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Abstract 

Background:  Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine 
the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS 
v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic 
liver.

Methods:  In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules 
(HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, 
a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features 
extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute 
shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. 
Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis.

Results:  A radiomics signature consisting of eight features was significantly associated with the differentiation of 
HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics 
signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification 
performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the speci-
ficity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable 
sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188).

Conclusions:  MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating 
small HCCs from benign nodules in the cirrhotic liver.
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Background
Early detection of hepatocellular carcinoma (HCC) is 
the only chance for effective treatment and long-term 
survival in high-risk patients. However, hepatocarcino-
genesis in cirrhosis usually shows a multistep progres-
sion from benign nodules to small HCCs (≤ 3 cm), and 
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finally, overt progressive HCC. Accurate characteriza-
tion of small HCCs and benign nodules is challeng-
ing due to the overlap of imaging features during the 
hepatocarcinogenesis process [1, 2]. To standardize 
terminology and criteria for interpreting and reporting 
the imaging results of the liver, Liver Imaging Report-
ing and Data System (LI-RADS) was established by the 
American College of Radiology. The initial version of 
LI-RADS was published in 2011, with major updates 
released in 2014, 2017, and 2018 [3–7]. LI-RADS 
reflects the relative probability of HCC development by 
assigning categories ranging from LR-1 to LR-5 (defi-
nitely HCC) or LR-TIV (definite tumor in vein) based 
on the presence of specific imaging features [5, 6].

Recently, the LI-RADS algorithm has been widely used 
to characterize liver nodules in patients with a high risk 
of HCC. The LI-RADS algorithm comprises categories 
based on major features, and ancillary features are used 
to improve characterization and detection, promote 
confidence, or modify the LI-RADS category after the 
involvement of ancillary features [5]. Regarding the per-
formance of LI-RADS for diagnosing small HCCs, LR-5/
LR-TIV categories showed fairly high specificity but 
limited sensitivity; on the contrary, combining the LR-4 
and LR-5/LR-TIV categories for diagnosing HCC mark-
edly improved sensitivity but led to a reduction in speci-
ficity [8–11]. Particularly, LI-RADS, which is based on 
the identification of some categories of liver lesions by 
means of a conceptual and non-quantitative probability 
approach, has many limitations [8]. Thus, it is necessary 
to seek a noninvasive and quantitative method for identi-
fying these small cirrhotic nodules.

Radiomics is a promising tool that allows for extracting 
numerous quantitative parameters by converting imaging 
data into a high-dimensional mineable feature set with 
a series of data-characterization algorithms. Regarding 
differential diagnosis in oncology, MRI-based radiomics 
has afforded encouraging results in the classification of 
primary breast tumor [12, 13], differentiation of the pri-
mary site of origin of brain metastases [14], identification 
of adrenal metastases from adrenal adenomas [15], and 
differentiation of benign and malignant prostate nodules 
[16, 17]. For liver assessments, MRI-based radiomics can 
be applied to differentiate hemangiomas, metastases, and 
HCCs [18], or differentiate between cysts and hemangio-
mas [19].

To our knowledge, the added value of MRI-based radi-
omics to the LI-RADS algorithm in the characterization 
of cirrhotic nodules is still undefined. We speculated 
that MRI-based radiomics combined with LI-RADS 
may overcome some of the limitations of LI-RADS and 
improve the diagnostic efficacy. Thus, the purpose of this 
study was to explore the additive value of MRI-based 

radiomics to the LI-RADS v 2018 algorithm for the dif-
ferentiation of small HCCs from benign nodules.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board of Affiliated Cancer Hospital & Insti-
tute of Guangzhou Medical University. From January 
2013 to October 2018, we reviewed liver MRI, clinical, 
and pathology data of 675 consecutive cirrhosis patients. 
The following patients were included: (1) patients with 
at least one nodule having a diameter smaller than or 
equal to 3 cm; (2) patients who had undergone dynamic 
enhancement and diffusion-weighted (DW) imaging; (3) 
patients in whom pathological confirmation by surgical 
resection had been performed; and (4) patients who did 
not undergo any treatment before MRI. Subsequently, 
525 patients were excluded due to the following rea-
sons: (1) presence of a nodule with a diameter larger than 
3  cm (n = 220); (2) unavailability of dynamic enhance-
ment or DW imaging data (n = 27); (3) lack of pathologi-
cal data (n = 245); and (4) receipt of treatment prior to 
MRI (n = 33). Finally, 111 patients with 112 HCCs and 
39 patients with 44 benign nodules were included. The 
patient inclusion flowchart is shown in Fig. 1.

