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Abstract

Motivation: Record Linkage has versatile applications in real-world data analysis contexts, where several datasets
need to be linked on the record level in the absence of any exact identifier connecting related records. An example
are medical databases of patients, spread across institutions, that have to be linked on personally identifiable entries
like name, date of birth or ZIP code. At the same time, privacy laws may prohibit the exchange of this personally
identifiable information (PII) across institutional boundaries, ruling out the outsourcing of the record linkage task to
a trusted third party. We propose to employ privacy-preserving record linkage (PPRL) techniques that prevent, to
various degrees, the leakage of PII while still allowing for the linkage of related records.

Results: We develop a framework for fault-tolerant PPRL using secure multi-party computation with the medical re-
cord keeping software Mainzelliste as the data source. Our solution does not rely on any trusted third party and all
PII is guaranteed to not leak under common cryptographic security assumptions. Benchmarks show the feasibility of
our approach in realistic networking settings: linkage of a patient record against a database of 10 000 records can be
done in 48 s over a heavily delayed (100 ms) network connection, or 3.9 s with a low-latency connection.

Availability and implementation: The source code of the sMPC node is freely available on Github at https://github.
com/medicalinformatics/SecureEpilinker subject to the AGPLv3 license. The source code of the modified
Mainzelliste is available at https://github.com/medicalinformatics/MainzellisteSEL.

Contact: sebastian.stammler@cysec.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In medical research, many questions can only be addressed by
combining data from different research institutions and clinics.
New correlations between diseases and medical indications require
combining data usually originating from different sources, such as
genomic data, laboratory values or clinical data. In particular for
rare diseases, individual treatment facilities will generally not have
enough cases to be able to draw statistically significant conclu-
sions. For this purpose, it is essential that data stored at different
locations for a given patient are correctly linked (referred to as

‘record linkage’). At the same time, it is necessary to safeguard
the patient’s privacy and manage the data according to applicable
data protection laws (Eurpean Parliament and Council, 2016). In
particular, personal patient data may not be stored or exchanged
between different data sources across organizations without a
sound legal basis, usually a patient’s informed consent (Vatsalan
et al., 2013).

Patient data stored in databases can be considered to consist of
two components, namely (i) the identity data (IDAT, e.g. given
name, surname, date of birth) and (ii) the medical data (MDAT). In
this article, we will only be considering record linkage using
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information from the IDAT. One cannot always assume that patient
data will be always complete and free of errors. Nonetheless, we
would like to be able to match patient data across datasets wherever
possible. In 1969, Fellegi and Sunter published the first mathematic-
al description of record linkage, the process of pairwise comparison
of records from two sets of records to find the pairs that likely repre-
sent identical entities (Fellegi and Sunter, 1969). The use of such re-
cord linkage methods, employing plaintext identifying data, is well
established in the domain of patient data (Winkler, 2014).
However, given that the two sets of patient data may be at geo-
graphically separated and legally independent institutions, it is clear
that plaintext patient data will need to leave at least one of the sites
for the comparison to be made, an obvious confidentiality issue.

To mitigate this problem, a number of techniques were devel-
oped, known as Privacy-Preserving Record Linkage (PPRL) (Brown
et al., 2017). These techniques transform the IDAT in such a way as
to make the identification of the patient difficult, but still allow re-
cord linkage. One type of PPRL is based on ‘Bloom filters’ (Schnell
et al., 2009; Vatsalan et al., 2013), which allow error-tolerant link-
age of hashed identifying data. This approach has been implemented
in the Mainzelliste, an open-source software (Lablans et al., 2015)
used for pseudonymization and depseudonymization of patient
IDAT and the administration of multiple pseudonyms. For reidenti-
fication of patients it uses a record linkage mechanism, based on the
EpiLink algorithm (Contiero et al., 2005), which allows for fault-
tolerant patient matching. Mainzelliste is widely used in various
medical research networks (Lablans et al., 2018; Miracum, 2019),
patient registries (Burkhart and Wiese, 2015; Muscholl et al., 2014),
a radiotherapy infrastructure for multicentric studies (Skripcak
et al., 2016), centralized biobanks (Bernemann et al., 2016) and
commercial software (Climedo, 2019; iAS interActive Systems
GmbH, 2019; Link, 2019).

However, even when using Bloom filters, identity data—albeit in
encrypted form—is still being stored in a central location and can, in
principle, be misused for unauthorized reidentification. In fact,
many Bloom filter-based solutions are vulnerable to frequency and
cryptanalysis attacks (Christen et al., 2017; Vatsalan et al., 2017).
Although a recent version is claimed to be secure against all current-
ly known exploits (Schnell and Borgs, 2018), it can be expected, as
with any computer system (Zabicki and Ellis, 2017), that new
attacks could be devised to circumvent these improvements.

An optimal record linkage process would completely avoid stor-
ing IDAT—in any form—outside of the original treatment facilities
and, thus, render such attacks impossible. Ideally, none of the record
linkage parties would obtain any new information from the linkage
process. This is the promise of Secure Multi-Party Computation
(sMPC). This technique is based on the principle that in a computa-
tion performed across multiple parties, each participating party only
knows their own input and the result of the given computation
(Vatsalan et al., 2013).

In this article, we describe the design and implementation of
Mainzelliste Secure EpiLinker (MainSEL), a variant of sMPC inte-
grated as an extension into Mainzelliste. A record linkage setup
using MainSEL is comprised of a local data source, the local
MainSEL, a remote data source, the remote MainSEL and (optional-
ly) a linkage service. We developed a close integration into
Mainzelliste, to deploy a holistic ID management and linkage solu-
tion based on an open-source software that is already in wide use.

1.1 Related work
While being studied for over fifty years, record linkage algorithms
and techniques gained increased traction and interest in the last dec-
ade. In comparison to the classic publications of record linkage
(Fellegi and Sunter, 1969) the focus shifted toward PPRL techniques
to meet raising privacy requirements.

A number of techniques use Bloom filters and hash-based mes-
sage authentication codes (HMACs) to provide privacy in the link-
age process (Schnell et al., 2009), which has been proven insecure, if
additional security measures (e.g. usage of salts) are not taken (Kuzu
et al., 2011). Another active field of research is the scalability of
PPRL methods (Vatsalan et al., 2017) or the incorporation of

additional data types, like clinical and genomic data (Baker et al.,
2019). In the PPRL space, Laud and Pankova (2018) have recently
leveraged sMPC to perform record linkage without a trusted third
party for the iDASH 2017 competition. They used the Sharemind
framework (Bogdanov et al., 2008) to perform exact-only matching
of databases.

1.1.1 Comparison to current state-of-the-art

More recently, Lazrig et al. (2018) used sMPC and Bloom filter
string comparisons with Dice-coefficients based on (Schnell et al.,
2009) to implement probabilistic PPRL. This is similar to our ap-
proach in that they use the same methodology for fault-tolerant
string matching, since the Mainzelliste software’s record linkage al-
gorithm also uses the method by Schnell et al. (2009). But our work
differs to theirs in several ways.

They use a total of four Bloom filters, in which (fragments of)
different fields are combined. Expert knowledge of probable errors
is encoded in the choice of fragments and fields. In contrast, our so-
lution takes a much more general approach by implementing the full
field-tested EpiLink algorithm (Contiero et al., 2005) as imple-
mented in the Mainzelliste (Lablans et al., 2015): fields are com-
pared directly (and are not mixed up in the same Bloom filter),
missing fields are handled properly and erroneously interchanged
fields are handled by the introduction of exchange groups in the re-
cord linkage configuration.

