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COVID-19, the disease caused by the novel
coronavirus 2019, has caused grave woes across
the globe since it was first reported in the epicentre of
Wuhan, Hubei, China, in December 2019. The spread
of COVID-19 in China has been successfully curtailed
by massive travel restrictions that rendered more than
900 million people housebound for more than
two months since the lockdown of Wuhan, and
elsewhere, on 23 January 2020. Here, we assess the
impact of China’s massive lockdowns and travel
restrictions reflected by the changes in mobility
patterns across and within provinces, before and
during the lockdown period. We calibrate movement
flow between provinces with an epidemiological
compartment model to quantify the effectiveness of
lockdowns and reductions in disease transmission.
Our analysis demonstrates that the onset and
phase of local community transmission in other
provinces depends on the cumulative population
outflow received from the epicentre Hubei.
Moreover, we show that synchronous lockdowns
and consequent reduced mobility lag a certain
time to elicit an actual impact on suppressing
the spread. Such highly coordinated nationwide
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lockdowns, applied via a top-down approach along with high levels of compliance from
the bottom up, are central to mitigating and controlling early-stage outbreaks and averting a
massive health crisis.

1. Introduction
Global health and humanity has been constantly threatened by emerging novel zoonotic diseases
[1,2], such as Zika [3], Ebola [4] and more recently COVID-19 [5,6]. The relentless siege of SARS-
CoV-2, the pathogen causing COVID-19 infections [7,8], has upended everyone’s normal life
and caused health crises, lockdowns and economic repercussions at an unprecedented pace and
scale. The world has resorted to mandatory non-pharmaceutical interventions (NPI), including
lockdowns, face-covering and social distancing, so as to mitigate disease impact before effective
pharmaceutical interventions (e.g. vaccines) become available [9–11]. Such top-down approaches
consider society as a whole and attempt to optimize intervention measures from the perspective of
central planners. On the other hand, adopting personal intervention measures such as complying
with lockdown measures incurs a cost to oneself, but collectively protects the community,
especially those who are vulnerable. To address these issues, infectious disease dynamics has
been an important research area in relevant mathematical and biological fields [12–14]. Over the
years, researchers have proposed behavioural epidemiology as a means of integrating the study
of epidemiology with an understanding of health decisions made by individual actors responding
to infection risks [15–20].

Models of spatial epidemiology have been extensively studied using mathematical approaches
combined with real data, with a focus on revealing the spatio-temporal pattern of epidemic
spreading [21–23]. In particular, it is shown that the persistence and resurgence of local
community transmissions can be driven by movements between interconnected populations.
To understand the persistence and cycles of measles outbreaks, prior work has found that the
ubiquitous community structure and their intrinsic heterogeneity can hamper public health
efforts to control and prevent childhood diseases [22]. Moreover, previous studies take into
account the network topology of communities along with their interconnected mobility in
metapopulation models [24,25]. These prior results provide novel insights into understanding
the impact of individual movements on disease dynamics and implications for interventions. In
recent years, with the increasing availability and particularly unprecedented dataset on human
mobility [26–28], it has become feasible to study infectious disease and spatial epidemiology with
more realistic considerations [29,30].

Of particular interest, previous research has demonstrated the effectiveness of travel
restrictions to mitigate respiratory virus transmission, yet there are also significant limitations
of this approach [31–34]. As mentioned, epidemics in interconnected regions, partly due to the
heterogeneity of underlying epidemiological characteristics, can exhibit complicated dynamics
during an outbreak [21,22,25]. Among others, one of the important driving factors is movements,
or more generally mobility patterns, that account for local commutes and domestic and
international travels [29,30]. It is known that COVID-19 has a relatively long incubation period
[35] and can be contagious before the onset of symptoms (even asymptomatic transmission
is more pervasive than previously thought [36]). Thus, in the very early phase of COVID-19
outbreaks when infrastructures like digital contact-tracing, high throughput testing capacity and
isolation stations are still lacking or insufficient to handle overwhelming exponential outgrowth
of the epidemic, the somewhat brute-force lockdowns (through travel restrictions) seem to be the
last resort to mitigate the disease impact and save time for the development and deployment
of alternative interventions such as vaccines and treatments. However, as time goes by, testing,
contact tracing and isolation may provide a feasible approach for controlling local outbreaks of
COVID-19 [10,11].

In the wake of COVID-19 outbreaks, a wealth of studies have focused on investigating how
reductions in international travel through various forms of lockdowns and travel bans would
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lessen the impact of the pandemic around the world [37–41]. Retrospectively, these studies
invariably confirm the importance of curbing imported cases so as to prevent cross-seeding of
infections due to the spatial and temporal heterogeneity in epidemics, particularly when local
transmissions are outweighed by the risk of imported cases [37]. Significantly, [42] analyses
how the cumulative population outflow from the epicentre impacts the timing of onset of local
community transmissions in other receiving locations. The authors find a positive correlation
between the two quantities, thereby enabling a lead time for predicting the onset of local
outbreaks.

As an initial pandemic response when there are not any other pharmaceutical interventions
available, drastic lockdown imposes tremendous short-term cost but it can bring long-term
positive impact if implemented with ideal timing and coordination. From the top-down
management perspective, prior research has extensively investigated optimization of intervention
policy using simple epidemic models [43–48], including vaccination [49] and isolation [50,51]. In
regard to adaptive social distancing, prior work uses evolutionary game theory [52] or differential
games [53] from the perspective of individuals to understand factors of behavioural compliance.
While these prior models shed light on adaptive social distancing, it remains vital to examine the
effectiveness of lockdowns and assess their actual impact on disease mitigation and control using
a data-driven approach. For this purpose, changes in mobility patterns can be a good proxy to
study the impact of NPI such as lockdowns and social distancing on behaviour changes that help
reduce community transmissions in an interconnected setting of spatial epidemiology.