Image acquisition
Sixty-eight patients underwent gadoxetic acid-
enhanced MRI (Gd-EOB-MRI) and 82 patients 
underwent gadopentetate dimeglumine-enhanced 
(Gd-DTPA) MRI. MR images were obtained using 
a 3.0-T whole-body MR system (Achieva; Philips 
Healthcare) with a 16-channel phased-array coil. 

Fig. 1  Flowchart of the study population
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Scanning sequences included a dual gradient-recalled 
echo T1-weighted sequence, an axial T2-weighted 
fat-suppression (FS) turbo spin-echo (TSE) sequence, 
dynamic contrast-enhanced MRI-Gd-EOB-MRI (unen-
hanced, arterial [20–35  s], portal [60  s], transitional 
phase [3  min], and hepatobiliary phase [20  min]) or 
Gd-DTPA-MRI (unenhanced, arterial [20–35  s], por-
tal [60  s], and equilibrium [3  min]), and DW imaging 
with b-values of 0 and 800 s/mm2. Apparent diffusion 
coefficient (ADC) maps were created automatically 
on a voxel-by-voxel basis from the two b-values. The 
detailed MRI parameters are summarized in Table 1.

Qualitative image analysis
The radiologists were informed that this study 
attempted to evaluate the contribution of LI-RADS v 
2018 in HCC detection but they were blinded to the 
patients’ clinical data and pathologic diagnosis. Two 
radiologists (observer 1, JSL, with 15  years of expe-
rience; and observer 2, BGL, with 10  years of expe-
rience) independently analyzed all MR images for 
assessing major and ancillary features, and assigned a 
LI-RADS category for each lesion. All disagreements 
on LI-RADS categories were solved by consensus 
1 month after the individual interpretations.

First, LI-RADS categories were assigned based on 
major features (Supplementary Table 1) and the obser-
vations were categorized as LR-3, LR-4, and LR-5 [5, 
6]. The growth threshold was eliminated from the 
assessment, because follow-up assessments for more 
than 6  months were performed in only 10 patients. 
Second, the radiologists were requested to upgrade or 
downgrade the final LI-RADS categories based on the 
presence of ancillary features (Supplementary Table 2). 
The rules for application of ancillary features to adjust 
LI-RADS categories assigned by major features were 
based on the criteria in LI-RADS v 2018 [5]. Finally, 
LI-RADS categories based on the combination of 
major and ancillary features were documented for each 
lesion assessed.

Radiomics analysis
Feature extraction
Axial in-phase T1-WI, fat-suppression (FS) T2-WI, 

Table 1  MRI sequences and parameters

FS fat suppression, TR repetition time, TE echo time, FA flip angle, ST slice thickness, FOV field of view, T1-w T1 weighted, T2-w T2 weighted

Sequence FS TR/TE (ms) FA ST (mm) FOV (cm) Matrix

T1-w dual gradient recalled echo

In-phase No 10/2.5 10° 5 30–38 256 × 224

Opposed-phase No 10/3.55 10° 5 30–38 256 × 224

Breath-hold FS T2-w Yes 2096/72 90° 5 30–38 324 × 256

DWI Yes 1600/70 90° 5 30–35 100 × 100

T1-w dynamic enhanced Yes 3.1/1.5 10° 2 32–38 228 × 211

Table 2  Characteristics of patients and lesions

Continuous variables are expressed as a median/range and qualitative variables 
as the total count

NA not assessment, AFP alpha-fetoprotein
a  43 missing data
b  High AFP serum means above the upper normal limit
c  A patient could have multiple etiologies

Parameters HCCs Benign nodules P value

Patient-wise analysis

Number 111 39

Age, median [range] (years) 55 [35–81] 59 [41–82] 0.198

Male/female 97/14 34/5 0.706

Child–Pugh NA

A 56 19

B 45 14

C 10 6

AFPa

Patients with high AFP serumb 45 11 NA

Patients with AFP 
serum > 200 ng/ml

24 2 NA

Etiology of liver cirrhosisc NA

HBV 86 34

HCV 18 3

Ethanol 20 6

Number of nodules/patient NA

One nodule 110 34

Two nodules 1 5

Lesion-wise analysis

Number 112 44 NA

Histopathologic feature of 
lesions

Well-differentiated HCC 47 0

Moderately/Poorly differenti-
ated HCC

75 0 NA

Dysplastic nodule 0 39

Regenerative nodule 0 5

Nodule size, median [range] 
(cm)