Furthermore, our solution performs the whole post-processing of
linkage information still in sMPC, whereas Lazrig et al.’s solution
reveals per Bloom filter whether it matched, which leaks informa-
tion (Revealing per-field matching information can leak, e.g. that
someone has a different, say, surname in the other database, because
the surname Bloom filter did not match. Another possible attack is
to query the database multiple times, each time revealing a match
for another field, like family name and DOB, thus iteratively re-
identifying a record over multiple queries by intersecting on different
fields. The real query stays invisible to the queried database. In gen-
eral, if not the whole computation is performed in sMPC, unfore-
seen information leak can occur from intermediate values.). Our
method also resolves ties between several probabilistically matching
records by determining the highest match score before evaluating
the score threshold. For this, we implemented a novel quotient-
ordering circuit that is able to calculate the maximum of many quo-
tients, with its index, in sMPC. Their solution cannot resolve ties be-
tween multiple matches. Additionally, our solution compares fields
like the date of birth or zip code with exact equality and combines
the individual field comparisons in a weighted sum to give the final
score, before evaluating the score threshold, whereas, as mentioned
above, their solution only performs a threshold comparison on indi-
vidual field comparisons.

Hence our solution is more generally applicable and delivers a
higher quality of matches (see Section 3.1 for the results and
Supplementary Appendix SB for more details and a direct compari-
son to Lazrig et al.) and in particular contains Lazrig et al.’s method
as a special simplistic case: Circuit 5 (Dice-coefficient) alone reflects
their whole sMPC implementation (without the final threshold
evaluation) while additionally being CBMC-GC-2 (Buescher et al.,
2016) optimized. They also built a custom implementation using
Yao’s Garbled Circuit whereas we use the more general sMPC-
framework ABY (Demmler et al., 2015a) and offer four different
protocol variants (cf. Section 2.3.3), so our solution can be more
easily extended for future challenges regarding in-sMPC processing
of match results. Also note that they did not publish their software
whereas the source code of MainSEL is freely available under the
AGPLv3 license. Furthermore, our solution can be deployed in hos-
pital environments today as it is an extension of the already widely
deployed Mainzelliste (Lablans et al., 2015) patient record manage-
ment solution and comes with a complete linkage service ID man-
agement solution.

Unlike Lazrig et al., we choose to forego blocking mechanisms
and instead compare all records, which leads to an extremely strong
privacy guarantee, as many blocking techniques, especially techni-
ques based on Differential Privacy (DP), are not composable with
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sMPC security guarantees. In fact, the security notion of DP is con-
trary to the sMPC security goals in the case of PPRL, as sMPC aims
to reveal the correct, exact result of the ideal function and DP aims

to reveal only noisy, i.e. (boundedly) approximate results. Even hy-
brid systems using differentially private blocking mechanisms as a

pre-processing for the sMPC record linkage (Inan et al., 2010), like
Lazrig et al., fail to achieve strong end-to-end privacy and may re-
veal properties of the inputs. The proof of those statements, as well

as further complications at composing DP and sMPC techniques
with a focus on PPRL are discussed in He et al. (2017).

That makes our work, to the best of our knowledge, the first
practical sMPC-based probabilistic PPRL solution able to handle

noisy and heterogeneous datasets which is also effectively handling
incomplete data.

2 Materials and methods

We will describe the method and our implementation in great detail,

giving hospitals, data protection commissioners as well as govern-
mental regulators the details to evaluate this novel method.

In this article, the function log denotes the logarithm to base 2.
When we describe a protocol between two parties, we sometimes
refer to them as Aarhus and Berlin (This is obviously inspired by the

well known Alice and Bob, but changed to city names to stress the
potential geographical distance of the protocol’s participants.) for

increased clarity of the description.

2.1 Record linkage
Record linkage describes the task of linking records from different

data sources that belong to the same entity. In general, this may in-
clude two or more data sources. We deal with the task of peer-to-

peer, that is, two-party record linkage. In this setting, classic solu-
tions off-load the record linkage to a Trusted Third Party (TTP),
often called a linkage unit. Since we use secure multi-party computa-

tion, we do not require any trusted third party.
Privacy-Preserving Record Linkage (PPRL) generally advances in

several steps: data pre-processing, blocking/filtering, field compari-
sons/similarity and match classification. This is then followed by
some application of the record linkage classification, e.g. the count-

ing of matches (match-cardinality) or linkage of the datasets for sci-
entific evaluations. The MainSEL software implements the field

comparison, match classification and the match-cardinality applica-
tion. In Section 2.4 we introduce a linkage service that enables the
secure use of the linked datasets in arbitrary follow-up applications.

Note that this service is not a TTP.
Given a record x and a set of N database records fyjg0� j<N

(abbreviated fyjg), we want to determine the best matching database
record and quantify the match quality. To that end, we will intro-

duce a similarity score function S(x, y) between two records that
attains values between 0 and 1. The database record with the highest
similarity score is then compared to a threshold parameter

(Mainzelliste actually checks against two thresholds, leading to a
more fine-grained classification. We implemented this but omit its

description for brevity.) 0 < T � 1. Only if it is above this thresh-
old, those records are identified as a match. We call this functional-
ity bestMatchðx; fyjgÞ.

Let fxkg0�k<M (abbreviated fxkg) be a set of M records. For
each xk, we determine the best matching record and check whether

the score reaches the threshold. The count of those matches now
determines the above introduced match-cardinality, which we de-
note with matchCardinalityðfxkg; fyjgÞ.

In summary, we care about the following two functionalities:

bestMatchðx; fyjgÞ :¼ ðj�; Sðx; yj� Þ > TÞ
2 f0; . . . ;N � 1g � f0;1g; j� :¼ argmax

0� j<N

ðSðx; yjÞÞ (1)

matchCardinalityðfxkg; fyjgÞ :¼ jfk : 9j : Sðxk; yjÞ > Tgj
2 f0; . . . ;minðM;NÞg

(2)

2.1.1 Match classification score

To determine the similarity score of two records, we implemented
the same algorithm as used by the Mainzelliste software, which
is inspired by the EpiLink software (Contiero et al., 2005) and

resembles a threshold-based similarity join (Cohen, 2000). This
leads to the best possible compatibility within the German medic-

al research ecosystem, where the Mainzelliste is the most com-
monly used tool for data pseudonymization in medical research
networks.