In the meantime, it is not uncommon that some people protest against measures of lockdowns
and NPIs [54], together with debates about their cost-effectiveness and impacts on health and
society [55,56] (see a recent comprehensive review in [57]). To examine and validate conditions
for lockdowns to be effective, we take a second look at China’s containment efforts. Despite its
vast size and huge population, China’s lockdowns have been able to mitigate and control local
outbreaks through massive travel restrictions. In early 2020, when knowledge about COVID-
19 was still rather limited, the decision to lockdown came after many deliberations and amid
tremendous uncertainty. Even so, to put a population of more than 1.4 billion on lockdowns and
in some provinces strict home quarantines for an exceedingly long period is a hard, top-down
decision that comes at an astronomical economic cost. Yet it turns out to have long-term positive
impacts mainly because the stringent lockdowns have been implemented effectively.

Here, we use a data-driven modelling framework to assess the effect of lockdowns on
transmission reductions and improve our understanding of the necessity of uniform and highly
synchronous lockdowns in light of the spatio-temporal pattern of COVID-19 outbreaks. To
this end, we explore China’s COVID-19 lockdowns as a concrete example, examine the level
of synchrony of implementing travel restrictions across China, and quantify the impact of
lockdowns on people’s movements.

Our data analysis based on the massive mobility data reveals that lockdowns are implemented
highly synchronously and uniformly at multi-levels, that is, between provinces (30 administrative
regions) and within provinces (at the level of prefecture within a given province such as Hubei).
As demonstrated in theoretical research about spatial epidemiology [21,22,25], highly coordinated
nationwide massive travel restrictions are central to effective mitigation and control of COVID-19
in China, especially during the early stage of epidemic outbreaks. Such massive travel restrictions
ultimately lead to successful control of COVID-19, saving the country from a huge health crisis.
Despite the immeasurable loss of lives and economy, it is a remarkable achievement, which was
made possible by the sacrifice of each and every one of the ordinary people who have been
impacted by this pandemic.

2. Results
In late December 2019, the outbreak of COVID-19 was first reported in Wuhan, Hubei, which is a
central transportation hub (especially for trains). The situation rapidly escalated to a public health
emergency after local case surges and excessive hospitalizations that caused hospital overflow
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Figure 1. Universal lockdowns across China along with a highly coordinated nationwide epidemic response. The plots each
show the inter-provincemobility,measuredbydaily total influx andoutfluxof inter-province travels usingBaidumigrationdata,
changes for the period from late December 2019 toMarch 2020. The Chinese government imposed by far the largest scale of strict
travel restrictions onmore than 11 million people (beyond) on 23 January 2020 (Level 1 response), amid the busiest period of the
year for domestic travels (‘chunyun’, travels made during the Lunar New Year). Such massive travel restrictions have caused a
dramatic reduction in travel volume, not only for the outflow from the epicenterWuhan (Hubei) but also nationwide. Depending
on the level of regional disease mitigation efforts, only a few provinces relaxed their travel restrictions (lowering from Level 1
to Level 3) a month later. The colour corresponds to the level of response prior to and after the epidemic outbreak in Wuhan.
(Online version in colour.)

(electronic supplementary material, Fig. S1). On 23 January 2020, the Chinese government
imposed the largest-scale lockdown measure in human history amidst the busiest period of
domestic travels around the Lunar New Year (figure 1) (as a reference, approx. 2.97 billion trips
in total were made during a similar time window in the year before [58]).

The implementation of lockdown is well-coordinated across the nation with the highest level
of epidemic response (Level 1). As shown in figure 1, both the influx and the outflux of travellers
for each province approached rock bottom after a short period of chaos and panic. In some
provinces, people desperately tried to get in and get out amid the announcement of lockdowns
and travel restrictions. Even worse, people may have found themselves suddenly trapped in the
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middle of their journey but still needed to continue their trip to reach their final destinations.
Such disruptions are reflected in the temporary increases in travel volume (indicated by the Baidu
mobility index). For people who attempted last-minute moving in and moving out, inter-province
mobility was not immediately suppressed but rather surged across many parts of the regions. It
is noteworth that such initial lags in achieving actual mobility reductions are also attributed to
the seasonal peaks in domestic travel near the Lunar New Year when people (including migrant
workers) travel back home to reunite with their family (‘chunyun’, the biggest annual migration
of humans in the world).

Due to the strict implementation of national lockdowns, the travel volume eventually
approached the desired control target (figure 1). In particular, the epicentre Hubei experienced
the strictest ever travel restrictions and there was barely any free movement of people except for
essential travel for an exceedingly long period (figure 1). As a matter of fact, Wuhan residents
were strictly confined to their homes for months (in total 76 days) until early April 2020. In late
February 2020, a month after the lockdown, many provinces lowered their response levels and
lifted their lockdowns. As a consequence, travel rebounded but still, the impact of lockdowns on
mobility was long-lasting. Despite lower numbers of active cases, the reopening efforts by the
government saw little effect as people needed time to feel comfortable about travelling again due
to the fear of lockdowns and the potential risk of infections.

Figure 2 shows the pairwise mobility index between provinces; the lump sum of each column
and each row, respectively, gives the total volume of ‘move in’ and ‘move out’ in figure 1. The
order of listed provinces is ranked according to their final epidemic size by the end of our study.
The level of inter-province mobility appears to be correlated with their epidemic sizes, forming a
cluster on the upper right corner (figure 2).

The heatmap plots provide us with an intuitive visual guide for understanding the degree
of interconnectedness between provinces in terms of their bidirectional travel volume (figure 2).
After two weeks since the lockdown (4 February 2020), the travel reduces to a bare minimum
that is required to maintain essential living and work. The entire nation is paused at a massive
scale and at a highly coordinated pace (figure 2). In most places, the intra-province mobility is
reduced dramatically more than 90%, and even more, the inter-province travels are cut almost at
100%, in particular for the travel from and to the epicentre and other most affected provinces (see
the upper rows, those provinces that had the largest outbreaks, of the heatmaps in the middle
row of figure 2). Taken together, these results demonstrate that China’s lockdowns are highly
synchronous and effectively stop long-range spatial spreading due to domestic travels.