2.1 [0.9–3.0] 1.7 [0.6–2.9] 0.027
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and ADC maps in the “.dicom” format were imported 
to MaZda 4.6 (http://​www.​eletel.​p.​lodz.​pl/​progr​amy/​
mazda/) for texture feature extraction. Two radiolo-
gists (XZ and BGL, with 5 and 10 years of experience in 
medical image segmentation) manually drew a region of 
interest (ROI) for each nodule on the image section that 
depicted the maximum area (Fig. 2a–c). To minimize the 
influence of contrast and brightness variation, the ROI 
gray level was normalized [19–21], after which 279 tex-
ture features resulting from six statistical image descrip-
tors were extracted for each ROI, thus a total of 837 
features based on the three sequences were determined 

for each lesion (Fig. 2d). The detailed feature names and 
numbers are summarized in Supplementary Table 3.

Radiomics signature construction
To determine the discriminative texture features for dif-
ferentiating HCCs from benign nodules, first, feature 
selection was performed based on reproducibility and 
redundancy with reference to previous studies [22–24]. 
Texture features with interclass correlation coefficients 
(ICC) values ≥ 0.80 were identified as highly reproducible 
features and remained for further selection. Second, we 
performed feature selection from the remaining dataset 
by using the Mann–Whitney U test, and features with a 

Fig. 2  Extraction of image segmentation and texture features. Using the software package MaZda 4.6 for texture calculation for a 78-year-old man 
with a pathologically proven HCC, regions of interest (ROIs) were manually delineated in the largest cross-sectional area of the lesion in the in phase 
T1W image (a), FS-T2W image (b), and ADC maps (c). A total of 279 quantitative texture features from six statistical image descriptors were extracted 
for each ROI, thus a total of 837 features based on the three sequences were determined for each lesion (d)

http://www.eletel.p.lodz.pl/programy/mazda/
http://www.eletel.p.lodz.pl/programy/mazda/
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P-value less than 0.05 were maintained. Finally, a radi-
omics signature was constructed by using the least abso-
lute shrinkage and selection operator (LASSO) logistic 
regression analysis with tenfold cross-validation based on 
minimum criteria [25, 26].

With the combination of LI-RADS and radiomics sig-
nature, a radiomics nomogram model was constructed. 
A calibration curve was drawn to appraise the calibration 
of the radiomics nomogram, accompanied by the Hos-
mer–Lemeshow test to assess the goodness-of-fit of the 
nomogram.

Statistical analysis
All statistical analyses were performed using R software 
(version 3.5.3, http://​www.​rproj​ect.​org/) and SPSS 16.0 
(SPSS Inc., Chicago, IL, USA) software package, and sta-
tistical significance was set at P < 0.05. LASSO logistic 
regression was performed using R statistical software 
with the "glmnet" package. The nomogram and calibra-
tion plots were created using the "rms" package, and the 
Hosmer–Lemeshow test was conducted using the "gen-
eralhoslem" package. Other statistical analyses were per-
formed using SPSS 16.0; inter-reader variability between 
the two observers for LI-RADS categories was appraised 
using kappa statistics. The diagnostic performance  for 
each diagnosis model was assessed using by receiver-
operator characteristic curve (ROC) analysis. The Mann–
Whitney U test and Pearson chi-square test (or Fisher 
test) were used for continuous and categorical variables, 
respectively.

Results
Patient characteristics
Of the 150 patients, 111 patients (74%) with 112 nodules 
were diagnosed as having HCC (diameter range 0.9–
3.0 cm; median, 2.1 cm), and 105 nodules were confirmed 
by resection, while 7 nodules were confirmed by aspira-
tion  biopsy. Thirty-nine patients with 44 nodules were 
diagnosed as showing benign nodules (diameter range 

0.6–2.9  cm; mean, 1.7  cm), of which 32 nodules were 
confirmed by resection and 12 nodules were confirmed 
by aspiration biopsy. There was a significant difference in 
nodule diameter between HCCs and benign nodules. Of 
the 21 patients with HCV infection (18 HCCs, 3 benign 
nodules), 17 patients (14 HCCs, 3 benign nodules) 
received antiviral therapies; of the 110 patients with HBV 
infection (86 HCCs, 34 benign nodules), 62 (35 HCCs, 27 
benign nodules) received antiviral therapies. The propor-
tion of patients who received antiviral therapies in the 
HCC group was lower than that of benign nodule group: 
77.8% (14/18) vs. 100% (3/3) for HCV patients, and 40.7% 
(35/86) vs 79.4% (27/34) for HBV patients. The detailed 
patient and lesion characteristics are summarized in 
Table 2.

