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Numerical and experimental 
analysis of Lagrangian dispersion 
in two‑dimensional chaotic flows
Giovanni La Forgia1, Davide Cavaliere2, Stefania Espa3, Federico Falcini2 & 
Guglielmo Lacorata2,4*

We present a review and a new assessment of the Lagrangian dispersion properties of a 2D model 
of chaotic advection and diffusion in a regular lattice of non stationary kinematic eddies. This 
model represents an ideal case for which it is possible to analyze the same system from three 
different perspectives: theory, modelling and experiments. At this regard, we examine absolute 
and relative Lagrangian dispersion for a kinematic flow, a hydrodynamic model (Delft3D), and a 
laboratory experiment, in terms of established dynamical system techniques, such as the measure 
of (Lagrangian) finite-scale Lyapunov exponents (FSLE). The new main results concern: (i) an 
experimental verification of the scale-dependent dispersion properties of the chaotic advection and 
diffusion model here considered; (ii) a qualitative and quantitative assessment of the hydro-dynamical 
Lagrangian simulations. The latter, even though obtained for an idealized open flow configuration, 
contributes to the overall validation of the computational features of the Delft3D model.

Nonlinear dynamical features, like chaos or turbulence, are known to play a major role as physical mechanisms 
of transport and dispersion of Lagrangian trajectories in fluids like, e.g., the ocean or the atmosphere. Chaotic 
advection, or Lagrangian chaos, is quite common in natural dynamical systems since it is present even in regular, 
i.e. non turbulent, velocity fields1–4.

Numerical simulations of a Lagrangian tracer drifting away on the ocean surface, for instance, are normally 
affected by a finite predictability time, due to the forecast error sensitivity to both initial conditions and uncer-
tainties in the model dynamics5–7 (e.g., finite resolution, parameter values, etc.). When dealing with Lagrangian 
trajectory models, in general, two major issues arise: (i) assessing the accuracy of the numerical trajectories; (ii) 
studying possible solutions to optimize the model. These two aspects are the foundations of a recently introduced 
Lagrangian validation methodology, based on a dynamical systems approach7,8.

Hydro-dynamical models are usually subject to Eulerian-type validations consisting, substantially, in the 
comparison of a vector or scalar field computed by the model with the corresponding field obtained from 
experimental or observational data9. Evaluating the accuracy of Lagrangian trajectory simulations requires an 
independent direct approach: even small differences, indeed, between two non linear velocity fields, e.g. in the 
small-scale energy spectrum or in the time variability frequency, may lead to completely different trajectories 
evolution3,7,8.

In this context, it is worth stressing that, unlike the case of large-scale models of ocean surface circulation, for 
which numerical trajectories can be compared directly to satellite-tracked real drifter data8,10,11, the issue affect-
ing hydrodynamic models, normally used for small-scale coastal applications and bounded flow configurations, 
is the paucity of experimental or observational Lagrangian data, essential to test the consistency of numerical 
trajectories. In spite of the growing interest in studies concerning, e.g., the dispersion of pollutants, nutrients or 
sediments in coastal areas and river-sea interface systems12–15, the validation of hydro-dynamical Lagrangian 
simulations still remains an open question.

The kinematic model, here representing the case study, is a variation of the well known Rayleigh–Bénard 
convection model, introduced by Solomon and Gollub16. The model stream-function defines a time-dependent, 
spatially periodic, 2D regular lattice of square cells. Here the stream-function plays the role of Hamiltonian 
function: in stationary conditions, two-dimensional trajectory motion is necessarily regular and evolves along 
closed stable orbits inside the cells; for weak time-dependent perturbations, a thin chaotic layer forms around the 
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separatrices while the innermost orbits are kept regular by the KAM tori; for a suitable choice of the perturbative 
parameters, all orbits become open and unstable and chaos propagates to all available space3,17.