As an outbreak unfolds, its emerging spatio-temporal pattern is highly dependent on the
underlying multi-scale and multi-layer population structure, based on various data, most
crucially on the mobility pattern [22,24,30,42]. People make local and non-local movements
during which inevitable close contact/proximity with others can seed infections near and far.
Figure 3 presents an overview of the emergent spatio-temporal pattern of the COVID-19 outbreak
in China. In accordance with figure 2, most affected provinces suffering the largest outbreaks by 10
March 2020 are those with the greatest levels of interconnectedness with, and thus receiving the
largest population outflow from, the epicentre Hubei, including Guangdong, Henan, Zhejiang,
Hunan and Anhui (highlighted in figure 3a). Figure 3b further demonstrates how the phase
and magnitude of outbreaks in each province correlate with the cumulative population outflow
received from Hubei. The greater outflow received from the epicentre, the earlier onset of
the local outbreaks will be detected along with a larger number of cases (figure 3b). These
data-based results provide a direct and intuitive rationale for synchronous lockdowns that are
required to ultimately control and possibly eliminate infections, at least in the early phase of an
epidemic when limited options other than costly non-pharmaceutical interventions are possible.
Altogether, our analysis based on China’s COVID-19 dataset suggests such population outflow
from epicentres determines the timing and scale of the outbreaks (figure 3).

To further quantify the synchrony of lockdowns implemented across China, we perform
comprehensive comparative statistics of inter-province and intra-province time series of mobility
data (figure 4). The correlations on the level of provinces range from 0.77 to 0.98 (with value
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Figure 2. Changes in inter-province and intra-province mobility over key dates throughout the epidemic outbreak. The non-
diagonal elements of each heatmap plot show the migration index (a quantity proportional to the overall volume, as defined
by Baidu) of pairwise travel destinations from province A (source) to B (target) while the diagonal shows the intra-province
mobility index (travels within a given province). Prior to lockdowns, the travel peaks correspond to popular domestic travel
routes during the Lunar New Year such as from Guangdong to Hunan (e.g. migrant workers return from coastal areas to inner
lands to reunite with family). Both the inflow to and the outflow from Hubei (epicentre) are kept at extremely low levels except
for essential travels that support epidemic response and basic living needs. These heatmaps complement figure 1 by providing
more detailed views of mobility during the outbreak. (Online version in colour.)

one suggesting perfect synchrony) (figure 4a). Further zooming in, we take a close look at the
prefecture level within the epicentre Hubei province: the synchrony of mobility changes due
to well-coordinated lockdowns between the capital Wuhan and other cities within Hubei is
significant and with few variations (correlations ranging from 0.85 to 0.95) (figure 4b).

Having analysed how the aggregate pattern of mobility changes reflects the synchrony
of implementing travel restrictions, we now turn to quantify the extent to which disease
transmission rates are reduced as a result of nationwide lockdown measures. To this end, we use a
data-driven modelling approach (see Methods and Model, and also the electronic supplementary
material). Specifically, we consider an SEIR compartment model in a metapopulation structure
with migration on the level of provinces. In accordance with our spatio-temporal analysis of
epidemic spreading (figure 3), we explicitly take into account the impact of inter-province
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Figure 4. Quantifying synchrony in reduced mobility due to national lockdowns and massive travel restrictions and assessing
their impacts through reductions in disease transmissions inferred from our data-driven modelling. (a) The intra-province
mobility and their strong correlationswith the curve of Hubei province. Compared to the year before (numbers given in brackets
in the legend), the mobility patterns exhibit significantly higher correlations, suggesting a high level of synchrony during the
lockdown period. (b) The correlation of mobility index among prefectures within Hubei province. (c) The inferred transmission
rates using a data-driven multi-compartment framework. In all provinces, reduced mobility levels translate to drastically
suppressed transmissions. The effect of lockdowns on transmission reductions has seen a pronounced delay (varying by one
or two weeks) for two reasons: (1) people need time to adjust to reduced social contacts despite decreasing mobility (2) local
community transmissions cannot be easily controlled unless strict ‘cordon sanitaire’ (home quarantine) is enforced. The colour
corresponds to the level of epidemic response. (Online version in colour.)
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migration flow (daily travel volume αij(t)) that modulates cross seeding of infections in our
inference of key epidemiological parameters, including the time-dependent, province-specific
transmission rate βi(t), the incubation period 1/σi(t) and the recovery rate γi(t). Among others,
the parameter βi(t) reflects how well mobility patterns (reductions and changes) translate into
effective transmission rates (infections via contacts) (figure 4c). We can see that the impact of
lockdowns on reducing transmissions does not occur immediately, but lags a certain time (on
average two weeks or so) to reach desired effective behavioural changes that eventually lead to
reductions in transmissions. This result implies that lockdown measures need to last sufficiently
long so as to see their positive mitigation impact, partly because people need some time to
fully adjust to, and more importantly comply with, quarantine orders, especially strict home
quarantine.