Performance of the LI‑RADS v 2018 algorithm
The frequencies of LI-RADS categories based on the 
combination of major and ancillary features in assess-
ments by the two observers and the consensus reports are 
shown in Table 3. Inter-observer agreement in the assess-
ment of LI-RADS categories was very good (k = 0.910). 
When LI-RADS categories were used in consensus for 
differentiation of sHCC from benign nodules, in the 
ROC analysis, with a cut off value ≥ LR-4, the LI-RADS 
v 2018 algorithm demonstrated an Az of 0.898 (95% CI: 
0.834, 0.961), sensitivity of 93.8% (105/112), specificity of 
81.8% (36/44), positive predictive value (PPV) of 92.9% 
(105/113), negative predictive value (NPV) of 83.7% 
(36/43), and accuracy of 90.4% (141/156).

Performance of MRI‑based radiomics analysis
Of these 837 features, 301 features with ICC values ≥ 0.80 
were selected for further reduction, of which 57 texture 
parameters with p values less than 0.05 by using Mann–
Whitney U test remained for subsequent LASSO analysis, 
and these features measured by the two radiologists were 
averaged. A radiomics signature consisting of eight features 
with non-zero coefficients that were significantly associated 

Table 3  Frequencies of LI-RADS categories based on major and ancillary features stratified by observers

Data are expressed as numbers of lesions. LI-RADS liver imaging reporting and data system, TIV definite tumor in vein

LI-RADS categories Observer 1 Observer 2 Consensus

HCCs Benign nodules HCCs Benign nodules HCCs Benign nodules

LR-2 0 (0%) 5 (11.4%) 0 (0%) 6 (13.6%) 0 (0%) 5 (11.4%)

LR-3 7 (6.3%) 31 (70.5%) 9 (8.0%) 29 (65.9%) 7 (6.3%) 31 (70.5%)

LR-4 64 (57.1%) 6 (13.6%) 60 (53.6%) 7 (15.9%) 63 (56.3%) 6 (13.6%)

LR-5 40 (35.7%) 2 (4.5%) 43 (38.4%) 2 (4.6%) 42 (37.5%) 2 (4.5%)

LR-TIV 1 (0.9%) 0 (0%) 0 (0%) 00 (0%) 0 (0%) 0 (0%)

Total 112 44 112 44 112 44

http://www.rproject.org/
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with the differentiation of HCCs from benign nodules was 
generated by using the LASSO logistic regression model 
(Fig. 3a, b), and showed good calibration (Fig. 3c). Details 
regarding the features and their coefficients are shown in 
Table  4. The radiomics score for each lesion was calcu-
lated by using a formula resulting from the eight features 
weighted by their coefficients. Based on the radiomics 
scores, ROC analysis (Fig.  3d) showed that the radiomics 
signature yielded an Az of 0.917 (95% CI: 0.860, 0.974), sen-
sitivity of 93.8% (105/112), specificity of 86.4% (38/44), PPV 
of 94.6% (105/111), NPV of 84.4% (38/45), and accuracy of 
91.7% (143/156).

Fig. 3  Radiomics signature development and diagnostic efficiency assessment. A radiomics signature was obtained using the LASSO algorithm, 
and the optimal tuning parameter (Lambda) in the LASSO model was selected using tenfold cross-validation based on minimum criteria. a LASSO 
coefficient profiles of the texture features. b The optimal values of log (Lambda) =  − 3.126 and eight non-zero coefficients were chosen (vertical 
line). c Calibration curves of the radiomics signature, the 45° red lines represent a perfect prediction, and the dotted blue lines represent the 
predictive performance of the radiomics signature; the closer the dotted blue line fit is to the red line, the better the predictive accuracy of the 
radiomics signature is. d Diagnostic efficiency of radiomics signature using ROC analysis

Table 4  Calculation formula for radiomics signature

Vertl_RLNonUni vertical run-length nonuniformity, DifVarnc difference variance, 
SumOfSqs sum of squares, WavEnLL_s-1 wavelet energy LL scale1, SumEntrp sum 
entropy, SumVarnc sum variance