In the latter case, trajectory pair dispersion is characterized by two major regimes: exponential separation 
(below the cell size) and standard diffusion (above the cell size). This scenario appears quite often when analyzing 
real ocean Lagrangian drifter dispersion (possibly enriched by the presence of a third, mesoscale, super-diffusive 
regime due to turbulence)11.

Recently, there has been a renewed interest in the use of chaotic advection and diffusion systems as models 
of Lagrangian turbulence18, which are proved to be very effective, e.g., as kinematic models of “sub-grid”, unre-
solved velocity modes in large-scale numerical trajectory simulations computed from ocean circulation fields7,8.

While this class of models have been widely reviewed and analyzed in numerous theoretical and computa-
tional studies, laboratory experiments remain, nevertheless, essential to establish physical relevance, validity, 
and reproducibility of predicted phenomena4,19–21. At this regard, we present here a full analysis of absolute and 
relative dispersion properties of our chaotic advection and diffusion case study, examined from three different 
perspectives: kinematic flow, hydrodynamic model, and laboratory tank experiment.

Results
Large datasets of trajectory pairs ( ∼104 ) were evaluated for each of the three systems under consideration, i.e., 
kinematic convection model, hydrodynamic model and laboratory tank experiment, hereinafter referred to as 
Kin2D, Delft3D and LabExp, respectively.

For all systems, one-particle and two-particle dispersion statistics were analyzed in terms of dynamical sys-
tems techniques: variance of particle displacement with respect to the release position and Lagrangian velocity 
auto-correlation functions, as regards the absolute dispersion, and finite-scale Lyapunov exponents (FSLE), as 
measure of the scale-dependent relative dispersion rates (see “Methods” section for more details).

From the data analysis, some important physical characteristics like, e.g., auto-correlation time scale, spatial 
correlation length, Lagrangian maximum Lyapunov exponent, diffusion coefficient, were evaluated and dis-
cussed to establish a qualitative and quantitative comparison between models and experiments. At this regard, 
it is necessary to give a kind of “operating definition” of these physical quantities, valid for all systems analyzed 
in the present work.

We agree to consider the Lagrangian auto-correlation time scale, τC , as the order of magnitude of the time 
interval after which the auto-correlation function lies definitely below a (conventionally chosen) threshold of 
±20% of the initial value. This time scale corresponds, approximately, to the knee of the second-order absolute 
dispersion moment, at the transition between ballistic and diffusive regime. The spatial correlation scale, LC , is 
defined as the pair separation scale (as order of magnitude) corresponding to the knee of the FSLE curve, at the 
transition between chaos and diffusion in the relative dispersion process. The Lagrangian maximum Lyapunov 
exponent, �L , is estimated as the plateau level of the FSLE at small separation scales22. The effective (eddy) dif-
fusion coefficient, DE , is given, as order of magnitude, by the value of the coefficient of the δ−2 law that best fits 
the FSLE data at large separation scales23.

Here below, we report a brief introduction of the three systems and the results obtained for each of them.

Kinematic eddy model.  As previously mentioned, our case study consists of a 2D regular lattice of non 
stationary kinematic eddies (Kin2D, hereafter). This type of model has been recently developed and applied, in a 
multi-scale version, to simulate homogeneous and isotropic Lagrangian turbulence18 and as a sub-grid model of 
unresolved turbulent motions in Lagrangian simulations based on large-scale ocean current fields7,8,24.

The Kin2D velocity field components, u and v, are derived from a stream-function � according to the fol-
lowing equations:

where x1 and x2 are the spatial coordinates of a fluid particle, t is the time, and

where α is the maximum velocity magnitude and k = 2π/L is the wave-number associated to the wavelength L. 
The Hamiltonian structure of (1) ensures that the kinematic model is a 2D conservative dynamical system. The 
presence of time-dependent terms in the stream-function (2) is a necessary condition for chaotic advection1–3.