The similarity score S(x, y) of two records x and y is a normal-
ized weighted sum of field similarities, yielding a score between 0

and 1:

Sðx; yÞ :¼
X
i2I

di;iwisimiðxi; yiÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{sðx;yÞ:¼

=
X
i2I

di;iwi

zfflfflfflfflffl}|fflfflfflfflffl{wðx;yÞ:¼

: (3)

The two records x and y have n ¼ jIj field values xi and yi, each,
for i 2 I, where I is the field index set. di;j is 1 if both fields xi and yj

are non-empty and 0 otherwise. Similarity of fields of index i are
determined using the functions simi, which will be described in
Section 2.1.2. Following (Contiero et al., 2005), the weights are

chosen according to the formula wi ¼ logðð1� eiÞ=fiÞ where ei and fi
are the error rate and average frequency of values, respectively.
Those values are statistically derived once for a set of fields and then

fixed, see Supplementary Appendix SD for the values we used.
Two fields are determined to match if their score is above a cer-

tain threshold. Weighting each field’s impact on the final score dif-
ferently improves the score’s ability to veraciously categorize

matches.
We introduced the definitions s(x, y) and w(x, y) for the numer-

ator and denominator, which we also call the field-weight and
weight component of a (partial) score, because we often need to
work with them individually, especially when describing the sMPC

solution. The actual division S ¼ s=w is never evaluated.
Tie-solving order. We often need to determine the maximum of a

set of quotients, for which we introduce a special order. On quo-
tients S1 ¼ s1=w1 and S2 ¼ s2=w2, written as numerator-
denominator pairs (s1, w1) and (s2, w2), we define the tie-solving
order aS

ðs1;w1Þ > ðs2;w2Þ
:() ðs1w2 > s2w1Þ _ ðs1w2 ¼ s2w1 ^w1 > w2Þ;

(4)

which returns true even if the quotients are the same, but numer-
ator and denominator of the left quotient are nominally larger. This

makes sense for our application because if the left field-weight/
weight quotient is nominally larger, then more entries contributed

to its score (i.e. more entries of the right quotient were empty). It
also solves the problem of zero denominators, favoring the quotient
with non-zero denominator in such a case. If both are zero, it does

not matter which one is chosen by this order, as the contribution to
a sum would then be zero anyway.

Exchange groups. In real record linkage scenarios, linkage qual-
ity can be improved by grouping some fields into so-called exchange
groups, like first, sur- and birth name. Such fields may be accidental-

ly swapped when entered. The score (3) is now modified to pairwise
compare all fields of an exchange group.

Let SymðGÞ denote the set of all permutations of a set G, its sym-
metric group. It has size jGj!. We introduce the following useful defi-

nitions of the sum of weighted similarity scores and sum of weights
for an exchange group G � I and permutation r 2 SymðGÞ:
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sr
G :¼

P
i2G di;rðiÞwi;rðiÞsimiðxi; yrðiÞÞ;

wr
G :¼

P
i2G di;rðiÞwi;rðiÞ;

wi;rðiÞ :¼ wi þwj

2
:

(5)

A group G’s sub-score for permutation r is now defined as
Sr

Gðx; yÞ :¼ sr
G=w

r
G. Note that all fields in G must be of the same

comparison type and that S ¼ Sid
I . The score SG for a group G is

now determined as the maximum of all sub-scores for all permuta-
tions, using the tie-solving order (4):

SGðx; yÞ ¼ ðsG;wGÞ :¼ max
r2SymðGÞ

ðsr
G;w

r
GÞ: (6)

Let E be the set of all exchange groups and ~I :¼ I n [G2EG those
fields not in any exchange group. Our final similarity score of two
records x and y now becomeS

Sðx; yÞ ¼ sðx; yÞ=wðx; yÞ

¼
�X

G2E
sG þ sid

~I

�
=

�X
G2E

wG þwid
~I

�
;

(7)

where sG and wG are the numerator and denominator of the group
scores SG, as defined in Eq. (6).

2.1.2 Field comparison

Depending on the field type of field i, we use either simple equality
or Dice-coefficients of Bloom filters (Bloom, 1970) (introduced
below) as the measure of similarity simi. Equality comparison is
applied to numeric and other data fields where no matching fault
tolerance is wanted. It simply assigns 1 to fields that are exactly the
same and 0 otherwise.

Bloom filter dice similarity. The Bloom filter Dice similarity
from Schnell et al. (2009) is applied to string fields like first and sur-
name where fault tolerance is desired. Strings x are converted into a
Bloom filter Bl ðxÞ by tokenizing them into bigrams and then apply-
ing a family of hash functions to the bigrams, thereby setting the bits
in the Bloom filter bitmask. Further details can be found in
Supplementary Appendix SA.

Let Hw denote the Hamming-weight, that is, the number of set
bits of a bit vector and X ^ Y denote bitwise AND of the bit vectors
X and Y. Write Hx :¼ Hw ðBl ðxÞÞ for the Hamming-weight of the
Bloom filter of string x and Hx^y :¼ Hw ðBl ðxÞ ^ Bl ðyÞÞ. Using the
Sørensen-Dice-coefficient (Dice, 1945), the similarity of two strings
is now calculated aS

simstringðx; yÞ ¼
2 �Hw ðBl ðxÞ ^ Bl ðyÞÞ

Hw ðBl ðxÞÞ þHw ðBl ðyÞÞ ¼
2 �Hx^y

Hx þHy
: (8)

The Dice-coefficient has the advantage of being insensitive to the
number of zero bits, of which there will be many for a large Bloom
filter. It captures the relative similarity of strings. An example is
shown in Figure 1. Note that the Dice-coefficient could also have

been applied directly to the bigrams of two strings in a similar way.
Unlike many other PPRL algorithms, we do not rely on Bloom filters
for increased privacy of the input data (In fact, it has been shown in-
secure by Christen et al. (2017)). For privacy, we rely on sMPC in-
stead, and Bloom filters are only used because they can be evaluated
more easily in sMPC than bigrams.

2.2 Secure multi-party computation
The central component of our system is based on a technique called
secure multi-party computation (sMPC). While the foundations of
this subfield of cryptography were laid in the 1980s (Goldreich
et al., 1987; Yao, 1986), it has long been considered impractical due
to the large computational overhead. This changed in the early
2000s, with cryptographic breakthroughs such as Oblivious
Transfer Extensions (Ishai et al., 2003) and the first implementation
of generic two-party computation (Malkhi et al., 2004). Since then,
a variety of sMPC frameworks have been developed (Bogdanov
et al., 2008; Damgrd et al., 2012; Demmler et al., 2015a; Zahur and
Evans, 2015). In this work, we rely on the ABY framework
(Demmler et al., 2015a) for secure two-party computation.

ABY implements three approaches to two-party computations:
Yao’s Garbled Circuit (Yao, 1986), the GMW protocol (Goldreich
et al., 1987) and Arithmetic Sharing, as well as transformations of
intermediate values between them. These protocols and their secur-
ity assumptions are outlined in Supplementary Appendix SC.

This allows us to freely combine those techniques, as some oper-
ations are more efficient in a specific sMPC protocol. In Section 2.3,
we will present the details of our circuit designs and in Section 3.4
we explore how different combinations of sMPC protocols affect
the running time of our implementation.

2.2.1 Threat model and privacy goals

Ideally, we would like to guarantee that in our system, no informa-
tion about the input data can be learned by anyone at all. However,
this definition of privacy is not very useful, since the output of any
meaningful computation necessarily contains information about the
inputs. Therefore, the cryptographic definition of privacy for sMPC
protocols draws an analogy to a Trusted Third Party (TTP):
Informally, a distributed protocol is said to privately implement an
ideal functionality f, if the information revealed by the protocol is
the same as what would be revealed if a TTP had computed f. We
omit a formal definition here and instead refer to Goldreich (2004).
The ideal functionalities considered in this work are bestMatch and
matchCardinality from Eqs. (1) and (2).