Parameters Textural groups Coefficients

Intercept − 1.01

T1W-Vertl_RLNonUni Run-length matrix − 0.0010

T1W-S(5,-5)DifVarnc GLCM 0.0019

T2W-S(5,5)SumOfSqs GLCM 0.0024

T2W-WavEnLL_s-1 Wavelet 0.0044

T2W-S(0,1)SumEntrp GLCM 0.0751

T2W-S(3,-3)SumOfSqs GLCM 0.2208

T2W-Sigma Autoregressive model 0.0109

ADC-S(1,0)SumVarnc GLCM − 0.0295
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Added value of radiomics analysis to LI‑RADS v 2018 
algorithm
The detailed performance parameters for each diagnos-
tic pattern are summarized in Table  5. For combined 
diagnosis, a radiomics nomogram model that included 
the radiomics signature and LI-RADS categories was 

established (Fig.  4a) and showed good calibration 
(Fig.  4b). Using ROC analysis (Fig.  4c), the radiomics 
nomogram demonstrated a superior Az value of 0.975 
(0.954–0.996) than that of LI-RADS. In comparison 
with LI-RADS alone, the radiomics nomogram model 
showed a significant improvement in specificity (97.7% 
vs 81.8%, p = 0.030), PPV (99.1% vs 92.9%, p = 0.031), 
and accuracy (97.4% vs 93.8%, p = 0.016), and a 

Table 5  Diagnostic performance of LI-RADS categories in the discrimination of HCCs from benign nodules

LI-RADS liver imaging reporting and data system, Az area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value

Diagnostic pattern Az (95%CI) Sensitivity Specificity PPV NPV Accuracy

LI-RADS 0.898 (0.834–0.961) 93.8% (105/112) 81.8% (36/44) 92.9% (105/113) 83.7% (36/43) 90.4% (141/156)

Radiomics signature 0.917 (0.860–0.974) 93.8% (105/112) 86.4% (38/44) 94.6% (105/111) 84.4% (38/45) 91.7% (143/156)

Combined nomogram 0.975 (0.954–0.996) 97.3% (109/112) 97.7% (43/44) 99.1% (109/110) 93.5% (43/46) 97.4% (152/156)

Fig. 4  Radiomics nomogram construction, calibration, and performance assessment. a The LI-RADS categories and radiomics signature were 
combined, and a radiomics nomogram was plotted. b Calibration curves of the radiomics nomogram, the 45° blue lines represent a perfect 
prediction, and the dotted red lines represent the predictive performance of the radiomics signature. c ROC analysis showed that the combined 
radiomics nomogram demonstrated superior classification performance
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comparable sensitivity (97.3% vs 93.8%, p = 0.215) and 
NPV (93.5% vs 83.7%, p = 0.188).

Discussion
In the present study, we compared cirrhotic nodule clas-
sification using LI-RADS v 2018 alone and a combination 
of LI-RADS v 2018 and MRI-based radiomics analysis. 
We evaluated the added value of the MRI-based radiom-
ics analysis in sHCC diagnosis. By combining LI-RADS 
and radiomics analysis, we constructed a radiomics nom-
ogram model, and we observed improved lesion classifi-
cation performance (Az: 0.975) than that achieved with 
the LI-RADS algorithm alone (Az, 0.898). Particularly, in 
comparison with the LI-RADS algorithm alone, the nom-
ogram demonstrated a significant improvement in speci-
ficity and PPV, with comparable sensitivity and NPV.

LI-RADS is widely applied in the characterization of 
cirrhotic nodules, and the LI-RADS algorithm based on 
a combination of major features and ancillary features 
has shown superior classification performance over 
approaches using major features alone, with previous 
studies indicating that the addition of ancillary features 
increased sensitivity while preserved the specificity for 
HCC [8–11]. In this study, we assessed the performance 
of the LI-RADS v 2018 algorithm based on the combi-
nation of major features and ancillary features in the 
differentiation of sHCC from benign nodules. ROC anal-
ysis showed that the cut-off value for LI-RADS category 
was ≥ LR-4, and this result was associated with the find-
ing that approximately half of the HCCs were categorized 
as LR-4 category. Using LR-4 and LR-5/LR-TIV catego-
ries as the criteria for diagnosing HCC, we found that the 
LI-RADS v 2018 algorithm yielded an overall accuracy 
of 90.4%. Our results are consistent with those of several 
previous studies, which indicated that the combination of 
LR-4 and LR-5/LR-TIV categories demonstrated better 
diagnostic performance than that of LR-5/LR-TIV cat-
egories [5, 6, 8, 9].