The kinematic velocity pattern is shaped like a 2D lattice of non-steady (i.e. subject to time periodic oscil-
lations) square cells, of size L/2, with alternate vorticity, Fig. 1 (upper panel). The model set up is such that the 
eddy size L/2 is equal to 1 km and the maximum speed α is equal to 1 m/s. Last, the time oscillation parameters 
of the stream function, ε and ω , are suitably chosen in order to have a full chaotic regime of the Lagrangian flow, 
see Table 1 for more details. In the numerical simulations, the integration time step of the kinematic trajectories 
is dtkin = 10 s, about 103 smaller than the expected Lagrangian characteristic time scale.

From a single-particle point of view, the system dynamics is statistically equivalent to a finite-time auto-
correlated Brownian motion, i.e., with a mean ballistic-like homogeneous transport for times shorter than the 
auto-correlation time, and a standard diffusion for times much longer than the auto-correlation time, Fig. 2 
(upper panels). Relative dispersion displays two regimes, Fig. 3 (top left panel), in accordance to the theoretical 
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expectation, Table 1: (i) exponential separation, corresponding to Lagrangian chaos, for scales below the cell 
size; (ii) asymptotic standard diffusion for scales above the cell size.

Figure 1.   Mean kinematic velocity field, assimilated as input wind forcing with 10 m/s peak value (upper 
pannel) and mean hydrodynamic velocity field with ∼ 1 m/s peak value (center panel) of the Delft3D 
simulation. Bottom panel: Lagrangian trajectories obtained from laboratory experiments.
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At the end of the analysis, we observe that: (i) the Lagrangian correlation length is of the order of the cell size, 
LC ∼1 km; (ii) the auto-correlation time scale is of the order of the eddy turnover time, τC ∼ 1 h; (iii) the maxi-
mum Lagrangian Lyapunov exponent is of the order of the inverse turnover time, �L ∼ 1 h −1 , and (iv) the asymp-
totic eddy-diffusion coefficient is of the order of the square cell size divided by the turnover time, DE ∼ L2C/τC.

Notice this correspondence between Lagrangian dispersion characteristics and flow parameters will be recur-
rent in all cases under examination.

Delft3D hydro‑dynamical model.  The Delft3D9,25 model is a well known computational tool for model-
ling hydrodynamics in cases where the horizontal length and time scales are significantly larger than the verti-
cal scales, e.g., shallow seas, coastal areas, estuaries, lagoons, rivers, and lakes12,26,27. For its characteristics, the 
Delft3D model is becoming a widespread modelling system in coastal oceanography and morpho-dynamics 
applications, thanks to its numerical stability and ease of use, compared to other platforms28–30.

In order to simulate a hydro-dynamical version of the kinematic model flow, the Kin2D velocity field is 
“strategically” assimilated as wind forcing in the Delft3D simulations. We decided to have a maximum hydro-
dynamical speed very close to the maximum kinematic velocity, α (1 m/s). This implies that the wind peak value 
must be set to 10α , because of the damping factor in the response of the hydrodynamic field to the forcing. The 
output hydro-dynamical current field displays a spatially periodic pattern of (non stationary) square convective 
cells, of size 1 km × 1 km, updated every �tout = 6 s on a grid with spatial resolution equal to �lgrid = 100 m, 
Fig. 1 (upper and center panels), of shape very similar to that of the kinematic field. At this regard, we would 
like to stress that the parameter set up of the numerical models is, to some extent, arbitrary, and it is not meant 
to represent properly a realistic system.

Hence, 104 numerical trajectory pairs were released with uniform distribution inside one cell in the middle of 
the domain. The initial pair separation was set to a small fraction, 10−2 , of the cell size, and the duration of the 
simulation was 20 days, enough to span a distance comparable with the domain size ( ∼ 20 km). The integration 
time step of the particle tracking was dthydro = 12 s, but for the analysis the time resolution of the trajectories 
was downgraded to 120 s.

