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Abstract

Background: Histamine assumes an important role as a major mediator in various
pathologic disorders associated with inflammation and immune reactions. However,
the involvement of histamine in the pathological conditions and symptoms of sepsis
remains entirely unknown. In this study, we establish that histamine is identified as a
contributory mediator to promoting the development of organ injury in sepsis.

Methods: Histidine decarboxylase (HDC) gene knockout (HDC−/−) mice, histamine H1-/
H2-receptor gene-double knockout (H1R

−/−/H2R
−/−) mice, and their littermate wild-type

(WT) C57BL/6J mice underwent cecal ligation and puncture (CLP) or sham operation.
Some WT mice were injected intraperitoneally with d-chlorpheniramine and famotidine
60 min before CLP to block H1- and H2-receptors, respectively.

Results: In mice rendered septic by CLP, tissue histamine levels were elevated in
association with increased HDC expression. Sepsis-induced abnormal cytokine
production and multiple organ injury (lung, liver, and kidney) were significantly
less pronounced in HDC−/− mice as compared with WT controls, and HDC deficiency
had improved survival in sepsis. This benefit corresponded with a significant reduction
in activation levels of the nuclear factor (NF)-κB signaling pathway. H1R

−/−/H2R
−/− mice

apparently behaved similar to HDC knockout mice in reducing sepsis-related pathological
changes. Pharmacological interventions with H1- and H2-receptor antagonists indicated
that both H1- and H2-receptors were involved in septic lung and liver injury, whereas only
H2-receptors contributed to septic kidney injury.

Conclusions: In the setting of sepsis, histamine, through activation of H1- and H2-
receptors, serves as an aggravating mediator to contribute to the development of
sepsis-driven major end-organ failure.
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Background
Sepsis is a common and potentially life-threatening medical condition in popula-

tions in intensive care units (ICU). Despite advances in overall care of critically

ill patients, sepsis remains the primary cause of death from microbial infections

[1, 2]. The development of a failure of one or more organs, including the lung,

kidney, and liver, poses a major threat to the survival of patients with sepsis. In

accordance with the importance of more timely management of patients with

sepsis or at risk of developing sepsis, sepsis is now defined as life-threatening

organ dysfunction due to a dysregulated host response to infection [3]. The
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pathogenesis of sepsis-induced organ failure has been extensively gleaned from

animal models and human studies [4–6], but the mechanisms underlying the path-

ophysiologic processes that both initiate and promulgate organ dysfunction in

sepsis have not been fully elucidated. A greater understanding of the mechanisms

that underlie the development of organ dysfunction in sepsis may enable us to de-

velop therapies targeted at preventing or limiting molecular events associated with

the progress of fatal organ failure and, hence, leading to improved outcomes.

In a prospective, controlled, clinical study, elevated plasma histamine levels have been

shown to be causally associated with sepsis [7]. In our previous studies, the sustained

elevation of plasma histamine has been shown to be associated with the time-

dependent increase in expression of histidine decarboxylase (HDC), which is the cata-

bolic enzyme of histamine synthesis, in the animals with lipopolysaccharide (LPS)- and

cecal ligation and puncture (CLP)-induced sepsis [8–10]. Furthermore, endotoxemia

may cause superinduction of H1- and H2-receptors in cardiovascular and pulmonary

tissues [8, 9, 11]. Since histamine mediates a wide range of cellular responses, including

allergic and inflammatory reactions, gastric acid secretion, vascular tone and permeabil-

ity, and neurotransmission in the central nervous system [12], the histamine biological

responsiveness may be of special importance in certain pathological aspects suggestive

of histamine release. It would be thus allowable to assume that histamine may play a

contributory role in the development of major organ dysfunction and failure associated

with sepsis.

In the present study, we examined whether genetic and pharmacological inter-

ventions of histamine can provide a change in systemic inflammation and organ

injury in mice with CLP-induced polymicrobial sepsis in order to explore the role

of histamine in the pathophysiology of the septic syndrome. CLP-induced sepsis

is an animal model that has high relevance to humans because it reproduces

many hallmarks of sepsis that occur in patients [13]. We applied HDC gene

knockout (HDC−/−) mice [14], lacking histamine, to investigate the effect of hista-

mine deficiency on the pathophysiology of CLP-induced sepsis. Along with HDC
−/− mice, we also used histamine H1-/H2-receptor gene-double knockout (H1R
−/−/H2R

−/−) mice generated by crossbreeding of H1-receptor null mice and H2-re-

ceptor null mice. Finally, we tested changes in the pathophysiological features of

CLP-induced sepsis by pharmacological antagonism of H1- and H2-receptors.

Methods
Generation of HDC−/− mice and H1R

−/−/H2R
−/− mice

HDC−/− mice were generated according to previously described procedures [14].

H1-receptor gene deficient mice and H2-receptor gene deficient mice were a gift

from Prof. Kazuhiko Yanai, Tohoku University [15, 16], and the progeny of the

colony was maintained. Serially breeding of these two strains generated the

double-knockout line (H1R
−/−/H2R

−/−). Genotyping of the resultant mice was

determined by PCR analysis of DNA extracted from tail samples. HDC−/− mice

and H1R
−/−/H2R

−/− mice were of a genetic background of a C57BL/6 J strain, and

their littermates were used as wild-type (WT) controls. Mice were housed under

specific-pathogen-free conditions.