Radiomics analysis provides quantitative texture fea-
tures that may be associated with the histopathologi-
cal  characteristics of lesions, and radiomics thus shows 
promising resolving power in differentiation of liver 
benign and malignant diseases [18], classification of 
hepatic fibrosis and cirrhosis of various grades [27], or 
prediction of the histological grading of HCC [28]. In this 
study, we assessed the potential value of multi-paramet-
ric MRI-based radiomics analysis for distinguishing small 
HCCs from benign nodules in cirrhosis. We found that 
the radiomics signature based on MRI texture features 
demonstrated a slightly better classification performance 
than that of the LI-RADS v 2018 algorithm. Actually, in 
comparison with the LI-RADS v 2018 algorithm, MRI-
based radiomics analysis showed equal sensitivity of 

93.8%, and a higher specificity of 86.4%. The results sup-
ported our previous findings in which MRI-based texture 
analysis produced a greater performance than qualitative 
diagnosis with Gd-EOB dynamic MRI or DWI [29]. In 
addition, the classification accuracy of 91.7% with MRI-
based radiomics analysis in this study was also similar 
with the previously reported values of 84.5–92% in stud-
ies where MRI-based texture analysis was used to dis-
tinguish metastases and HCCs [18], HCCs and benign 
hepatocellular tumors [30], or cysts and hemangiomas 
[19]. As mentioned in previous studies [31, 32], accu-
rate identification and classification of HCC substages 
demonstrated great clinical value in the assessment of 
untreated HCC patients. The potential application value 
of MRI-based radiomics in classifying HCC substages 
needs to be studied further.

In this study, most of the differentiation-related fea-
tures selected were derived from T2WI, supporting a 
previous study where T2WI-based texture analysis pro-
duced better overall accuracy than T1-weighted images 
in discrimination of liver cysts and hemangiomas [19]. 
However, unlike previous studies in which texture fea-
tures based on ADC maps showed more discriminative 
power than T2WI features in classification of benign and 
malignant prostatic nodules [33], we found that only one 
feature based on ADC maps was selected to the radiom-
ics signature. This difference might be partially explained 
by the fact that the cirrhotic parenchyma shows lower 
ADC values compared to normal hepatic parenchyma 
due to the abundance of proton-poor fibrotic tissue and 
the decreased blood flow, resulting in a restricted value 
of ADC maps for distinguishing nodules in cirrhotic liver 
[34, 35].

The most important innovation of this study was that 
we assessed the additive value of MRI-based radiomics 
analysis to LI-RADS v 2018 algorithm in differentiation 
of sHCC from benign nodules. Compared with LI-RADS 
alone, with the addition of radiomics analysis, the radi-
omics nomogram model showed a significant  improve-
ment in overall accuracy (97.4% vs 90.4%), specificity 
(97.7% vs 81.8%) and PPV (99.1% vs 92.9%). Furthermore, 
the sensitivity increased from 93.8% to 97.3%, and NPV 
increased from 83.7% to 93.5%. Thus, radiomics analy-
sis may act as a valid noninvasive auxiliary method  to 
improve the classification of sHCC from benign nodules 
in cirrhotic liver.

In addition, we found that antiviral therapies may 
reduce the risk of hepatocarcinogenesis in both HCV 
and HBV patients and the proportion of patients who 
received antiviral therapies in the HCC group was lower 
than that in the benign nodule group, supporting the 
findings of a previous study in which antiviral therapies 
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were confirmed to play an important role in the progno-
sis and evolution of HCC [36].

There are several limitations of this study. First, 
because of the retrospective single-center nature of 
our study design, these results are preliminary and 
needed validation using an external dataset to assess 
their reproducibility and clinical translation. Sec-
ond, approximately 54.7% of the patients accepted 
Gd-DTPA-enhanced imaging, so ancillary features 
based on HBP imaging were unavailable for these cases. 
In addition, the growth threshold was not considered in 
the assessment, because MRI follow-up data for more 
than 6 months were unavailable for most patients. Nev-
ertheless, the diagnostic value of the growth threshold 
may be low [10], and follow-up of high-risk patients 
with nodules > 10 mm does not correspond to existing 
international guidelines [37]. Third, the population of 
this study was composed largely of HBV patients, and 
only contained a minority of patients with HCV-related 
cirrhosis. Thus, a comparison of results between the 
HBV and HCV groups was not performed. Finally, only 
small liver lesions were included in this study, because 
of which the possibility of selection bias may not have 
been completely avoided.

Conclusions
MRI-based radiomics analysis may supplement the 
value of the LI-RADS v 2018 algorithm in the differen-
tiation of small HCC from benign nodules in the cir-
rhotic liver.
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