRRs) to foster
innate immune cells. Additionally, alarmins have the ability to elicit adaptive immunity
responses and T cell-dependent long-term immune memory through their capacity to
induce DC maturation [17]. IL-33 primarily induces type 2 helper (Th2) immune responses
through its receptor ST2 [18]. However, recent studies found ST2 expression on Th1 cells,
Treg cells, group 2 innate lymphoid cells (ILC2), CD8+ T cells and natural killer (NK)
cells [19,20].

Much current interest in IL-33 has been prompted by its role in several inflammatory
and autoimmune diseases including SLE, Sjögren’s syndrome, systemic sclerosis and
rheumatoid arthritis [21–24]. However, the contribution of the IL-33/ST2 axis to the
pathogenesis of SLE still remains incompletely defined.

In the present review, we aim to depict the current state of knowledge regarding the
involvement of the IL-33/ST2 axis in the pathogenesis of SLE.

2. IL-33 and ST2: Biology and Functions

IL-33 is a member of the IL-1 family cytokines that encompass IL-1, IL-18 and IL-36 [25]
and is constitutively expressed in the nucleus of non-immune cells, more particularly in
endothelial and epithelial cells, fibroblasts and myofibroblasts [26,27]. Upon physiological
conditions, IL-33 is localized in the nucleus, bound to chromatin (via the tails of histones
H2A and H2B) [28], and acts as the keeper of epithelial barrier integrity through its tran-
scriptional regulation abilities [29–31].

In pathological settings, if a breach in the epithelial barrier occurs, ensuing mechanical
stress-induced cell death or necrosis, IL-33 is passively released in the extracellular com-
partment where it acts as an alarmin or damage-associated molecular pattern (DAMP) [32].
Extracellular full-length IL-33 is processed by proteases derived from neutrophils [33] and
mast cells [34], generating truncated forms displaying biological activity up to 30-fold
higher than the full-length IL-33 [33,34]. Extracellular IL-33 exerts its functions through the
receptor ST2 and its coreceptor IL-1 receptor accessory protein (IL-1RacP, also known as
IL1-R3). Due to alternative splicing, three isoforms of ST2 have been described: the trans-
membrane receptor type (ST2L), the soluble form (sST2) and the variant ST2 (ST2V) [35–37].

The binding of IL-33 to the transmembrane receptor ST2 enables its dimerization with
IL-1RacP, further activating intracellular signaling through the myeloid differentiation
primary response 88 (MyD88) adaptor, interleukin receptor-associated kinase (IRAK)1,
IRAK4 and tumor necrosis factor receptor-associated factor (TRAF)6. This enables the
activation of mitogen-activated protein (MAP) kinases and the nuclear factor κB (NFκB)
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transcription factor, leading to cell proliferation and the secretion of pro-inflammatory
cytokines such as IL-4, IL-5 and IL-13 [38,39] (Figure 1).
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The IL-33/ST2 axis is tightly regulated at several levels. sST2 acts as a decoy receptor
of IL-33 and prevents its interaction with ST2, thereby counteracting its systemic effects [40].
The IL-33/ST2 axis is also antagonized by the single immunoglobulin domain IL-1R-related
molecule (SIGGIR; also known as TIR8) that splits the heterodimer ST2/IL-1RacP, and by
the activation of the ubiquitin–proteasome system, which digests ST2 [41,42]. Once released
in the extracellular environment, inactivation of IL-33 occurs rapidly after approximatively
2 h through the oxidation of its cysteine residues and the formation of disulfide bridges [43].