Throughout this article, we will focus on the semi-honest or hon-
est-but-curious attacker model. In this setting, protocols aim to be
secure against an attacker who correctly follows the protocol, but
additionally tries to learn as much as possible about the other par-
ties’ inputs and outputs. While stronger security models (such as
covert or malicious adversaries) exist, the semi-honest model is a
good fit in a setting as ours, where the parties are regulated by law
and known in advance.

While the inputs of the parties participating in an sMPC protocol
remain secure, the input sizes (i.e. the number of records to be
linked) need to be known in advance. However, in cases where this
information is still considered sensitive, the parties can pad their
databases with dummy elements to any reasonable upper bound on
the size, thus hiding the actual size, at the expense of increased com-
putational complexity.

Summing up ABY’s security assumptions (cf. SC.3), the weakest
link in the security of our ABY implementation is, apart from support-
ing only the semi-honest attacker model, the reliance on the quantum-
insecure CDH assumption. Accepting this assumption, our implementa-
tion guarantees that each party of the sMPC does not learn anything
about the other party’s input or any intermediate calculation. They only
learn what is specified as the ideal functionality’s output: in the single-
record-linkage mode of operation (bestMatch), they each learn one part
of an XOR sharing of the matching record’s index together with the
match bit. This is then forwarded to the linkage service as described in
Section 2.4 for further processing. Each XOR share looks just like

Fig. 1. Visual example of a Bloom filter-based Dice similarity measurement between

the strings ‘SMITH’ and ‘SMYTHS’. Differences in the set bits are colored. This ex-

ample assumes k¼2 independent hash functions and a 12 bit Bloom filter. Note

that a change of one letter leads to at most 2k changes in the Bloom filter. This

means that small changes in the strings lead to small changes in the bit vector
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random data to each party. In the match-cardinality mode of operation
(matchCardinality), both parties only learn the number of matches.

2.3 Circuit design
In order to calculate the main functionalities (1) and (2) in a sMPC
with ABY, they have to be expressed as circuits. The following sec-
tions give an in-depth description of the circuit designs of the score
calculation (7) and how to determine the maximum of those scores,
which leads to bestMatch (1). We choose to work in fixed-point
arithmetic because it is more efficient for our purpose, although
floating-point calculations are partially possible in ABY (Demmler
et al., 2015b).

When expressing algorithms in a circuit, it cannot have dynamic
control flow, because otherwise information of intermediary results
would leak. Thus, all branches have to be evaluated and all loops
have to be unrolled. For efficiency reasons, all unrolled loops are
executed in parallel and all sums are calculated as balanced binary-
trees to minimize the circuit depth.

Because we lack dynamic control flow, we decided to not apply
blocking mechanisms, as is usually done in record linkage pipelines.
Blocking describes the pre-filtering of records such that less records
need to be fully compared. We also have to evaluate all field similar-
ities, even if either field is empty (in which case this pair of fields
does not contribute to the score).

Given a record x by Aarhus and the records fyjg by Berlin, the circuit

C 1. calculates all scores’ numerators sðx; yjÞ and denominators wðx; yjÞ
(cf. eq. (7)),

C 2. determines the highest score and its index j� :¼ argmaxjSðx; yjÞ,
C 3. tests for a match by calculating the match bit

�1; if Sðx; yj� Þ ¼ sðx; yj� Þ=wðx; yj� Þ > T
() sðx; yj� Þ > Twðx; yj� Þ;

0; otherwise:

It is more efficient to calculate the field-weight- and weight-sums
s and w in parallel, use them for (C2) and (C3) and never actually
calculate the divisions S ¼ s=w. The steps (C1)–(C3) combined com-
pletely implement the functionality bestMatchðxk; fyjgÞ. If Aarhus
now has M records fxkg and they want to compute the
matchCardinalityðfxkg; fyjgÞ, they compute bestMatchðxk; fyjgÞ for
all k and then simply sum the match bits.

2.3.1 Notation

To describe the individual circuit components, we introduce the no-
tation x ¼ CðxÞ to say that x is the encoding of value x as a circuit in-
put or the circuit implementation of function x. Sans-serif font is
used for circuit variables, typewriter for circuit functions/algorithms.
We define bitlenðxÞ :¼ bitlenðCðxÞÞ :¼ bitlenðxÞ :¼ l, for x 2 f0; 1gl

or x : � ! f0;1gl. We sometimes abbreviate the three sMPC proto-
cols Arithmetic Sharing, GMW and Yao with A, B and Y (This
adheres to the notation of ABY.), respectively, and denote the spaces
of values of bit-length l in those protocols as Sl

A; S
l
B and S

l
Y . We also

introduce the annotation hxilp of a variable’s or function’s output
bit-length l and protocol p ¼ A;B or Y. It is mainly relevant to the
discussion in Section 2.3.5. The superscript bit-length l or subscript
protocol p are sometimes omitted for brevity.

2.3.2 Fixed-point representation

We start by introducing the fixed-point presentations of weights and
field similarities, which are the only two real number variables in
the similarity score. Let lw :¼ bitlenðwiÞ be the weight precision and
ls :¼ bitlenðsimiÞ the similarity or Dice precision, which is the same
for all fields i 2 I.

The field similarity measures simi output real numbers between
0 and 1. So their fixed-point representations are calculated as
CðsimiÞ ¼ bsimi � 2lse. In case of equality, which outputs either 0 or
1, this is just a left-shift by ls. The circuit implementation of the

Bloom filter Dice-coefficient simstring uses a custom integer-division
where the numerator is left-shifted by ls before the integer-division
to give a result between 0 and 2ls.

Similarly, the real-valued threshold T is multiplied with 2ls and
rounded to the nearest integer to attain its fixed-point representa-
tion, T ¼ CðTÞ ¼ bT � 2lse. It is necessary to scale the threshold to-
gether with the field similarities to make inequality (C3) work.

The real weights wi > 0 are transformed into numbers wi ¼
CðwiÞ 2 f0; 1glw by rescaling them so that the highest weight has
value 2lw � 1 and then rounding to the nearest integer:

wi :¼
$

wi

wmax
2lw � 1ð Þ

’
; wmax :¼ max

i2I
wi: (9)

This leads to the highest possible precision because the weights
occupy the full range of f0;1glw.

2.3.3 Implementation variations

As has been shown (Demmler et al., 2015a), using different proto-
cols for different kinds of calculations with intermediate conversions
may be more efficient than staying in the same protocol, even if this
incurs additional conversion costs. We therefore implemented four
variations of the circuit, choosing different sMPC protocols for
Boolean/logic (protocol b) and arithmetic (protocol a) components
of the circuit, with possible conversions in between where necessary.
Points of possible conversions are denoted with a2b and b2a. Note
that they are no operation if the same protocol is chosen for a and b.

For the Boolean/logic components, either the GMW or Yao’s
Garbled Circuit protocol were selected, i.e. b ¼ B or Y.
Additionally, for the arithmetic circuit components, we either stayed
in the same protocol b, or converted to Arithmetic Sharing, i.e. a ¼
b or A. This results in the following four circuit variants.

GMW: b ¼ a ¼ B, i.e. the whole circuit implemented in the
GMW protocol.

GMW=A: b ¼ B and a ¼ A, i.e. Boolean/logic components imple-
mented in the GMW protocol and arithmetic components in
Arithmetic Sharing.

Yao: b ¼ a ¼ Y, i.e. the whole circuit implemented in Yao’s
Garbled Circuit.