We also estimate the effective basic reproductive ratio, Rt, in order to characterize the impact
of interventions on controlling the epidemic over time. Figure 5 shows the best estimated Rt for
each province, most of their values varying from 2 to 10. Owing to the unique demographics of
each province, the heterogeneity of Rt requires a distinct level of interventions. For example, the
epicentre Hubei has an Rt ∼ 4 prior to lockdowns, whereas its strongly interconnected province
Guangdong has an Rt ∼ 15. Despite such drastically different epidemiological characteristics and
population densities and sizes, the universal lockdowns implemented almost synchronously have
managed to contain the epidemic outbreaks in each province, which would have become too
overwhelming to handle otherwise. Figure 5 also reveals the intrinsic difference in the persistence
of COVID-19 and the effectiveness of interventions across the nation. In Zhejiang and Shanghai
(which are economically developed regions), the interventions are highly efficient and bring
down the Rt below one within days. By contrast, as for the epicentre Hubei, it takes a month
to curb the level of infections below the critical threshold. Although lockdown is not a one-size-
fits-all approach, there should be no question about its effectiveness, as long as implemented in
synchrony across the target population, in control and mitigation of an emerging epidemic.

3. Discussion and conclusion
In the very early stage of an unprecedented outbreak of COVID-19 starting in the epicentre,
Wuhan, Hubei province, China, the Chinese government imposed by far the largest scale of strict
travel restrictions on more than 11 million people (beyond) on 23 January 2020, amid the busiest
period of the year for domestic travels (‘chunyun’, travels made during the Lunar New Year).
Such massive travel restrictions have caused a dramatic reduction in travel volume, not only for
the outflow from Wuhan (Hubei) but also nationwide (figures 1 and 2). Control measures like this
help reduce the number of imported cases to other provinces, which can possibly slow down the
onset of epidemic outbreaks in other regions and potentially weaken the impact of the disease.
In this work, we use a data-driven approach to estimate the effectiveness of such massive travel
restrictions in the mitigation of disease impact. Our work shows that highly coordinated massive
travel restrictions are central to effective mitigation and control of COVID-19 outbreaks in China.

Pandemics are not new to human societies, yet tremendous challenges still remain particularly
in the wake of the ongoing novel coronavirus pandemic [45,46,59]. Successful top-down
management of the pandemic and governance of the collective in the face of infectious disease
threats relies heavily on individual behaviour and attitude changes from the bottom up [60].
However, the tragedy of the commons can arise as a result of ‘free-riding’ in this important
context [61]. Individuals may not follow disease intervention measures suggested by public
health officials, especially if the epidemic curve is being bent down, but the uptick of cases,
in turn, causes individuals to become more vigilant and increase their compliance levels. A
feedback loop of this sort gives rise to oscillatory dynamics of disease prevalence and behavioural
compliance to top-down public health measures, as seen in the current pandemic with multiple
waves of infection [52]. In addition to the social dilemma aspect of disease control, tremendous
uncertainty associated with early detection of local community transmission and overall
pandemic forecasting makes top-down scenario planning and optimization of intervention and
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Figure 5. Province-specific effective basic reproductive ratio, Rt , inferred from data-driven modelling. Highly coordinated
nationwide massive travel restrictions are able to suppress infections across China, despite each province’s distinct pace and
magnitude of epidemic impact mitigation. The plot shows that province-specific Rt is heterogeneous and has a distinctive
pattern with respect to the implementation of local lockdown measures across provinces, but Rt is uniformly suppressed after
two weeks of nationwide lockdown and invariably drops well below one after one month. (Online version in colour.)

mitigation extremely challenging [62]. As such, top-down and bottom-up modelling approaches
need to go hand-in-hand in order to better inform public health efforts for effective disease
interventions.

One potential incomplete data issue of the present work is the aggregate Baidu mobility data
based on the phones we used. Admittedly, such mobility data can be underestimated due to
population heterogeneity in phone usage and user privacy settings. However, when compared
with a study published a decade ago [63], China is now one of the leading countries in smartphone
usage and ownership for both rural and urban populations: a recent Pew survey reported
extraordinarily high smartphone ownership [64]. Keep in mind our analysis is based on the levels
of inter-province and intra-province mobility which already has a large population size. While
accurate calibration for such potential sampling biases in mobility data is out of the scope of the
present work, our results on understanding the spatio-temporal pattern of COVID-19 spreading
and quantifying the impact of lockdowns are still of relevance and interest even as a case study
of massive travel restrictions.
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It remains an open problem to promote bottom-up behaviour and attitude changes for the
greater good [65]. Compliance with public health recommendations and orders is an outstanding
issue plaguing many parts of the world and greatly compromising efforts to mitigate the
pandemic. Lockdowns have been attempted across the world, yet with drastically different
outcomes. Many regions tried varying degrees of enforcement but met with resistance due
to privacy and civil rights concerns. By contrast, China has a unique regime and governance
structure to enforce a national lockdown through a well-considered top-down approach.

Our work provides data-driven evidence for supporting highly coordinated lockdowns that
should be implemented in the early onset of pandemics in order to be effective. Only when
applied in concert with all regions are strict lockdowns effective. Across the world, other countries
like Singapore and New Zealand have also seen successes in containing COVID-19 using well-
coordinated national lockdowns. Undoubtedly, such lockdowns come at a huge cost—business
shutdowns, worker layoffs and lack of child care, to name just a few—and inflict economic
repercussions. On the other hand, it is necessary to do so in the early phase of the global pandemic
when effective pharmaceutical interventions (like vaccines and anti-viral treatments) are lacking
or still under rapid development.

With the increasing options of interventions and especially ramping up vaccination, it becomes
possible to get our life back to normal. Massive travel restrictions are no longer needed to contain
case surges [66], provided that responsive and targeted local lockdowns by means of high-
precision contact tracing as well as testing and isolation are in place. Since the full-scale national
lockdowns in January 2020, local outbreaks due to imported cases from time to time in China have
been successfully controlled and eliminated using such prompt, targeted testing and isolation so
as to avert serious and costly national lockdowns repeatedly.

In conclusion, the pandemic has fundamentally shaped the whole world and reminds us
of the importance of pandemic preparedness and global health management. Worst of all are
discrimination and hate crimes around the globe [67]. Large-scale cooperation is urgently needed
to solve many challenging issues facing our common humanity. Fighting this pandemic is yet
another wake-up call for that.