The IL-33/ST2 axis mediates the activation of both myeloid and lymphoid cells and
induces mainly a type 2 immune response, through the secretion of Th2-type cytokines
(IL-5 and IL-13) and Th2 cell polarization [44,45]. ST2 is found in a wide variety of immune
cells, including mast cells [46], basophils [47], eosinophils [48], M2 macrophages [49],
neutrophils [47], NK cells [19], innate NK (iNK) cells [19], ILC2 [50], Treg [51] and Th2
cells [44]. However, under specific circumstances, IL-33 can also promote type 1 and
type 17 immune responses [52]. More specifically, the production of type I IFN has been
demonstrated following IL-33 exposure, leading to ST2 activation in type 1 helper (Th1)
cells, NK cells and CD8+ T cells [19,20,53]. In asthma mouse models, the IL-33/ST2
activation in mast cells triggered a Th17 immune response [53]. In vitro studies on mouse
macrophages showed that IL-33 exposure increased the expression of TLR-4, myeloid
differentiation protein (MD)-2 and MyD88 [54]. In mouse bone marrow-derived DCs,
the activation of ST2 upon IL-33 exposure increased the expression of DC maturation
markers (CD80, CD40), pro-inflammatory cytokines (IL-4, IL-5, IL-13, tumor necrosis factor
(TNF)-α and IL-1β) and chemokines such as C-C motif chemokine ligand 17 (CCL17) [55].
Therefore, IL-33 is a potent initiator of the innate immune response and can further activate
adaptive immunity.

3. The Role of IL-33/ST2 Axis in Inflammatory Diseases

A growing body of evidence indicates that the IL-33/ST2 axis exerts a dichotomous
role in inflammatory diseases, ensuing protective or deleterious effects, depending on the
immune context. In the last decade, studies have identified IL-33 as a potential culprit
in numerous inflammatory diseases such as asthma [56], inflammatory bowel disease
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(IBD) [57], rheumatoid arthritis [58], systemic sclerosis [59] and systemic lupus erythemato-
sus (SLE) [60]. For instance, IL-33 and ST2 levels are significantly increased in both the
serum and synovium of patients with rheumatoid arthritis, the archetype of inflammatory
rheumatic diseases, and even correlated with disease activity [30]. In mouse models of
rheumatoid arthritis, IL-33 administration worsened the disease pattern, whereas antago-
nizing IL-33 signaling significantly decreased disease activity [61,62].

However, consistent evidence has also pled a more protective effect of the IL-33/ST2
axis, particularly in mucosal healing processes in IBD [63], immunosuppression in severe
sepsis [64] and the reduction in the formation of atherosclerotic plaques in cardiovascular
diseases [65]. For example, recombinant IL-33 treatment alleviated colitis in mouse models
of Crohn’s disease. This was closely linked to a switch from Th1 toward Th2 and Treg
cells [63].

When released from epithelial cells following cell death or mechanical stress, IL-33
acts on various immune cells via its ST2 receptor and elicits both innate and adaptive
immune responses. IL-33 induces innate immunity through activation of innate immune
cells such as mast cells [66], basophils [67], eosinophils [67] and ILC2 [68], leading to the
secretion of type 2 pro-inflammatory cytokines (i.e., IL-4, IL-5 and IL-13). The activation of
DCs entails the polarization of naïve CD4+ T cells to a Th2 phenotype [69]. Under certain
conditions, IL-33 can also support a type 1 cytokine response through the activation of Th1
cells, cytotoxic T lymphocytes and NK cells, thereby explaining the capacity of these cells
to produce type I IFN upon IL-33 exposure [19,70,71].

The anti-inflammatory functions of IL-33 are mediated by Treg cells [72], regulatory
B (Breg) cells [70] and M2 macrophages [71]. IL-33 supports—directly and indirectly—
Treg cell proliferation, through the secretion of IL-2 by innate cells such as DCs [73] and
mast cells [74]. Furthermore, Treg secrete amphiregulin (AREG), an epidermal growth
factor receptor ligand that supports tissue repair [75,76]. IL-33 is a potent inducer of
IL-10-producing Breg, which confers effective protection against mucosal inflammatory
disorders in mice [70]. Besides supporting a type 2 immune response, ILC2 activation by
IL-33 promotes tissue repair via the secretion of AREG [76,77] and induces the generation
of M2-polarized macrophages [71] (Figure 2).
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inflammatory or pro-inflammatory responses depending on the immunological context. The IL-
33/ST2 axis induces the secretion of type 2 cytokines such as IL-4 and IL-13 by eosinophils and mast
cells, and IL-5 and IL-13 by ILC2 and Th2 cells. IL-33/ST2 mediates the activation of NK cells, leading
to the production of IFN-γ and IL-12. Besides the secretion of IL-1 and IL-6, activated DCs induce
a Th2 polarization of CD4+ T cells. IL-33/ST2 activation can also activate Th1 cells and CD8+ T
cells, leading to type 1 cytokine secretion and cytotoxic activity. On the other hand, IL-33/ST2 also
induces IL-2 secretion by mast cells and dendritic cells, leading to Treg expansion. In addition, ST2
has been demonstrated on Treg, Breg and M2 macrophages, leading to anti-inflammatory cytokine
production (IL-10, TGF-beta). ILC2 and Treg are also a source of AREG, which promotes tissue
healing. Abbreviations: AREG: amphiregulin; Breg: regulatory B cells; DCs: dendritic cells; IFN-γ:
interferon gamma; IL-: interleukin; ILC2: innate Lymphoid Cells type 2; NK: natural killer cells; ST2:
receptor suppression of tumorigenicity 2; TGF-β: transforming growth factor beta; Th1: type 1 helper
cells; Th2: type 2 helper cells; TNF tumor necrosis factor; Treg: regulatory T cells.