Qualitatively, one-particle statistics is consistent with the scenario of time-correlated deterministic “Brown-
ian-like” diffusion, Fig. 2 (center panels), i.e. oscillating auto-correlation functions with exponentially decay-
ing envelope and transition, from ballistic regime to diffusive regime, of the second-order absolute dispersion 
moment in correspondence of the auto-correlation time scale; as regards two-particle statistics, the FSLE displays, 
as well, a transition between a nearly flat plateau at small separation scales and a typical diffusive scaling for 
large separation scales, in correspondence of the cell size, Fig. 3 (top right panel). Quantitatively, the Lagrangian 
characteristics turn out to be strictly related to the flow parameters, like cell size, velocity scale and eddy turnover-
time, Table 2. The small discrepancies with respect to the kinematic simulations (Figs. 2, 3) are presumably due 
to the finite resolution of the model grid.

Laboratory tank experiment.  The same type of 2D cellular flow was, as well, reproduced in laboratory 
experiments with an electromagnetically forced fluid in a non rotating tank (see Methods section for more 
details). By means of established experimental techniques, it was possible to reconstruct a large amount, of order 
∼ 104 , of simultaneous Lagrangian trajectory pairs, with a time resolution of dtexp = 0.2 s, and with an initial 
separation equal to a fraction ∼ 0.1 of the cell size, and long enough to last several multiples of the convective 
turnover time scale. A snapshot of the trajectory ensemble is plotted in Fig. 1 (lower panel).

As far as absolute dispersion is concerned, the data are consistent with the time-correlated diffusion scenario, 
i.e. a double scaling regime of the second-order moment, A2(t) ∼ t2 in the short times limit and A2(t) ∼ t in 
the long times limit, and auto-correlation functions shaped like damped oscillations, Fig. 2 (bottom panels). 
Here, slight differences with respect to the kinematic simulations are essentially due to the finite size of the tank, 
which limits the diffusive scale range and to the fact that the time oscillation of the fluid are controlled by a 
physical mechanism, which involves a smoother transition to diffusion. As regards relative dispersion, the FSLE 

Table 1.   Expected dispersion properties for the case study under consideration. Notice: τC is the correlation 
time, LC is the correlation length, σ 2 is the velocity variance, DE is the eddy-diffusion coefficient and 
�L is the maximum Lagrangian Lyapunov exponent, A2(t) and R2(t) are the second order moments 
of absolute and relative dispersion, respectively, and �(δ) is the FSLE. Relation to model parameters: 
τC ∼ 2πk−1/α , LC ∼ 2πk−1 , σ 2 ∼ α2 , DE ∼ 2πk−1α , �L ∼ kα/2π . The oscillation parameters are such that: 
ε/(2πk−1) ∼ 10% and ω ∼ α/(2πk−1) . For the current set-up, the trajectory flow evolves in a full chaotic 
regime, after the complete destruction of the KAM tori.

Absolute dispersion Relative dispersion

Time range

t ≪ τC A2(t) ∼ σ 2
t
2

R2(t) ∼ e 2�Lt

t ≫ τC A2(t) ∼ 2DEt R2(t) ∼ 4DEt

Scale range

δ ≪ LC – �(δ) ∼ �L

δ ≫ LC – �(δ) ∼ DEδ
−2



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7461  | https://doi.org/10.1038/s41598-022-11350-1

www.nature.com/scientificreports/

displays a very clean picture (considering that the data come from an experiment) consisting of a small-scale 
plateau, below the correlation length, and a diffusive ∼ δ−2 scaling above the correlation length of the flow, 
Fig. 3 (bottom left panel). Notice the overall scale range explored by the data ( ∼ 2 decades) is not as wide as in 
the model simulations, due to the limits imposed by the experimental apparatus, but still sufficient to evaluate 
the response of the system and the measure of physical quantities. At this regard, also in this case, the values of 
the Lagrangian characteristics measured from the data are consistent with the flow parameters, i.e., the spatial 
correlation length is of order ∼ 4 cm, i.e. the size of a cell around a magnet, the auto-correlation time scale is of 
order ∼ 10 s, i.e. the turnover time scale, the Lagrangian maximum Lyapunov exponent of order ∼ 10−1 s−1 and 
eddy-diffusion coefficient of order ∼ 1 cm2 s−1 , Table 2.