4. Methods and model

(a) Model description
Our modelling framework builds on multi-scale behavioural epidemiological spreading
processes that incorporate mobility patterns [29,30,37] of inter-province migrations (which affect
the spatial spreading among provinces). Specifically, we consider a susceptible-exposed-infected-
recovered (SEIR) model in a metapopulation structure with migration. Using other network
epidemiological models may enable us to provide a more fine-grained description of the epidemic
spreading process; however, doing so could lead to overfitting issues due to larger numbers of
model parameters. Moreover, as our aggregate mobility data is on the level of provinces, the
SEIR compartment model is well suited for our data-driven approach as detailed in the electronic
supplementary material. The systems of ODEs describe the dynamics in continuous time t, that
is, days since the disease outbreak:

dSi(t)
dt

= −βi(t)Si(t)
Ii(t)
Ni(t)

−
∑
j,j�=i

αij(t)Si(t) +
∑
j,j�=i

αji(t)Sj(t);

dEi(t)
dt

= βi(t)Si(t)
Ii(t)
Ni(t)

− σi(t)Ei(t) −
∑
j,j�=i

αij(t)Ei(t) +
∑
j,j�=i

αji(t)Ej(t);

dIi(t)
dt

= σi(t)Ei(t) − γi(t)Ii(t)

and
dRi(t)

dt
= γi(t)Ii(t).
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Here, the subscript i refers to the ith compartment on the provincial level. Ni(t) = Si(t) +
Ei(t) + Ii(t) + Ri(t) is the total population size of compartment i at time t.

∑
j,j�=i αij(t)[Si(t) + Ei(t)]

is the total outflow from compartment i to other compartments, and
∑

j,j�=i αji(t)[Si(t) + Ei(t)] is
the total inflow to compartment i from other compartments. To parameterize migration flows
between compartments, we use the real provincial level mobility data from the Baidu Map
service, which provides aggregate level tracking of domestic travels on a daily basis. The impact
of lockdowns and travel restrictions on aggregate behavioural responses/changes that lead to
transmission reductions is characterized by the province-specific transmission rate βi(t). More
detailed modelling and data analysis can be found in the electronic supplementary material.

Epidemiological model parameters

— unit of time t: day.
— βi(t): transmissibility rate, which can be time dependent, due to lockdown efforts (home

quarantine and travel restrictions) [68].
— 1/σi(t): incubation period, which ranges from 1 to 14 days [35,36].
— 1/γi(t): number of days remaining infectious, which ranges from 1 to 14 days [69].
— R0 = βi(0)/γi(t): the initial values of R0 are bounded within 1.4 ∼ 4 [70,71].

(i) Uncertainty quantification and sensitive analysis

We apply the dual annealing algorithm to perform a nonlinear least-square fitting procedure
for estimating time-varying epidemiological parameters, denoted by a vector θ̂ , combined
with real mobility data. We further calculate the covariance matrix cov(θ̂) = s2(F′F)−1, with F =
∂f (θ )/∂θ |

θ=θ̂
, and hence standard errors of the estimated parameters (the diagonal elements of

θ̂ ). The covariance matrix contains complete information about the uncertainty of parameter
estimations. Following a Student’s t-distribution, the confidence interval at (1 − 2α) significance

is given by θ̂1−2α = θ̂ ± tαn−p

√
diag cov(θ̂ ) (see, e.g. the uncertainty quantification for our predicted

curve in electronic supplementary material, Fig. S11, where the uncertainty of prediction, denoted
by the shaded area, propagates as a function of the mean behaviour of the spreading dynamics).

(b) Datasets
Mobility data are obtained from Baidu (https://qianxi.baidu.com). COVID-19 data are collected
and curated by DXY and archived at COVID-19 Infection Time Series Data Warehouse (https://
github.com/BlankerL/DXY-COVID-19-Data).

(c) Open code
Source code is available at the GitHub repository (https://github.com/fudab/China-COVID-
19-mobility). An interactive website can be found at Fu Lab (https://fudab.github.io/covid-19/
china).
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com/fudab/China-COVID-19-mobility). All the data and analysis pertaining to this work have been included
in the main text.
Authors’ contributions. X.C.: conceptualization, data curation, formal analysis, funding acquisition, investigation,
methodology, resources, software, validation, visualization, writing—original draft, writing—review and
editing; F.F.: conceptualization, funding acquisition, methodology, project administration, supervision,
writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Competing interests. We declare we have no competing interests.

https://qianxi.baidu.com
https://github.com/BlankerL/DXY-COVID-19-Data
https://github.com/BlankerL/DXY-COVID-19-Data
https://github.com/fudab/China-COVID-19-mobility
https://github.com/fudab/China-COVID-19-mobility
https://fudab.github.io/covid-19/china
https://fudab.github.io/covid-19/china
https://github.com/fudab/China-COVID-19-mobility
https://github.com/fudab/China-COVID-19-mobility


12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220040

..........................................................

Funding. X.C. gratefully acknowledges the generous faculty startup fund support by BUPT. F.F. is grateful
for support from the Bill & Melinda Gates Foundation (award no. OPP1217336), the NIH COBRE Program
(grant no. 1P20GM130454), the Neukom CompX Faculty grant, the Dartmouth Faculty Startup Fund and the
Walter & Constance Burke Research Initiation Award.
Acknowledgements. We thank Timmy Ma, Xin Wang and Daniel Escudero for helpful discussions when
initializing this work. F.F. is indebted to Dan Rockmore and Nicholas Christakis for stimulating discussions
on pandemic modelling and data analysis.

References
1. Lloyd-Smith JO. 2017 Predictions of virus spillover across species. Nature 546, 603–604.