4. Expression of IL-33 and ST2 in Systemic Lupus Erythematosus

The IL-33/ST2 axis has been recently incriminated in the pathogenesis of SLE, but its
precise contribution still remains elusive, partly due to the lack of clinical studies.

The human IL-33 gene is located on chromosome 9p24.1 in humans [78]. The asso-
ciation between IL-33 gene polymorphisms and SLE has been studied exclusively in the
Chinese population. Two polymorphisms, the rs1929992-G and rs1891385-C alleles, have
been linked to the risk of SLE [79–81]. However, the increase was only moderate, with an
odds ratio of 1.4 to 1.6 for the rs1891385C allele [79,80], and 1.3 to 1.6 for the rs1929992-G
allele [80,81]. In addition, IL-33 serum levels of SLE patients only correlated with the
rs1891385C allele [79].

Conflicting data exist regarding the serum levels of IL-33 in SLE patients. It was
reported in several studies that IL-33 levels were significantly increased in the serum of
patients with SLE compared with healthy controls [21,79,82–84]. IL-33 levels correlated
with the disease activity score (Systemic Lupus Erythematosus Disease Activity Index,
SLEDAI) [84] and acute inflammatory parameters such as the erythrocyte sedimentation
rate (ESR) and C reactive protein (CRP), suggesting a potential interest for its use as a
surrogate marker in the acute phase of SLE [82]. In addition, a study found increased
amounts of extracellular IL-33 complexed with NETs in blood, skin and kidney biopsies
from SLE patients, which correlated with the disease activity. Ex vivo analysis confirmed
that neutrophils from SLE patients released IL-33-decorated NETs, further inducing a robust
type I IFN response by DCs through their ST2 activation [85]. Conversely, other studies
found no statistically significant difference in the serum level of IL-33 between SLE patients
and controls [60], or even lower levels in the serum of patients [86,87]. This discrepancy
could be attributed to a difference between the detection efficacy of the enzyme-linked
immunosorbent assay (ELISA) kits used in the studies, or to the heterogeneity of SLE
patient cohorts, especially regarding disease activity or genetic background.

In contrast, sST2 serum levels have been more consistently reported to be significantly
elevated across studies and correlated with the disease activity score (SLEDAI) [21,61,88]
and with anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies [60,86]. In
addition, Moreau et al. found a statistically significant increase in sST2 serum levels of
patients with lupus nephritis compared to SLE patients free of renal involvement [21].
Moreover, sST2 serum levels correlated with urinary proteins in the subgroup of patients
with active nephritis [86]. Interestingly, sST2 levels were also found to correlate with pro-
teinuria in immunoglobulin (Ig)A nephropathy, suggesting the hypothetical involvement
of sST2 in other kidney disorders [89].

5. The Pathophysiological Role of IL-33 in Systemic Lupus Erythematosus

Preclinical studies report conflicting data regarding the role of the IL-33/ST2 axis in
the pathophysiology of systemic lupus erythematosus.