Figure 2.   Single trajectory statistics: absolute dispersion and Lagrangian velocity autocorrelation for Kin2D 
(upper panel), Delft3D (center panel) and LabExp (lower panel).
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As conclusive remark, at the end of the analysis of the three cases here considered, it is worth noting that, if 
the relative dispersion rates (FSLEs) are rescaled with respect to the spatial and temporal characteristic param-
eters of the corresponding system, Kin2D, Delft3D, and LabExp, the three curves collapse on one another, see 
Fig. 3, bottom right panel.

Discussion and conclusions
We considered a regular lattice of non-stationary kinematic eddies as an example of chaotic advection and 
diffusion system1–3. This class of systems has great relevance for theoretical studies concerning, e.g., the phe-
nomenology of Hamiltonian chaos or, in a multi-scale version, for Lagrangian turbulence modelling, as well as 
for applications such as sub-grid modelling of unresolved turbulent motions in Lagrangian simulations from 
large-scale circulation models.

The present work aimed at a new, thorough assessment of the Lagrangian dispersion properties of the 
chaotic advection and diffusion system, here considered, from three different perspectives: kinematic model, 

Figure 3.   Finite-Scale Lyapunov Exponents: Kin2D (top left), Delft3D (top right), LabExp (bottom left) and 
overlap of all the renormalized functions (bottom right).

Table 2.   Lagrangian characteristic quantities measured from the trajectory data analysis of the three systems: 
Kin2D, Delft3D and LabExp. See caption of Table 1 for explanation of the symbols.

τC LC �L DE

Kin2D 1 h 1 km 1.75 h−1 0.5 km2 h−1

Delft3D 1 h 1 km 1.5 h−1 0.4 km2 h−1

LabExp 10 s 4 cm 0.125 s−1 1.4 cm2 s−1
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hydrodynamic model and laboratory experiment. Large amounts of Lagrangian trajectory pairs were analyzed, 
for each of these systems, in order to evaluate absolute and relative dispersion characteristics.

The laboratory tank experiment was designed to analyze one-particle and two-particle dispersion on a square 
lattice of magnets, covering a scale range spanning from some fraction to some multiple of the cell size, in condi-
tions of full chaotic regime, i.e. after the destruction of any barrier or constraint to fluid particle motion due to 
the KAM tori. This is indeed the typical “working regime” of this kind of flow in many applications regarding 
Lagrangian modelling. At this regard, one of the novelties of the present study consists precisely in the experi-
mental verification of the chaotic advection and diffusion properties for the case study here considered.

As far as the “hydro-dynamical side” of the question is concerned, another novelty consists in the Lagrangian 
validation test on the accuracy of the Delft3D trajectory simulations. Coastal small-scale models are usually 
applied to more complex flow configurations than the case study here discussed. However, unlike large-scale 
ocean surface model trajectories, which can be compared with real ocean drifter data, the lack of experimental 
or observational Lagrangian data in these complex flow configurations for coastal and/or environmental engi-
neering applications prevents a rigorous validation of the numerical particle trajectories. On the other hand, 
the accuracy of Lagrangian simulations cannot be inferred only on the basis of Eulerian-type validations, since 
the existence of chaos implies that small differences between two velocity fields can lead to completely different 
trajectory evolution. The compromise was to select a simplified case study, but nevertheless displaying a non-
trivial phenomenology, for which it was possible to collect a large amount of experimental data for a qualitative 
and quantitative assessment of the Lagrangian numerical simulations. At this regard, we would like to stress that, 
despite the Lagrangian validation of the Delft3D model, here presented, applies to a laminar case, the results 
obtained represent a first step for future testing of the model trajectory accuracy in more complex, realistic flow 
configurations.