(doi:10.1038/nature23088)
2. Royce K, Fu F. 2020 Mathematically modeling spillovers of an emerging infectious zoonosis

with an intermediate host. PLoS ONE 15, e0237780. (doi:10.1371/journal.pone.0237780)
3. Petersen LR, Jamieson DJ, Powers AM, Honein MA. 2016 Zika virus. N. Engl. J. Med. 374,

1552–1563. (doi:10.1056/NEJMra1602113)
4. Leroy EM et al. 2005 Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576. (doi:10.1038/

438575a)
5. Zhu N et al. 2020 A novel coronavirus from patients with pneumonia in China, 2019. N. Engl.

J. Med. 382, 727–733. (doi:10.1056/NEJMoa2001017)
6. Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, Cowling BJ, Lipsitch M,

Leung GM. 2020 Estimating clinical severity of COVID-19 from the transmission dynamics in
Wuhan, China. Nat. Med. 26, 506–510. (doi:10.1038/s41591-020-0822-7)

7. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020 The proximal origin of
SARS-CoV-2. Nat. Med. 26, 450–452. (doi:10.1038/s41591-020-0820-9)

8. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. 2020 A novel coronavirus
emerging in China? Key questions for impact assessment. N. Engl. J. Med. 382, 692–694.
(doi:10.1056/NEJMp2000929)

9. Grein J et al. 2020 Compassionate use of remdesivir for patients with severe COVID-19. N.
Engl. J. Med. 382, 2327–2336. (doi:10.1056/NEJMoa2007016)

10. Hellewell J et al. 2020 Feasibility of controlling COVID-19 outbreaks by isolation of cases and
contacts. Lancet Glob. Health 8, e488–e496. (doi:10.1016/S2214-109X(20)30074-7)

11. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, Parker M, Bonsall D,
Fraser C. 2020 Quantifying SARS-CoV-2 transmission suggests epidemic control with digital
contact tracing. Science 368, eabb6936. (doi:10.1126/science.abb6936)

12. Anderson RM, May RM. 1992 Infectious diseases of humans: dynamics and control. Oxford, UK:
Oxford University Press.

13. Hethcote HW. 2000 The mathematics of infectious diseases. SIAM Rev. 42, 599–653.
(doi:10.1137/S0036144500371907)

14. Levin BR, Lipsitch M, Bonhoeffer S. 1999 Population biology, evolution, and infectious
disease: convergence and synthesis. Science 283, 806–809. (doi:10.1126/science.283.5403.806)

15. Salathé M, Bonhoeffer S. 2008 The effect of opinion clustering on disease outbreaks. J. R. Soc.
Interface 5, 1505–1508. (doi:10.1098/rsif.2008.0271)

16. Bauch CT, Galvani AP. 2013 Social factors in epidemiology. Science 342, 47–49.
(doi:10.1126/science.1244492)

17. Bloom BR, Marcuse E, Mnookin S. 2014 Addressing vaccine hesitancy. Science 344, 339-339.
(doi:10.1126/science.1254834)

18. Wadman M, You J. 2017 The vaccine wars. Science 356, 364–365. (doi:10.1126/science.
356.6336.364)

19. Fu F, Christakis NA, Fowler JH. 2017 Dueling biological and social contagions. Sci. Rep. 7, 1–9.
(doi:10.1038/s41598-016-0028-x)

20. Chen X, Fu F. 2019 Imperfect vaccine and hysteresis. Proc. R. Soc. B 286, 20182406.
(doi:10.1098/rspb.2018.2406)

21. Bartlett MS. 1957 Measles periodicity and community size. J. R. Stat. Soc. Ser. A (General) 120,
48–70. (doi:10.2307/2342553)

22. Bolker B, Grenfell BT. 1995 Space, persistence and dynamics of measles epidemics. Phil. Trans.
R. Soc. Lond. B 348, 309–320. (doi:10.1098/rstb.1995.0070)

23. Elliott P, Wartenberg D. 2004 Spatial epidemiology: current approaches and future challenges.
Environ. Health Perspect. 112, 998–1006. (doi:10.1289/ehp.6735)

http://dx.doi.org/10.1038/nature23088
http://dx.doi.org/10.1371/journal.pone.0237780
http://dx.doi.org/10.1056/NEJMra1602113
http://dx.doi.org/10.1038/438575a
http://dx.doi.org/10.1038/438575a
http://dx.doi.org/10.1056/NEJMoa2001017
http://dx.doi.org/10.1038/s41591-020-0822-7
http://dx.doi.org/10.1038/s41591-020-0820-9
http://dx.doi.org/10.1056/NEJMp2000929
http://dx.doi.org/10.1056/NEJMoa2007016
http://dx.doi.org/10.1016/S2214-109X(20)30074-7
http://dx.doi.org/10.1126/science.abb6936
http://dx.doi.org/10.1137/S0036144500371907
http://dx.doi.org/10.1126/science.283.5403.806
http://dx.doi.org/10.1098/rsif.2008.0271
http://dx.doi.org/10.1126/science.1244492
http://dx.doi.org/10.1126/science.1254834
http://dx.doi.org/10.1126/science.356.6336.364
http://dx.doi.org/10.1126/science.356.6336.364
http://dx.doi.org/10.1038/s41598-016-0028-x
http://dx.doi.org/10.1098/rspb.2018.2406
http://dx.doi.org/10.2307/2342553
http://dx.doi.org/10.1098/rstb.1995.0070
http://dx.doi.org/10.1289/ehp.6735


13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220040

..........................................................