Int. J. Mol. Sci. 2022, 23, 3138 6 of 14

In the lupus-prone model of MRL/Lpr mice, anti-IL-33 treatment from weeks 14 to
20 significantly reduced mortality and lessened serum anti-dsDNA levels and circulating
ICs. Renal biopsies showed alleviated renal damage as suggested by the reduced score of
glomerulonephritis (GN), reduced renal IC deposition and reduced proteinuria. Finally,
anti-IL-33 antibody treatment promoted the expansion of Treg and myeloid-derived sup-
pressor cells (MDSCs) and decreased pro-inflammatory cytokines such as IL-17, IL-1β and
IL-6. These data suggest that IL-33 antagonization has a protective effect on SLE [84]. In
addition, results from WT mice chronically exposed to IL-33 showed a dramatic increase in
B-cell activating factor (BAFF) levels, leading to the production of B and T follicular helper
cells, the apparition of germinal centers and the apparition of IgG anti-DNA antibodies.
These data suggest the potential involvement of IL-33 as a link between innate and adaptive
immunity, and as a potent breaker of immune tolerance through IL-33-mediated BAFF
production [88].

Conversely, the effect of early IL-33 administration in lupus-prone NZB/W F1 mice
from weeks 6 to 12 significantly reduced proteinuria and mortality. Histological analysis
revealed a significant reduction in glomerular and tubular damage scores and less deposi-
tion of ICs. IL-33 treatment also promoted IgM anti-dsDNA antibodies, IL-10-positive Breg
cells and an M2 macrophage gene signature according to RNA sequencing data. These
data suggest that IL-33 may exert a protective role during the development of SLE [90]. It
has to be underscored that there is an antibody-independent production of B cells relat-
ing to autoimmunity, and that lupus mice with B cells unable to produce autoantibodies
developed a lessened form of nephritis relative to those without B cells. The mechanisms
of the protective role of IgM autoreactive anti-dsDNA antibodies in lupus nephritis are
not fully deciphered but could be explained by the significant reduction in the production
of pro-inflammatory cytokines such as TNF-α and IFNγ. It has been postulated that, in
opposition to IgG anti-dsDNA antibodies harboring a cardinal role in fostering inflamma-
tion through the production of inflammatory cytokines by macrophages in the kidneys,
IgM antibodies might lessen the inflammatory environment and inhibit the formation of
immune complexes [91,92]. In the same line of thought, Stremska et al. studied the effect
of IL-233, a hybrid cytokine with active domains of IL-2 and IL-33, as IL-2 and IL-33 have
both been shown to expand Treg cells via ST2 ligation [93]. IL233 was shown to induce a
durable remission both in established IFN-α-induced lupus GN and in spontaneous GN
mouse models (i.e., NZM2328 and MRL/lpr mice). A single course of IL233 daily injections
for 5 days induced Treg production and a reduction in pro-inflammatory T cells, without
significantly affecting IC deposition within the glomeruli. The induced remission of lupus
GN was long-lasting after the treatment [94]. Düster et al. showed a significant reduction
in ILC2 in inflamed renal tissue from MRL-lpr mice with GN. After a regiment of two IL-33
injections at 14 and 17 weeks, a significant increase in ILC2 was observed, together with
lower scores of lupus nephritis and a decrease in mortality.

In light of the above, one could hypothesize that these contrasting data mirror the
dichotomous role of the IL-33/ST2 axis reported in the pathophysiology of inflammatory
diseases [95,96]. Depending on the genetic background, the length of the disease (early
disease vs. late disease), the immunological background (i.e., pro-inflammatory environ-
ment related to an active disease) or the time course of IL-33 treatment (short-term IL-33
depletion vs. long-term IL-33 depletion), the IL-33/ST2 axis could be skewed towards
displaying either pro-inflammatory or anti-inflammatory effects.