Yao=A: b ¼ Y and a ¼ A, i.e. Boolean/logic components imple-
mented in Yao’s Garbled Circuit and arithmetic components in
Arithmetic Sharing.

Specifically, Circuits 2 and 3 are of arithmetic nature while
Circuits 4 and 5 are of Boolean nature. Circuit 6 is of mixed nature:
after two multiplications, several Boolean operations are performed.

2.3.4 Circuit components

We now describe the circuit implementations to attain results
(C1)–(C3). Inputs are only mentioned in the circuit sub-component
where they are used, thus omitted in superordinate components.
Private inputs by Aarhus and Berlin are stated as semicolon-
delimited pairs. A high-level overview of the circuit layout is shown
with Circuit 1.

Circuit 2: Score: similarity score (C1) of x and y [Eq. (7) in protocol a].
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Now follows the description of the circuit implementation of
Score with its sub-components for a single pair of records x ¼
fxigi2I ¼ CðxÞ and y ¼ fyigi2I ¼ CðyÞ as private inputs by Aarhus and
Berlin, respectively. For brevity, we omit the record index j for Berlin ’s
input yj as only a single pair of records is relevant in the remaining sec-
tion. Remember that zi denotes an individual field of a single record z.

Circuit 2 (Score) calculates the score numerators s ¼ CðsÞ and
denominators w ¼ CðwÞ in parallel, in protocol a [cf. Eq. (7)]. It uses
the sub-components GroupFieldWeight (Circuit 3) for the calcu-
lation of a group’s sub-score and MaxQuotient to determine the
score for each group, i.e. the maximum over all group sub-scores [cf.
Eq. (6)].

Similarity circuits. The field similarity sim applies either the sim-
ple equality Circuit 4 or the Bloom filter Dice-coefficient Circuit 5
on field entries xi; yrðiÞ, depending on their type. If field i has Dice
similarity type, we use the field entry’s Bloom filter as the input to
the circuit, xi ¼ CðxiÞ ¼ Bl ðxiÞ, which can be computed locally. The
bit-length of field i is denoted by lbi.

Note that both circuits output the similarity as values in protocol
b of fixed-point precision ls. Free bit-shifts were used for multiplica-
tion or division by 2. The marked component of the dice circuit
was created using the CBMC-GC-2 compiler (Buescher et al., 2016;
Franz et al., 2014) on the function x; y7!ððx� lsþ y=2Þ=yÞ, which
is rounding integer division (‘/’ and IntDiv denotes C integer div-
ision). A separate circuit was compiled for all feasible input and out-

put bit-lengths 2 � lhþ 1 � 12 and 2 � ls � 22 ¼ d64=3e,
covering Bloom filters of length up to 2047. The Hamming-weight
of a Bloom filter z needs lh ¼ d logðlbþ 1Þe bits, being the sum of lb
many 1-bit numbers.

Maximum quotient circuit. Remember that a group’s sub-score
is the quotient sr

G=w
r
G. As described in Section 2.1.1, a group’s score

is the maximum of those sub-scores [cf. Eq. (6)] and is determined
by evaluating a fold with the tie-solving order as defined in eq. (4).
This order is implemented in Circuit 6, which outputs the larger of
two quotients, together with its index.

Note that the index is not needed for the calculation of a group
weight, but will later be used when calculating the maximum over
all scores to determine the best match in Circuit 1.

Now the actual MaxQuotient circuit is the binary-tree fold of a
list of quotients using MaxQuotient0 as the fold operation.

2.3.5 Precision choices and overflow prevention

It follows a discussion about the chosen bit-length L for arithmetic
circuit components and the resulting fixed-point precisions lw and ls

to prevent overflows. The weight sum wðx; yÞ of Circuit 2 is a sum
of n weights of bit-length lw and as such has length d logðnÞe þ lw.
Similarly sðx; yÞ has length d logðnÞe þ lwþ ls. However, the largest
values that are created in any arithmetic circuit component are the
zi’s of Circuit 6, line 1. Multiplying s with w means multiplying a
sum of n weights of length lw with a sum of n field-weights of length
lwþ ls, resulting in a variable of bit-length d logðn2Þe þ 2lwþ ls.
Hence lw and ls are chosen such that the bit-length L of space S

L
a is

fully used but no overflows occur (ABY supports L 2 f8; 16; 32;64g
if a ¼ Arithmetic Sharing): we have r :¼ L� d logðn2Þe bits left to
distribute to lw and ls. To distribute them evenly and, at the same
time, not waste a bit, we set lw ¼ dr=3e; ls ¼ br=3c if r mod 3 ¼ 2
and lw ¼ br=3c; ls ¼ dr=3e otherwise.

We compared the fixed-point score calculation as implemented
in our circuits to the same calculation done in double floating point
precision on a large number of random inputs. The observed devia-
tions are < 1% for L ¼ 16 bit, < 0.1% for L ¼ 32 bit and negligible
for L ¼ 64 bit. Most reported benchmarks in Section 3 were per-
formed with L¼32 and n¼8 fields, such that lw ¼ 9 and ls ¼ 8.

2.4 Systems architecture
In this section we describe the MainSEL record linkage system’s de-
sign. It is comprised of the Mainzelliste as the data source and SEL
as the sMPC compute unit. Both components communicate with
each other via JSON REST interfaces. We illustrate the systems’
communication interface, the record linkage and ID management
workflow and possible additional modes of operation.

2.4.1 Communication

The sequence of communication is divided into two phases: the ini-
tialization phase and the linkage phase. During local initialization
the connection to the local data source and the structure of the
records, as well as their weights, are configured. Then an arbitrary
number of remote targets can be configured. Every call between
each of the parties is authenticated via a pre-shared key and exe-
cuted over a secure channel, e.g. TLS-secured (Rescorla, 2008).

The initialization phase is completed when the configurations be-
tween the local SEL and the (multiple) remote SEL s, as well as be-
tween the local SEL and the linkage service, are tested. The test
assures connectivity and compatible algorithm configurations.

The linkage phase (see Fig. 2) starts with the local Mainzelliste
sending one or a number of records to the local SEL and a callback
address for the linkage result [step (1)]. The number of records to
link, as well as the number of records in the remote Mainzelliste,
need to be known for circuit creation. Therefore, the local SEL
transmits its number of records to the remote SEL, which in turn
queries all records from its remote Mainzelliste and returns that
number [step (2)]. To allow a separation of circuit generation and
linkage procedure, both numbers can be based on estimates and
padded to allow growth in the time between circuit generation
and linkage. In this case, it must be verified that the sizes used dur-
ing the circuit generation are compatible with the actual numbers.

With these requirements satisfied, the actual sMPC is executed
between the local and the remote SEL [step (3)]. At the end of the
computation, each side holds one share of the index of the best
match, as well as shares of the match bits. These shares are then sent
to the linkage service. Additionally, the remote SEL sends their
encrypted IDs to the linkage service [step (4)]. It combines the shares
and the best matching IDs are de- and re-encrypted. The information
whether a match occurred is stored together with the linkage ID
(LID) in encrypted form. This LID is transmitted to the local SEL,

Circuit 6: MaxQuotient0 : Q2 ! Q (maximum of two quotients with index in

mixed protocols). It is Q :¼ Sa � Sa � Sb for the space of quotients together with

their indices and Muxðc; a; bÞ returns a if c is 1 and b otherwise (c 2 f0; 1g).