Methods
Theoretical background.  Let us define the order n moments of absolute and relative dispersion statistics 
as An(t) = �(x(t)− x(0))n� and Rn(t) = �(x(1)(t)− x

(2)(t))n� , respectively, where x = (x1, x2) is the position 
of one fluid particle; x(1) and x(2) are the positions of two particles of a pair, n is a positive integer and the aver-
age �·� is defined in the phase space of the system. In the present study, it will be sufficient to evaluate only the 
second moments, A2(t) and R2(t) . Given the velocity v = (v1, v2) of a fluid particle, we consider the Lagrangian 
auto-correlation defined by the functions

with n = 1, 2 . For stationary flows, Cn,n(t) depends only on the time lag t. Velocity auto-correlations relaxing to 
zero within a finite decay time scale tC are a necessary condition for particle dispersion to approach an asymp-
totic standard diffusive regime, i.e. A2(t) = 2Dt for t ≫ tC , where D = σ 2tC is the diffusion coefficient and σ 2 
is the velocity variance3.

As far as relative dispersion is concerned, the use of only time-dependent statistics is not recommendable. 
It is known that R2(t) , for instance, when averaged over a large number of particle pairs at fixed time, can be 
generally affected by spurious effects that compromise the correct description of the physics of the system22. At 
this regard, the finite-scale Lyapunov exponent (FSLE), formerly introduced in the dynamical system theory for 
the study of non-infinitesimal perturbations31,32, has now become the lead scale-dependent measure of relative 
dispersion in various Geophysical contexts7,8,10,11,15,22,23,33–36. If δ is a given separation scale, r > 1 is a constant 
amplification factor and τ(δ) is the first-exit time from shell δ to shell rδ , the FSLE, �(δ) , is defined as:

where the average 〈τ(δ)〉 is measured over all particle pairs at fixed separation scale22. In the limit of infinitesi-
mal separation, FSLE is expected to converge to a constant value, corresponding to the Lagrangian maximum 
Lyapunov exponent, i.e. �(δ) → �L ; in the large-scale limit, i.e. if particle separation grows beyond the maxi-
mum correlation length of the flow, FSLE is expected to approach a standard diffusive scaling, i.e. �(δ) ∼ δ−2 . 
Henceforth, in all FSLE computations, the constant amplification ratio between consecutive scales will be set 
to r =

√
2 , if not otherwise specified. The range of separation scales, δn = rn−1δmin , with n = 1, 2, . . . ,Nmax , 

depends on data resolution and size of the system. It has to be stressed that, although from a theoretical point of 
view, there is an obvious connection between the scaling properties in the temporal and spatial domains, from 
an application point of view, the FSLE is specifically studied to better describe the physics of dispersion that is 
inherently a scale-dependent process.

As a final note, we recall the basic concepts about the evolution of a passive tracer in a non linear determin-
istic velocity field, according to the detailed review by Crisanti et al.3. The full advection–diffusion equation for 
a passive scalar � = �(x, t) in an incompressible velocity field v = v(x, t) with “small-scale” diffusivity χ is:

In our case, χ = 0 since we are considering a deterministic dynamics. Under certain hypotheses, depending on 
the form of v , Eq. (5) can be cast into a pure diffusion equation for the average value of � smoothed on scale l:

(3)Cn,n(t) = (�vn(t)vn(0)� − �vn�2)/(�v2n� − �vn�2)

(4)�(δ) =
ln(r)