The hypothetical involvement of the IL-33/ST2 axis in the pathogenesis of SLE is
further detailed in Figure 3. In genetically susceptible subjects exposed to a wide range of
environmental factors such as viruses, UV light and stress [3], the products of cell damage
arising from injured epithelial barriers lead to the passive release of IL-33. sST2 levels rise
in an attempt to counteract the sudden increase in extracellular IL-33, as suggested by
immunostaining from patients with lupus nephritis, where an increase in both IL-33 and
sST2 was observed [21].
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and patients with asthma or atopic dermatitis [99]. Another selective monoclonal antibody 
against ST2, astegolimab, showed encouraging results in phase IIb trials for the treatment 

Figure 3. Hypothesis of the involvement of the IL-33/ST2 axis in the pathogenesis of systemic
lupus erythematosus. The dual role of the IL-33/ST2 axis can be seen as a balance between pro-
inflammatory and anti-inflammatory effects. Unknown factors (3 questions marks in the figure) can
influence this balance, skewing the immune response toward either pro- or anti-inflammatory states.
In genetically susceptible subjects, environmental stimuli such as viruses, UV light and stress may
trigger cell death and necrosis of the epithelial barrier, leading to passive release of IL-33, apoptotic
blebs and exposure of autoantigens, ultimately leading to the formation of ICs. The products of
cell damage, together with ICs, activate neutrophils to produce NETs that complex with IL-33 to
activate DCs via their ST2 receptor, leading to a potent type I IFN secretion that contributes to
the IFN signature of SLE. In addition, IL-33 also directly activates ST2 expressed by DCs, leading
to the Th2 polarization of CD4+ T cells. IL-33 induces BAFF secretion by bone marrow stromal
cells and possibly other, but not yet identified, cells that induce B cell differentiation into plasma
cells, further contributing to germinal center formation and IC formation. Under certain conditions,
probably in the early phase of the disease, the anti-inflammatory effects of IL-33 are dominant. sST2
levels are elevated to counteract IL-33 actions. IL-33/ST2 also induces IL-2 secretion by mast cells
and dendritic cells, leading to Treg expansion. In addition, ST2 has been demonstrated on Treg,
Breg and M2 macrophages, leading to anti-inflammatory cytokine production (IL-10, TGF-beta).
Finally, ILC2 and Treg are also a source of AREG, which promotes tissue healing. Abbreviations:
AREG: amphiregulin; BAFF: B-cell activating factor; Breg: regulatory B cells; BM: bone marrow;
DCs: dendritic cells; IC: immune complexes; IFN-γ: interferon gamma; IL-: interleukin; ILC2: innate
Lymphoid Cells type 2; NETs: neutrophil extracellular traps; NP: neutrophils; sST2: soluble ST2; ST2:
receptor suppression of tumorigenicity 2; TGF-β: transforming growth factor beta; Th2: type 2 helper
cells; TNFα: tumor necrosis factor alpha; Treg: regulatory T cells; UV: ultraviolet; ⊥: inhibit; blue and
red ↓: induce/activate.

In addition, the exposure of numerous self-antigens resulting from dying cells ulti-
mately led to the formation of ICs. Together with products of cell damage, ICs stimulate
neutrophils to produce NETs. Once complexed with IL-33, NETs are potent activators of
DCs via their ST2 receptor, leading to a potent IFN-α secretion that contributes to the IFN
signature of SLE [85]. In addition, functional studies showed that DCs also responded
directly to IL-33 through the ST2 receptor and polarized CD4+ T cells into a Th2 pheno-
type [97]. Chronic exposure of IL-33 induces BAFF secretion by bone marrow stromal
cells and possibly other, but not yet identified, radiation-resistant cells that induce B cell



Int. J. Mol. Sci. 2022, 23, 3138 8 of 14

proliferation and differentiation into plasma cells, further contributing to germinal center
formation, autoantibody production and IC formation [88]. This goes in line with studies
performed in lupus patients, where increased serum levels of IL-33 have been shown to
correlate with autoantibody levels [58,82]. It must be stressed that the involvement of the
IL-33/ST2 axis in the pathogenesis of SLE is very difficult to distinguish from its role, and
from the facts shown in other autoimmune diseases.

Under certain, but still to be identified, conditions, possibly in the earlier phase of
the disease, the anti-inflammatory effects of IL-33 prevail. Elevated levels of IL-33 induce
IL-2 secretion by mast cells and dendritic cells, leading to Treg cell expansion [73,74]. In
addition, ST2 has been demonstrated on Treg, Breg and M2 macrophages, leading to anti-
inflammatory cytokine production (IL-10, TGF-beta) [70]. Finally, ILC2 and Treg are also
a source of AREG, which promotes tissue healing and homeostasis [77]. Together with
IFN-related genes, AREG levels were significantly upregulated in PBMCs from SLE patients
compared to healthy controls [7]. In a preclinical study, local AREG mRNA expression was
significantly increased during the development of LN in a lupus mouse model. In addition,
AREG-KO mice experienced significantly more severe scores of lupus nephritis. In vitro
assays carried out on CD4+ T cells showed an increased production of pro-inflammatory
cytokines such as type I IFN and IL-17A. Treatment of spleen cell cultures with AREG
suppressed pro-inflammatory cytokine production and induced the apparition of Treg
cells [98].