Circuit 3: GroupFieldWeight [Eq. (5) in protocol a]. The empty-bits dz
i are 0 if

entry i of record z is empty and 1 otherwise. If any entry is empty, then w0i ¼ si ¼ 0.

Note that if a ¼ B or Y, the multiplication between the d’s in line 2 is a logical

AND.

Circuit 4: equal (in protocol b).
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which sends it to the given callback address for storage or evaluation

in the Mainzelliste [step (5)].

2.4.2 ID generation and management

The usage of the record linkage process results is a privacy concern
in itself. To avoid re-identification by two colluding actors on both

sides, the returned LID must not reveal any information about the
matching result. However, this very information is the basis for the

detection of duplicates and the assignment of pseudonyms.
Confidential pseudonymization is achieved by introducing the

Linkage Service, a component only concerned with generating and

encrypting LIDs. This component does not constitute a trusted third
party, as it has no functionality in the linkage process and does never
receive any private information. It only holds a secret key for every
party for re-keying the generated LIDs and generates random IDs.
This setup is used to prevent collusion of adversaries in both
locations.

To prepare for confidential LID management, one data source
contacts the Linkage service to generate random IDs for all its
records. Those random IDs are encrypted with the corresponding
party’s secret key. After receiving the linkage result as well as the list
of IDs from the server, the linkage service decrypts the LIDs. If the
linkage results in a match, a matching bit is concatenated to the

Circuit 1: High-level circuit calculating (C1)–(C3), thus implementing functionality bestMatch. The scores Sj :¼ Sðx; yjÞ (result (C1)) are calculated by running Circuit 2

(Score) for all record input pairs x and yj from Aarhus and Berlin, respectively, in parallel. The best match (C2) is then determined by running circuit MaxQuotient on all

scores, which is a balanced binary-tree fold of Circuit 6. Finally, the match bit (C3) is determined by evaluating inequality sðx; yj� Þ > Twðx; yj� Þ on the best match.

Circuit 5: dice [Eq. (8) in protocol b] with annotated bit-lengths.

Fig. 2. Communication sequence diagram of the linkage phase. ML stands for Mainzelliste, the patient database and pseudonymization framework, SEL stands for the sMPC

compute unit and LS stands for Linkage Service. The communication proceeds over a secure, authenticated channel. The numbers in parentheses enumerate the protocol’s steps

described in Section 2.4.1.
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decrypted ID and this string is re-encrypted with the client’s secret
key. If the records do not match, a new random ID is generated and
encrypted with the client key. This procedure ensures that every LID

looks like a random string and even two actors on both sides are not
able to examine or compare IDs to learn matching records.

To identify the matching records, a process that requires the
patients’ consent for the data exchange from both parties is executed

which grants the linkage service permission to decrypt the LIDs and
distribute them in plain text. This information allows the identifica-
tion of matches as well as the quality of matches.

In this scenario, only the linkage service is allowed to generate
LIDs. Otherwise the security of this procedure would be compro-

mised. To check the validity of signatures, MainSEL uses a random-
ly chosen but sufficiently long zero padding of the plain text LIDs.

This enables the linkage service to verify the validity of LIDs and
that they belong to the correct party.

LID Generation without a LS. The described outsourcing of ID

management is desirable for regulatory reasons, but not required
from a cryptographic protocol perspective. The same functionality

could be realized within the sMPC circuit, for example in the follow-
ing way: both parties input an additional randomness per record. If
bestMatch determines a match, both parties’ randomness is XORed

to obtain the LID for both. Otherwise, each party just receives the
other party’s randomness as LID. Both cases are without collusion

indistinguishable, as in the matching case the LID is effectively One-
Time-Pad-encrypted with the other party’s randomness and as such
indistinguishable from a random string as in the second case. Only

after direct comparison of the LIDs can actual matches be identified.
The linkage service prohibits exactly this collusion and allows a

structured process, like distributing the LIDs after a review
procedure.

2.4.3 Match-cardinality mode

As described in the introduction of Section 2.1, we can easily extent

the bestMatch functionality to count the number of matches, result-
ing in functionality matchCardinality, by simply summing the match
bits. This can also be interpreted as the (fault-tolerant) patient lists’

intersection cardinality.
This mode of operation is relevant for a number of real world

applications, especially in the research and treatment planning of
rare diseases. Patients with rare diseases are regularly recorded in

multiple hospitals and research facilities, often with differing or un-
certain diagnoses. This leads to a high amount of duplicate records
in joint cohort studies. The current legal process for finding those

duplicates includes all legal requirements required for transferring
and processing the complete identifying dataset. This process is un-
reasonably complex for the feasibility analysis stage of a study,

where e.g. cohort sizes are determined.

3 Results

This section provides benchmarking results for our implementation
of the sMPC circuit as set forth in Section 2.3 and describes the ex-
perimental setup. The interpretation of the reported benchmarks is

discussed in Section 4.

3.1 Record linkage quality
As we implement the established, well understood record linkage al-
gorithm of the Mainzelliste software (Lablans et al., 2015) that is in

broad practical use in the German medical research environment,
the analysis of the achieved record linkage quality is not the focus of

this work. However, we can report a precision of 0.994 and perfect
recall performing a linkage between two datasets with 10 000 (syn-
thetic) records, each, 60% overlap and a 10% error rate per field.

For more details on the data generation and perturbation procedure,
as well as more analysis results and a comparison to Lazrig et al.
(2018), we refer to Supplementary Appendix SB.

3.2 Benchmarking setup
For the implementation, we used Cþþ and the ABY framework
(Demmler et al., 2015a). The timing benchmarks ran on two identi-
cal servers with Intel Xeon E5-2690 CPUs (2.90 GHz), 256 GiB
RAM each and a local 1 Gbit/s connection. Both ran a recent Arch
Linux OS with vanilla Kernel version 4.20.7 and gcc version 8.2.1
for source code compilation. In ABY, we set the security parameters
to achieve a symmetric security level of 128 bit. We furthermore
chose L ¼ 32 bit as the bit-length of the arithmetic circuit compo-
nents to achieve a score accuracy within 0.1%, cf. Section 2.3.5. All
reported timings are averaged over at least five iterations. All bench-
marks—except where specifically noted—are using the default
EpiLink configuration that is shipped with the Mainzelliste software
(Supplementary Table S6 in Supplementary Appendix SD), consist-
ing of four Dice-compared and four equality-compared fields. The
parameters of this default configuration are chosen following
Sariyar et al. (2011).

3.3 Setup and online phases
Since a sMPC computation can be split into two phases, we report
those timings separately. In the first setup phase (often called offline
phase in the sMPC literature), only the size and structure of the cir-
cuit need to be known, but the input data can be set later. More spe-
cifically, in this phase the parties perform base OTs and OT-
extension and exchange multiplication triples (Arithmetic Sharing)
or Yao keys. Details can be found in the description of the ABY
framework (Demmler et al., 2015a). This allows for the—usually
much more communication intensive—setup phase to be run before
the input to the circuit is even known. The second online phase runs
once the input to the circuit is known and usually requires an order
of magnitude less communication and thus runs much faster than
the setup phase.