�τ(δ)�
,

(5)
∂�

∂t
+ v · ∇� = χ∇2�
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where l is the maximum correlation length, or the maximum eddy size of the flow, in our case l ∼ L/2 (the kin-
ematic eddy size); �·�l represents the coarse-grain average on scale l; DE is defined as the effective (eddy) diffusion 
coefficient which accounts for the cumulative effects of the advective field on long range diffusion (even for χ = 0 , 
if the Lagrangian flow is chaotic), and can be directly measured from the asymptotic separation of the trajectories:

where the factor “4” in the denominator appears since R2(t) refers to relative dispersion. A 2D “random walk” 
on the lattice (due to the chaotic motion of the trajectories along the separatrices) is equivalent to a diffusion 
process, in the limit of spatial scales much larger than the correlation length and times much longer than the 
correlation time. Under these conditions, an estimate of the effective diffusion coefficient, on the basis of a dimen-
sional argument, is given by DE ∼ L2C/τC , where LC and τC are of the order of the eddy size and the turnover 
time scale, respectively3.

Delft3D.  The Delft3D 4 Suite (structured) modelling software9 combines hydrodynamics and particle track-
ing processes by using two interacting modules: Delft3D-FLOW and Delft3D-PART. The computed hydrody-
namic fields (Delft3D-FLOW) are used as input for the particle transport modelling (Delft3D-PART) by means 
of offline coupling. The Delft3D-FLOW module uses a finite difference grid and solves Reynolds Averaged 
Navier–Stokes equations (RANS) for an incompressible fluid in the Boussinesq approximation. It includes the 
horizontal momentum, continuity and transport equations, and a turbulence closure model37. In our specific 
case, we do not implement any model of turbulence and we impose zero horizontal eddy viscosity over the entire 
domain.

The domain consists of a square area 40 km × 40 km, with a horizontal spatial resolution equal to 100 m. The 
bottom is flat and is located at a constant depth of z = −0.5 m. The lateral walls are closed boundaries, with free 
slip conditions, and the initial water level is set to zero. The hydrodynamic field is forced by a time-dependent, 
spatially periodic wind field, formally identical to the Kin2D velocity field, with components defined by Eqs. 
(1) and (2). The time oscillation of the cells is driven by the wind oscillation, with oscillation amplitude equal to 
∼ 10% of the cell size, and oscillation period of the same order as the cell turnover time. The wind drag coefficient 
has constant value equal to 0.1. This means that a wind speed of ∼ 10 m/s generates water flow speeds of ∼ 1 m/s, 
Fig.  1 (upper and middle panels). So, the resulting hydrodynamic mean field is used as input for Delft3D-PART 
module, i.e. the particle tracking model. This model is based on the principle that the motion of dissolved (or 
particulate) substances in water can be described by a finite number of particles that are subject to flow-induced 
advection and, depending on the case, by horizontal and vertical diffusion (in our case this small-scale diffusion 
is set to zero). The advective part is solved with an analytical procedure that integrates a linearly interpolated 
hydrodynamic velocity field. As far as the Lagrangian simulations are concerned, the particle pairs (having the 
same density as the ambient water) were instantaneously released at mid-depth inside a cell located in the middle 
of the computational domain. The numerical integration of the particle trajectories was performed “off-line”, i.e. 
not simultaneous to the computation of the velocity fields. All particles were released one hour after the spin-up 
of the hydrodynamic computation. As a conclusive remark, we would like to stress that, since we considered 
particle advection due only to the mean field, i.e. filtering out the turbulent components, the Reynolds number 
of the flow is substantially null.

Experimental data.  The experimental set-up, Fig. 4, consists of a square plexiglas tank of side L0 = 50 cm 
and height H0 = 5 cm, partially filled with a thin layer of an electrolyte solution of water and NaCl (density 
ρ ∼ 1060 g/l, concentration of NaCl = 50 g/l). The flow is generated by means of electromagnetic forcing, that is, 
via the Lorentz force arising from the interaction of electric and magnetic fields38.

This type of fluid forcing represents a valid tool to easily simulate and control 2D (or almost 2D) flows since 
it allows to study different configurations and patterns by varying salinity, intensity of the current, and magnets’ 
positioning; similar arrangements have widely used to study diffusion and mixing properties in 2D flows19,20,39 
and 2D turbulence40. The system’s rotation can be simulated making the setup particularly suitable to study 
atmospheric and oceanic flows41–44.