6. Clinical Implications and Future Directions

Current clinical trials using drugs targeting the IL-33/ST2 axis are totally lacking.
Even if targeting the IL-33/ST2 axis seems to be a potential therapeutic option according
to several preclinical studies in mice [84,90], there is still a long way to go from bench to
bedside before currently using IL-33/ST2 therapies in SLE patients.

At present, several monoclonal antibodies against IL-33 or ST2 are still under de-
velopment and are currently being tested in phase I and II clinical trials, mainly for the
treatment of patients with allergic diseases. In particular, CNTO 7160, a monoclonal anti-
body against the ST2 receptor, has been investigated in a phase I clinical trial in healthy
subjects and patients with asthma or atopic dermatitis [99]. Another selective monoclonal
antibody against ST2, astegolimab, showed encouraging results in phase IIb trials for the
treatment of severe asthma, with a more striking benefit reported in patients with elevated
blood eosinophils [100]. Itepekimab, a monoclonal antibody against IL-33, showed efficacy
and safety both as a monotherapy and in combination therapy in patients with moderate
to severe asthma [101]. The results of a phase IIa trial suggested that a single dose of
etokimab, another monoclonal antibody targeting IL-33, could be effective in desensitizing
peanut-allergic patients and in reducing atopy-related symptoms [102].

7. Conclusions

In this review, the current knowledge about the entanglement of the IL-33/ST2 axis
in the pathogenesis of SLE was portrayed. Fundamentally, IL-33 is a pleiotropic molecule
but mainly exhibits dual properties of an alarmin, leading to a pro-inflammatory cytokine
response and eliciting counteracting homeostatic mechanisms. In SLE, IL-33 exhibits
both properties, functioning as a pro-inflammatory alarmin, as well as a promoter of
tissue healing and regulatory immune responses. Targeting the IL-33/ST2 axis in SLE
could be a potentially interesting therapeutic option in the upcoming years. However,
further understanding in deciphering the involvement of IL-33 in SLE is required to better
apprehend the conflicting roles of IL-33 in SLE physiopathology and could pave the way
for new exciting therapies.
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BAFF B-cell activating factor
Breg regulatory B cells
CCL17 chemokine (C-C motif) ligand 17
CD cluster of differentiation
CRP C-reactive protein
DAMP damage-associated molecular pattern
DCs dendritic cells
DNA deoxyribonucleic acid
ELISA enzyme-linked immunosorbent assay
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GN glomerulonephritis
IBD inflammatory bowel disease
ICs immune complexes
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IL-1R IL-1 receptor
IL-1RacP IL-1 receptor accessory protein
ILC2 innate lymphoid cells type 2
iNK innate natural killer
IRAK interleukin receptor-associated kinase
MAP mitogen-activated protein (MAP)
MD myeloid differentiation protein
MDSCs myeloid-derived suppressor cells
MyD88 myeloid differentiation primary response 88
NETs neutrophil extracellular traps
NFκB nuclear factor κB
NK natural killer
PBMCs peripheral blood mononuclear cells
PRRs pattern recognition receptors
RNA ribonucleic acid
SIGGIR single immunoglobulin domain IL-1R-related molecule
SLE systemic lupus erythematosus
SLEDAI Systemic Lupus Erythematosus Disease Activity Index
sST2 soluble ST2
ST2 receptor suppression of tumorigenicity 2
ST2L ST2 transmembrane receptor
ST2V ST2 variant
Th1 type 1 helper cells
Th17 type 17 helper cells
TLR Toll-like receptor
TNF tumor necrosis factor
TRAF tumor necrosis factor receptor-associated factor
Treg regulatory T cells
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