Our record linkage circuit only depends on the database size and
the EpiLink fields configuration, which is assumed not to change
once two institutions agreed on a common configuration. Thus, two
institutions running the Secure EpiLinker can greatly benefit from
this separation into setup and online phase. They can run the setup
phase on their combined databases, and once one side inserts a new
patient in their database, they can immediately execute the online
phase. We therefore often speak of the online runtime as the actual
runtime of a secure record linkage procedure. To be fair, however,
in an initial full database cross-linkage procedure, both phases’ tim-
ings would sum up to give the total runtime. On the other hand, the
full cross-linkage would only need to run once after two institutions
agree to enter the mutual secure record linkage scheme.

3.4 Timings
Figure 3 reports the two phases’ runtimes for varying database
sizes and sMPC circuit implementations, in three different network
environments. We varied the database sizes from 1 to 10 000 and
tested all four variants of the circuit implementation described in
Section 2.3.3.

The pure Yao protocol has a constant number of rounds. The
communication rounds of the other protocols are proportional to
the circuit depth. Table 1 reveals that the number of communication
rounds grows logarithmically with the database size, starting with
an offset. For example GMW=A requires 266 rounds for database
size one, reaching 506 for size 25 000. This can be explained by the
fact that the first part of any circuit runs the record linkage for all
database entries in parallel, resulting in a circuit of fixed depth not
dependent on the database size. The second part of the circuit deter-
mines the maximum score in a balanced binary-tree, which explains
the logarithmic growth.

Overall, the GMW=A variant performs best in both, the setup
and online phase and almost all network settings. For all circuit var-
iants, asymptotically, the sMPC runtime grows linearly, after a
ramp-up for small database sizes. The ramp-up is more pronounced
for non-Yao based variants, which can be explained by the previous-
ly discussed effect on the communication rounds. This is particularly
visible for the online phase in network environment C. For larger
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database sizes, the larger amounts of data per round amortize the
negative effects of multiple rounds and the bandwidth becomes the
dominant effect on runtime.

In Figure 4, a similar pattern can be seen for a growing number
of fields (where the database size was kept constant at 1000).
Asymptotically, the runtime grows linearly with the number of
fields. This can be explained by the same arguments as before, be-
cause multiple fields are also compared in parallel. Also note that the

runtimes of equality-compared integer fields are almost negligible in
comparison to Dice-compared Bloom filter fields, because the latter
are much more complex to evaluate (cf. Circuits 4 versus 5).

4 Discussion

In circuit variant GMW=A and network environment A (no latency,
1 Gbit/s), a full cross-linkage of two medium-sized databases with

10 000 patients each would take 78 h for the setup and 17 h for the
online phase, or approximately 4 days in total. In the high latency
(100 ms) networking setup C, it would take almost 17 days. We ex-
pect to drastically reduce this time in future work by adding record
linkage blocking techniques to our procedure, which, for classical
and Bloom filter-based record linkage, have already been imple-
mented in recent versions of Mainzelliste. However, this setup
would only need to run once initially, when two parties enter the se-
cure record linkage system. Once the system is online and linked, se-
curely linking a newly admitted patient to an existing database of
size 10 000 would take 6.1 s online time for circuit variant GMW=A
or 4 s in the pure GMW protocol, assuming network setting A. In
network environment C, it would take 48 s for variant GMW=A.
Also note the different scaling behaviors: due to the exhaustive pair
comparisons, the computation- and communication complexity is
OðM�NÞ during the initial linking phase, while during normal op-
eration the complexity becomes OðNÞ, i.e. linear in the size of the

Fig. 3. Setup and online runtime in seconds for varying database sizes and four circuit variants (cf. Section 2.3.3), in three network environments: (A) <0.1 ms latency

þ1 Gbit/s bandwidth, (B) <0.1 msþ100 Mbit/s, (C) 100 msþ 1 Gbit/s. The Epilink configuration of DKFZ’s Mainzelliste (Supplementary Table S6 in Supplementary

Appendix SD) was used in all benchmarks

Table 1. Comparison of the setup and online runtimes of the sMPC linkage procedure of a single record with a remote database in circuit

variant GMW=A

Database Comm. [MiB] Setup phase [s] Online phase [s]

Size No. of rounds Setup Online A B C A B C

1 266 0.6 0.1 0.018 0.036 0.72 0.052 0.054 13

10 330 5.5 0.7 0.097 0.15 1.4 0.072 0.072 16

25 346 13.5 1.7 0.18 0.29 1.6 0.093 0.094 17

100 378 53.7 6.7 0.43 1.7 2.5 0.17 0.17 18

250 394 133.9 16.8 0.87 5.3 4 0.29 0.3 19

1000 426 555.2 47.1 3 23 11 0.77 0.87 22

2500 458 1394.1 119.5 7.3 60 25 1.6 1.9 27

10 000 490 5577.4 459.4 28 240 96 6.1 8.2 48

25 000 506 13 917.9 1150.3 69 610 240 15 23 88

Note: Compared are the three networking configurations from Figure 3, for varying database sizes. The reported network communication cost is the sum of

sent and received data. See Appendix SE for the complete set of tables.
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data source. This demonstrates the feasibility of our technique in a
broad range of practical applications.

The optimal configuration of our system depends on the require-
ments of the scenario. For most environments, the optimization of
the online times is sensible, as the setup phase can run between tim-
ing critical processes. For all cases other than having small databases
and very high latencies, using variant GMW=A constitutes a sensible
default. This allows non-technical personnel to deploy our system
with a sensible configuration.

This work is easily generalizable to augmented patient data. If,
for example, the IDAT fields used in this work were augmented by
equality-check MDAT values, runtimes would not be impacted
heavily. As displayed in Figure 4, simple equality comparisons are
nearly negligible in comparison to fault-tolerant Bloom-Dice
comparisons.

Our results are in alignment with Demmler et al.’s (2015a) ob-
servation that in most applications the utilization of mixed sMPC
protocols is more efficient. The performance gains of the com-
bined usage of GMW and Arithmetic Sharing outweigh the add-
itional computations required for the conversions between the
protocols.

The studied network environments reveal widely known bot-
tlenecks of sMPC. Firstly, we can identify the network communi-
cation as the computation’s main impediment (cf. Fig. 3). By
either throttling the network bandwidth or increasing the latency
between both parties, runtimes significantly increase. A detailed
analysis of the connection between the database sizes, network
settings and circuit depths was given in Section 3.4. At least in
Germany, this should not pose a strong impediment since research
clinics are connected by the high-performance DFN network,
which most closely resembles our best network environment A.
We can also conclude that machines with more computational
power would unfortunately not lead to significant improvements
in runtime.

The legal question whether the transmitted data is ‘personal
data’ is not answered yet in the European Union. Past decisions of
the European Court of Justice and the German Federal Court of
Justice lead to our understanding that record linkage without the
patients consent might be legally permitted, as encrypted data is
only personal data for parties having access to the encryption key
as well as third parties having the legal right to demand disclosure
of the key (Federal Court of Justice of Germany, 2017; The Court
of Justice of the European Union, 2016). In the case that the
encrypted data is seen as a pseudonym connected to additional in-
formation, the legal status is determined by the network (and
availability) of the connected additional data. The referenced rul-
ings have been made before the introduction of the European
‘General Data Protection Regulation (GDPR)’ (Eurpean
Parliament and Council, 2016). We find it highly plausible that
our record linkage solution indeed does not transmit personal

data, but at the moment no legal verification of that claim is
published.