In general, intensity and stability of the vortices depend on the applied forcing; in continuously forced condi-
tions, the subsequent nonlinear interaction of the flow structures may result in quasi-2D turbulence. In our set 
of experiments, we considered two orthogonal electric currents I and I ′ , driven in the horizontal x−y (meas-
urements) plane and a magnetic field along the z-(vertical) direction. In particular, currents were generated by 
connecting two couples of titanium electrodes ( Ex ,Ey ) to a power supply (Fig. 4): along the x-axis the current 
I is constant in time while, in the orthogonal direction, I ′ varies according to a sinusoidal law of frequency f. 

(6)
∂���l
∂t

= DE∇2���l

(7)DE = lim
t→∞

R2(t)

4t
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The values considered in these experiments varied, respectively, in the ranges: 2 A ≤ I − I ′ ≤ 4 A, 0.04 Hz 
≤ f ≤ 0.1 Hz.

To generate the magnetic field we placed an array of rectangular permanent (neodymium) magnets on a 
metallic plate located 5mm underneath the tank bottom. Dimensions of the magnets and the strength of the 
magnetic field, measured above the magnets surface, are Lx × Ly ×Hm = 20× 10× 5mm3 and B ∼ 1232 G, 
respectively. They were arranged with alternating polarity along x and y axis in the horizontal plane and spaced 
of 5 mm along both directions (i.e. the centre-centre distance is lx = 15 mm, ly = 25 mm). With this configu-
ration, when the current I ′ is null, the flow pattern is characterized by opposite-signed vortices, clockwise or 
anti-clockwise according to the phase of the resulting Lorentz force, whose horizontal length scale is related to 
the magnets’ inter-distance and to their size. When I ′ is switched on, the resulting flow pattern is consistent with 
the time oscillating stream-function defined in (2).

The fluid flow is measured by using a Feature Tracking (FT) image analysis, a technique that allows for 
a description of the fluid motion in a Lagrangian framework45. To this aim, the fluid surface is seeded with 
buoyant styrene particles (density ∼ 1 g/cm3 , mean diameter dp = 50 µ m; tracers are supposed to be passively 
advected by the flow) and lit with two lateral lamps to gain a high contrast between the white particles and the 
black bottom. After the forcing is activated, flow images are acquired by a video camera perpendicular to the 
tank (dimension of the framed area: 1000× 1000 , acquisition rate 20−25 fps). Image processing is achieved in 
three subsequent steps: (i) pre-processing aimed at removing the background and improving image contrast; (ii) 
particle detection and tracking to obtain the flow description; (iii) post-processing to obtain the relevant flow 
parameters. The sparse velocity vectors (i.e. along each trajectory) are detected in each frame of the acquired 
time sequence. Subsequently, they can be interpolated onto a regular grid and the time evolution of the Eulerian 
flow field and all the derived quantities (i.e. vorticity, kinetic energy, etc.) can be obtained as well, Fig. 5. Unlike 
numerical models, here the turbulent components of the flow cannot be filtered out from the mean field. An 
estimate of the Reynolds number can be obtained by multiplying typical size, ∼ O(1) cm, and rotation velocity, 
∼ O(1) cm/s, of the eddies, divided by the kinematic viscosity of the fluid, ∼ 10−6 m2/s: Re ∼ O(102 ), far below 
the critical threshold for the onset of fully developed turbulence.

Figure 4.   Experimental apparatus: top (a) and side (b) view; red and blue correspond to opposite (N–S) 
polarity; lx and ly represent the magnets’ inter-distance along the x and y direction; currents I and I ′ are 
generated by the electrodes Ex and Ey , respectively.
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Data availability
The datasets used and/or analysed during this study are available from the corresponding author on reasonable 
request.
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