24. Colizza V, Pastor-Satorras R, Vespignani A. 2007 Reaction–diffusion processes and
metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282. (doi:10.1038/
nphys560)

25. Colizza V, Vespignani A. 2008 Epidemic modeling in metapopulation systems with
heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467.
(doi:10.1016/j.jtbi.2007.11.028)

26. Song C, Koren T, Wang P, Barabási AL. 2010 Modelling the scaling properties of human
mobility. Nat. Phys. 6, 818–823. (doi:10.1038/nphys1760)

27. Simini F, González MC, Maritan A, Barabási AL. 2012 A universal model for mobility and
migration patterns. Nature 484, 96–100. (doi:10.1038/nature10856)

28. Csáji BC, Browet A, Traag VA, Delvenne JC, Huens E, Van Dooren P, Smoreda Z,
Blondel VD. 2013 Exploring the mobility of mobile phone users. Physica A 392, 1459–1473.
(doi:10.1016/j.physa.2012.11.040)

29. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A. 2009 Multiscale mobility
networks and the spatial spreading of infectious diseases. Proc. Natl Acad. Sci. USA 106,
21 484–21 489. (doi:10.1073/pnas.0906910106)

30. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO. 2012
Quantifying the impact of human mobility on malaria. Science 338, 267–270. (doi:10.11
26/science.1223467)

31. Mateus AL, Otete HE, Beck CR, Dolan GP, Nguyen-Van-Tam JS. 2014 Effectiveness of travel
restrictions in the rapid containment of human influenza: a systematic review. Bull. World
Health Organ. 92, 868–880D. (doi:10.2471/BLT.14.135590)

32. Camitz M, Liljeros F. 2006 The effect of travel restrictions on the spread of a moderately
contagious disease. BMC Med. 4, 1–10. (doi:10.1186/1741-7015-4-32)

33. Chong KC, Zee BCY. 2012 Modeling the impact of air, sea, and land travel restrictions
supplemented by other interventions on the emergence of a new influenza pandemic virus.
BMC Infect. Dis. 12, 1–12. (doi:10.1186/1471-2334-12-309)

34. Lin Q et al. 2020 A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in
Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 93, 211–216.
(doi:10.1016/j.ijid.2020.02.058)

35. Li Q et al. 2020 Early transmission dynamics in Wuhan, China, of novel coronavirus–infected
pneumonia. N. Engl. J. Med. 382, 1199–1207. (doi:10.1056/NEJMoa2001316)

36. Bi Q et al. 2020 Epidemiology and Transmission of COVID-19 in Shenzhen China: analysis of
391 cases and 1,286 of their close contacts. MedRxiv.

37. Chinazzi M et al. 2020 The effect of travel restrictions on the spread of the 2019 novel
coronavirus (COVID-19) outbreak. Science 368, 395–400. (doi:10.1126/science.aba9757)

38. Aleta A, Hu Q, Ye J, Ji P, Moreno Y. 2020 A data-driven assessment of early travel restrictions
related to the spreading of the novel COVID-19 within mainland China. Chaos Solitons Fractals
139, 110068. (doi:10.1016/j.chaos.2020.110068)

39. Pan A et al. 2020 Association of public health interventions with the epidemiology of the
COVID-19 outbreak in Wuhan, China. Jama 323, 1915–1923. (doi:10.1001/jama.2020.6130)

40. Zhang J et al. 2020 Changes in contact patterns shape the dynamics of the COVID-19 outbreak
in China. Science 368, 1481–1486. (doi:10.1126/science.abb8001)

41. Lai S et al. 2020 Effect of non-pharmaceutical interventions to contain COVID-19 in China.
Nature 585, 410–413. (doi:10.1038/s41586-020-2293-x)

42. Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. 2020 Population flow drives spatio-temporal
distribution of COVID-19 in China. Nature 582, 389–394. (doi:10.1038/s41586-020-2284-y)

43. Sethi SP, Staats PW. 1978 Optimal control of some simple deterministic epidemic models.
J. Oper. Res. Soc. 29, 129–136. (doi:10.1057/jors.1978.27)

44. Wallinga J, van Boven M, Lipsitch M. 2010 Optimizing infectious disease interventions during
an emerging epidemic. Proc. Natl Acad. Sci. USA 107, 923–928. (doi:10.1073/pnas.0908491107)

45. Maharaj S, Kleczkowski A. 2012 Controlling epidemic spread by social distancing: do it well
or not at all. BMC Public Health 12, 1–16. (doi:10.1186/1471-2458-12-679)

46. Bolzoni L, Bonacini E, Soresina C, Groppi M. 2017 Time-optimal control strategies in SIR
epidemic models. Math. Biosci. 292, 86–96. (doi:10.1016/j.mbs.2017.07.011)

47. Huberts N, Thijssen J. 2020 Optimal timing of interventions during an epidemic. Available at
SSRN 3607048.

48. Morris DH, Rossine FW, Plotkin JB, Levin SA. 2021 Optimal, near-optimal, and robust
epidemic control. Commun. Phys. 4, 1–8. (doi:10.1038/s42005-021-00570-y)

http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1016/j.jtbi.2007.11.028
http://dx.doi.org/10.1038/nphys1760
http://dx.doi.org/10.1038/nature10856
http://dx.doi.org/10.1016/j.physa.2012.11.040
http://dx.doi.org/10.1073/pnas.0906910106
http://dx.doi.org/10.1126/science.1223467
http://dx.doi.org/10.1126/science.1223467
http://dx.doi.org/10.2471/BLT.14.135590
http://dx.doi.org/10.1186/1741-7015-4-32
http://dx.doi.org/10.1186/1471-2334-12-309
http://dx.doi.org/10.1016/j.ijid.2020.02.058
http://dx.doi.org/10.1056/NEJMoa2001316
http://dx.doi.org/10.1126/science.aba9757
http://dx.doi.org/10.1016/j.chaos.2020.110068
http://dx.doi.org/10.1001/jama.2020.6130
http://dx.doi.org/10.1126/science.abb8001
http://dx.doi.org/10.1038/s41586-020-2293-x
http://dx.doi.org/10.1038/s41586-020-2284-y
http://dx.doi.org/10.1057/jors.1978.27
http://dx.doi.org/10.1073/pnas.0908491107
http://dx.doi.org/10.1186/1471-2458-12-679
http://dx.doi.org/10.1016/j.mbs.2017.07.011
http://dx.doi.org/10.1038/s42005-021-00570-y


14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220040

..........................................................