Hattori et al. Intensive Care Medicine Experimental  (2016) 4:36 Page 2 of 19



Animal model of sepsis

All animal studies were conducted in accordance with the National Institute of Health

Guidelines on the use of laboratory animal and with approval of the Care and Use Com-

mittee of the University of Toyama. The surgical procedure to generate CLP-induced sepsis

was performed as described elsewhere [17–19]. In brief, male mice, 8–10 weeks old, were

anesthetized with 3–4% sevoflurane, and a middle abdominal incision was made. The

cecum was mobilized, ligated, and punctured twice with a 21-gauge needle, allowing expos-

ure of faces, the bowel was repositioned, and the abdomen was closed with sterile suture.

Sham-operated control underwent the same procedure except for ligation and puncture of

the cecum. Some WT mice were injected intraperitoneally with a single dose of d-chlor-

pheniramine (10 mg/kg) and famotidine (20 mg/kg) 60 min before CLP to block H1- and

H2-receptors, respectively. A noninvasive computerized tail-cuff system was used for meas-

uring blood pressure and heart rate in mice [17, 20].

Measurement of histamine

The amount of histamine was determined by the fluorometrical method with o-

phthalaldehyde [21]. The tissues were homogenized in 4–5 volumes of PBS con-

taining 2 M NaCl, lysed using 0.5% Triton X-100, and centrifuged at 12,000×g for

30 min at 4 °C in order to obtain the soluble fraction for histamine assay.

RNA extraction and quantitative real-time PCR

Total RNA was isolated from tissues with Sepazol-RNA I Super G (Nacalai Tesque,

Kyoto, Japan). PrimeScript RT Master Mix (Takara Bio, Ohtsu, Japan) or ReverTra Ace

qPCR RT Master Mix (Toyobo, Osaka, Japan) was used for the reverse transcription

reaction, and real-time PCR analyses were performed using SYBR Premix Ex Taq II (Tli

RNaseH Plus), ROX plus (Takara Bio). Values were normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) according to the manufacturer’s protocol

(MX3000P real-time PCR system; Agilent Technologies Inc., Santa Clara, CA, USA).

Serum analysis

Blood was collected in serum gel tubes (Sarsted, Nümbrecht, Germany), and serum was

obtained and stored at −80 °C. The quantitative determination of aspartate aminotransferase

(AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine in serum

was made on Hitachi 7180 Biochemistry Automatic Analyzer (Hitachi High-Technologies,

Tokyo, Japan). Interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and monocyte

chemotactic protein (MCP)-1 were measured by the use of a commercially available

enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN, USA),

according to the manufacturer’s instructions. The plate was read on a microplate reader

(Nippon-InterMed, Tokyo, Japan). Assays were performed in duplicate.

Lung wet-to-dry weight ratio

Surgically removed lung tissues were blotted dry and weighed to determine the lung

wet weight. The lung tissues were then wrapped loosely in aluminum foil, placed in a

drying oven overnight, and weighed again for calculation of the wet-to-dry weight ratio

[9, 22].
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Histologic examination

Tissues were fixed by immersion in 10 % buffered formaldehyde overnight, embedded

in paraffin, and cut into 4-μm-thick sections. After deparaffinization, slides were

stained with hematoxylin and eosin by standard methods. All the histological studies

were performed in a blinded fashion. A semiquantitative morphometric analysis of

lung injury was performed by scoring from 0 to 4 (none, light, moderate, severe,

very severe) for the following categories: neutrophil infiltration, pulmonary edema,

and disorganization of lung parenchyma and hemorrhage [17]. A total lung injury

score was calculated by adding the individual scores in every animal and averaging

the total values in each group.

Immunohistochemistry

Tissue sections (4 μm) were rehydrated, and endogenous peroxidases were quenched

with 3% hydrogen peroxide. Slides were then incubated overnight at 4 °C with primary

antibodies for myeloperoxidase (MPO; 1:200 dilution; Abcam, Cambridge, MA, USA),

or neutrophil gelatinase-associated lipocalin (NGAL; 1:2000; Abcam). All sections were

incubated with Histofine® Simple Stain Mouse MAX PO(R) (Nichirei Biosciences,

Tokyo, Japan) including the secondary antibody which is reduced to Fab fragment.

Sections were developed with 3,3’-diaminobenzidine and counterstained with

hematoxylin.

Immunofluorescence staining

The tissue sections were exposed to the fluorescent antibody Alexa Fluor 546-

conjugated anti-mouse IgG (Invitrogen, Carlsbad, CA, USA) after overnight incubation

with the primary antibody according to the method in our previous study with minor

modification [20]. The nucleus was counterstained with Hoechst 33342 dye (Invitro-

gen). Immunofluorescence images were observed under an Olympus BX-51 fluores-

cence microscope (Olympus, Tokyo, Japan) and processed using Adobe Photoshop CC

software (Adobe, San Jose, CA, USA).