5 Conclusion

In this work, we presented a novel method to perform privacy pre-
serving record linkage with no information leakage, guaranteed by
the utilization of provably secure multi-party computation. Most
importantly, in the environment relevant for medical research in the
foreseeable future (semi-honest setting and the absence of quantum
computers), record linkage via MainSEL ensures that no record link-
age party learns anything apart from the intended record linkage re-
sult—not even in an indirect (e.g. Bloom-filtered) form. Our
implementation includes integration interfaces, optimizations and
operation-ready deployment methods.

Due to carefully designed cryptographic protocols, as well as a
novel high-level approach to generate optimized integer division cir-
cuits, our solution provides reasonable runtimes for linking mid-
sized to large data sources as well as in an online mode for large and
very large data sources. Albeit the promising results, this work opens
up possibilities for further optimization and research in the follow-
ing two categories: (i) the secure record linkage algorithms and (ii)
the interfaces and application.

In practical applications, record linkage between more than two
parties would be desirable but implies significant opportunities for
research: probabilistic record linkage measures like ours are not
transitive so in a multi-database setting, match conflicts may arise.
In practice, such conflicts are usually resolved by accepting a non-
direct-but-transitive match as a match, thereby interpreting such dir-
ect non-matches as false negatives. How to optimize network topol-
ogies to minimize linkage conflicts (e.g. with a star topology if
feasible) is future research.

Note that we implemented a pair-wise record linkage algorithm
using a secure two-party computation framework (ABY), so using
MainSEL to fully link k databases of size N, each, requires the naive
pairwise matching of ðkðk� 1ÞN2Þ=2 records. However, we’d like
to stress that we built a drop-in replacement for the local record
linkage that usually happens inside a single Mainzelliste instance in
clear-text, so our solution can be readily deployed to the existing
German medical research environment, where the Mainzelliste is in
broad use, to enable novel research directions that would not be pos-
sible without a fully privacy-preserving linkage methodology. The
usage of optimized algorithms for multi-database record linkage
while using the multi-party successor to ABY will be explored in the
future.

To further enhance the flexibility of the record linkage solution
in this work, additional methods to include non-IDAT fields can be
included. Those fields might lead to the need to include or develop
different matching classifier. To reduce the computationally inten-
sive areas of the procedure, it might be possible to include pruning
and blocking methods. To be utilized, these must be provable secure
and free of information leakage, which, in combination with sMPC
protocols, presents an open research problem, as typical blocking
techniques, such as Locality Sensitive Hashing based techniques, are
shown to be incompatible to those strong privacy guarantees (He
et al., 2017). We plan to analyze the applicability of Oblivious
RAM-based constructions in a potential blocking mechanism to
avoid the degradation of our privacy guarantees.

Reliably deploying an application in the hospital IT environ-
ments is also a big challenge. The implementation of ICE techniques
using STUN, TURN and other suitable methods for firewall and
proxy traversal is the next step to be ready for hospital deployment.
Our current implementation handles user authentication analogous
to Mainzelliste. In the future, we want to provide OAuth2 and TLS
client certificate authentication. Even though MainSEL is not
designed as a secure record linkage software library, but as a generic
interfaced standalone application, it could be adapted as a Cþþ
Software Development Kit (SDK), or even software library, with
moderate effort.

Independent of those areas of improvement, further regulatory
and legal work is a necessary condition to allow practical usage of

Fig. 4. Setup and online runtime in seconds for varying number of fields and varying

field types: (1) only 12 bit integer fields with equality comparison, (2) only 500 bit

Bloom filters with Dice comparison or (3) both, counted as pairs. Network environ-

ment A: <0.1 ms latencyþ1 Gbit/s bandwidth was used with a database size of

1000 and the GMW=A circuit variant
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secure record linkage. With this work we hope to contribute to this
process by providing practical benchmarks and technology details.
In our opinion secure record linkage can contribute to a more
privacy-preserving, better auditable and less bureaucratic digitized
medicine.

We would like to stress, that even if secure record linkage is com-
putationally intensive, many application scenarios become legally or
intent-wise possible only through the privacy guarantees of our
solution.
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Damgård,I. et al. (2012) Multiparty computation from somewhat homo-

morphic encryption. In: Safavi-Naini,R. and Canetti,R.(eds) CRYPTO, vol-

ume 7417 of Lecture Notes in Computer Science. Springer, Springer, Berlin,

Heidelberg, pp. 643–662.

Demmler,D. et al. (2015a) ABY – a framework for efficient mixed-protocol se-

cure two-party computation. In NDSS. The Internet Society. Reston,

Virginia, USA.

Demmler,D. et al. (2015b) Automated synthesis of optimized circuits for se-

cure computation. In Proceedings of the 22Nd ACM SIGSAC Conference

on Computer and Communications Security, CCS ’15. ACM, New York,

NY, USA, pp. 1504–1517.

Dice,L.R. (1945) Measures of the amount of ecologic association between spe-

cies. Ecology, 26, 297–302.

Eurpean Parliament and Council. (2016) Regulation (EU) 2016/679 of the

European Parliament and of the Council of 27 April 2016 on the protection

of natural persons with regard to the processing of personal data and on the

free movement of such data, and repealing Directive 95/46/EC (General

Data Protection Regulation).

Federal Court of Justice of Germany (2017) Urteil VI ZR 135/13. Federal

Court of Justice of Germany.

Fellegi,I.P. and Sunter,A.B. (1969) A theory for record linkage. J. Am. Stat.

Assoc., 64, 1183–1210.

Franz,M. et al. (2014). CBMC-GC: an ANSI C compiler for secure two-party

computations. In: Cohen,A. (ed.) Compiler Construction, Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg, pp. 244–249.

Gilboa,N. (1999) Two party RSA key generation. In: Wiener,M. (ed.)

CRYPTO, volume 1666 of Lecture Notes in Computer Science. Springer,

Berlin, Heidelberg, pp. 116–129.

Goldreich,O. (2004) The Foundations of Cryptography - Volume 2, Basic

Applications. Cambridge University Press, Cambridge, UK.

Goldreich,O. et al. (1987) How to play any mental game or a completeness

theorem for protocols with honest majority. In: STOC. ACM, New York,

NY, USA, pp. 218–229.

Guo,C. et al. (2019) Efficient and secure multiparty computation from

fixed-key block ciphers. Technical report 074, Cryptology ePrint Archive.

He,X. et al. (2017) Composing differential privacy and secure computation: a

case study on scaling private record linkage. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,

CCS ’17. ACM, Dallas, Texas, USA, pages 1389–1406.

iAS interActive Systems GmbH (2019) secuTrial.

Inan,A. et al. (2010) Private record matching using differential privacy. In

Proceedings of the 13th International Conference on Extending Database

Technology, EDBT ’10. Association for Computing Machinery, ACM, New

York, NY, USA , pp. 123–134.

Ishai,Y. et al. (2003) Extending oblivious transfers efficiently. In Boneh,D.

(ed.) CRYPTO, volume 2729 of Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, pp. 145–161.

Kirsch,A. and Mitzenmacher,M. (2006). Less hashing, same performance:

building a better bloom filter. In: Azar.Y. and Erlebach,T. (eds.) Algorithms

– ESA 2006, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 456–467.

Kuzu,M. et al. (2011) A constraint satisfaction cryptanalysis of bloom filters

in private record linkage. In: Fischer-Hübner S. and Hopper,N. (eds.)
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