49. Abakuks A. 1974 Optimal immunisation policies for epidemics. Adv. Appl. Probab. 6, 494–511.
(doi:10.2307/1426230)

50. Abakuks A. 1973 An optimal isolation policy for an epidemic. J. Appl. Probab. 10, 247–262.
(doi:10.2307/3212343)

51. Wickwire KH. 1975 Optimal isolation policies for deterministic and stochastic epidemics.
Math. Biosci. 26, 325–346. (doi:10.1016/0025-5564(75)90020-6)

52. Glaubitz A, Fu F. 2020 Oscillatory dynamics in the dilemma of social distancing. Proc. R. Soc.
A 476, 20200686. (doi:10.1098/rspa.2020.0686)

53. Reluga TC. 2010 Game theory of social distancing in response to an epidemic. PLoS Comput.
Biol. 6, e1000793. (doi:10.1371/journal.pcbi.1000793)

54. Neumayer E, Pfaff K, Pluemper T. 2021 Protest against COVID-19 containment policies in
European countries. Available at SSRN 3844989.

55. Born B, Dietrich A, Müller GJ. 2020 Do lockdowns work? A counterfactual for Sweden. Covid
Econ. 16, 1–22.

56. Brodeur A, Clark AE, Fleche S, Powdthavee N. 2021 COVID-19, lockdowns and well-being:
evidence from Google trends. J. Publ. Econ. 193, 104346. (doi:10.1016/j.jpubeco.2020.104346)

57. Perra N. 2021 Non-pharmaceutical interventions during the COVID-19 pandemic: a review.
Phys. Rep. 913, 1–53. (doi:10.1016/j.physrep.2021.02.001)

58. Bai Y. 2018 See http://society.people.com.cn/n1/2018/0315/c1008-29869526.html (accessed
6 December 2021).

59. Kruse T, Strack P. 2020 Optimal control of an epidemic through social distancing. Cowles
Foundation Discussion Paper No. 2229. (doi:10.2139/ssrn.3583186)

60. Editors. 2020 Behaviour fuels, and fights, pandemics. Nat. Hum. Behav. 4, 435.
(doi:10.1038/s41562-020-0892-z)

61. Hardin G. 1968 The tragedy of the commons: the population problem has no technical
solution; it requires a fundamental extension in morality. Science 162, 1243–1248.
(doi:10.1126/science.162.3859.1243)

62. Lipsitch M, Swerdlow DL, Finelli L. 2020 Defining the epidemiology of COVID-19? Studies
needed. N. Engl. J. Med. 382, 1194–1196. (doi:10.1056/NEJMp2002125)

63. Fong MW. 2009 Digital divide between urban and rural regions in China. Electron. J. Inf. Syst.
Dev. Ctries 36, 1–12. (doi:10.1002/(ISSN)1681-4835)

64. Poushter J. 2017 China outpaces India in internet access, smartphone ownership. Pew
Research Center, 16 March.

65. Van Bavel JJ et al. 2020 Using social and behavioural science to support COVID-19 pandemic
response. Nat. Hum. Behav. 4, 460–471. (doi:10.1038/s41562-020-0884-z)

66. Karatayev VA, Anand M, Bauch CT. 2020 Local lockdowns outperform global lockdown on
the far side of the COVID-19 epidemic curve. Proc. Natl Acad. Sci. USA 117, 24 575–24 580.
(doi:10.1073/pnas.2014385117)

67. Reny TT, Barreto MA. 2020 Xenophobia in the time of pandemic: othering, anti-Asian
attitudes, and COVID-19. Polit. Groups Identities 8, 1–24. (doi:10.1080/21565503.2017.1411282)

68. Verity R et al. 2020 Estimates of the severity of COVID-19 disease. MedRxiv.
69. He X et al. 2020 Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat.

Med. 26, 672–675. (doi:10.1038/s41591-020-0869-5)
70. Abbott S et al. 2020 Temporal variation in transmission during the COVID-19 outbreak.

CMMID Repos. 2, 1–1. (https://cmmid.github.io/topics/covid19/global-time-varying-
transmission.html)

71. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner NW, Ke R. 2020 The novel
coronavirus, 2019-nCoV, is highly contagious and more infectious than initially estimated.
Preprint. (https://arxiv.org/abs/2002.03268)

http://dx.doi.org/10.2307/1426230
http://dx.doi.org/10.2307/3212343
http://dx.doi.org/10.1016/0025-5564(75)90020-6
http://dx.doi.org/10.1098/rspa.2020.0686
http://dx.doi.org/10.1371/journal.pcbi.1000793
http://dx.doi.org/10.1016/j.jpubeco.2020.104346
http://dx.doi.org/10.1016/j.physrep.2021.02.001
http://society.people.com.cn/n1/2018/0315/c1008-29869526.html
http://dx.doi.org/10.2139/ssrn.3583186
http://dx.doi.org/10.1038/s41562-020-0892-z
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1056/NEJMp2002125
http://dx.doi.org/10.1002/(ISSN)1681-4835
http://dx.doi.org/10.1038/s41562-020-0884-z
http://dx.doi.org/10.1073/pnas.2014385117
http://dx.doi.org/10.1080/21565503.2017.1411282
http://dx.doi.org/10.1038/s41591-020-0869-5
https://cmmid.github.io/topics/covid19/global-time-varying-transmission.html
https://cmmid.github.io/topics/covid19/global-time-varying-transmission.html
https://arxiv.org/abs/2002.03268

	Introduction
	Results
	Discussion and conclusion
	Methods and model
	Model description
	Datasets
	Open code

	References