Western blot analysis

After being removed and rinsed in sterilized PBS on ice, tissues were homogenized and

then centrifuged at 18,000×g for 10 min at 4 °C, and the resulting supernatants were

collected. When required, nuclear protein extracts from lungs were obtained with a

commercially available nuclear extraction kit (Sigma-Aldrich, St. Louis, MO, USA), as

described in the manufacturer’s manual. The proteins in the supernatant were mea-

sured using BCA Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA).

Immunoblotting was performed as described in our previous reports [19, 23]. Samples

(30–50 μg of protein) were electrophoresed on 10 or 14 % SDS-PAGEs and transferred

to PVDF membrane. For primary antibody incubation (overnight at 4 °C), rabbit poly-

clonal or monoclonal antibodies were used against NGAL (1:1,000; Abcam), IκBα

(1:1,000; Cell Signaling, Danvers, MA, USA), and phospho-IκBα (Ser-32) (1:1,000; Cell

Signaling), whereas a mouse monoclonal antibody was used against nuclear factor

(NF)-κB (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA), β-actin (1:5,000;

Wako Pure Chemical, Osaka, Japan), and GAPDH (1:5,000; Wako Pure Chemical) and
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a goat polyclonal antibody against lamin B (1:200; Santa Cruz Biotechnology). Primary

antibody detection was performed with horseradish peroxidase-conjugated secondary

antibodies. Binding of the antibody was detected by an ImmunoStar Zeta (Wako Pure

Chemical), and levels of protein expression were quantitated by a luminoimage LAS-

4000 analyzer (Fuji Film, Tokyo, Japan).

Statistical analysis

Values are expressed as means ± SEM. Statistical assessment of the data was made by

Student’s unpaired t test or ANOVA followed by Tukey’s multiple comparison test

using Prism software (ver. 7; GraphPad Software, San Diego, CA, USA). Differences at

p < 0.05 were considered statistically significant.

Results
Changes in tissue histamine concentrations, HDC expression, and histamine receptor

expression after sepsis induction

We initially ascertained whether tissue histamine synthesis is altered in WT mice after

sepsis induction by CLP. As demonstrated in our previous report [10], CLP-induced

polymicrobial sepsis resulted in an increase in plasma concentrations of histamine in

mice (Additional file 1: Figure S1). Thus, plasma histamine concentrations were signifi-

cantly (p < 0.05) elevated from baseline of 16.1 ± 3.5 ng/mL (n = 4) early after CLP, with

a peak concentration at 3 h (38.9 ± 3.5 ng/mL, n = 4). The basal levels of histamine

highly varied between tissues (lung, 349 ± 87 ng/g; liver, 7.9 ± 2.7 ng/g; kidney, 165 ±

14 ng/g, n = 13 for each). When sepsis was induced by CLP, however, histamine levels

elevated in all tissues in a time-dependent manner (Fig. 1a). In mammalian tissues,

histamine is synthesized from L-histidine by HDC. Real-time PCR analysis showed that

the transcript levels of HDC were transiently but greatly increased in all tissues after

induction of sepsis (Fig. 1b).

Changes in histamine H1- and H2-receptor mRNA expression in the lung, liver, and

kidney tissues of WT mice after sepsis induction were also examined by real-time PCR

(Fig. 1b). In lung tissues, no increase in H1-receptor mRNA expression was observed

after CLP. On the other hand, the mRNA levels were increased more than threefold in

liver and kidney tissues at 6–12 h after CLP when compared with those shown in

controls. Following induction of sepsis by CLP, a significant increase in H2-receptor

mRNA expression was transiently detected in lung and liver tissues. In the kidney,

CLP-induced sepsis resulted in a sustained, significant increase in the transcript level of

H2-receptors.

Sepsis-induced inflammation and organ injury are alleviated in HDC knockout mice

When blood levels of proinflammatory or chemotactic cytokines were measured using

an ELISA, the sham-operated control animals had low levels of the cytokines examined

here and no difference was found between WT and HDC−/− mice (Fig. 2a). The animals

18 h after CLP-induced sepsis had marked elevations in IL-1β, IL-6, TNF-α, and MCP-

1. Following sepsis induction, however, HDC−/− mice displayed an evidently lower

levels of those cytokines compared with WT mice. We also examined changes in

mRNA levels of IL-1β, IL-6, TNF-α, and MCP-1 in lung, liver, and kidney tissues using
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real-time PCR (Fig. 2b). After induction of sepsis, mRNA expression levels of those

cytokines greatly increased in all tissues.

The animals subjected to CLP showed a sharp fall in systolic blood pressure (Fig. 3a).

No significant difference in hypotension was observed between WT and HDC−/− mice

after CLP. The CLP-induced sepsis caused a transient decrease in the heart rate in both

Fig. 1 Changes in histamine synthesis and histamine receptor expression in lung, liver, and kidney tissues
from mice after CLP-induced sepsis. a Tissue histamine concentrations after CLP (n = 8/group). b Tissue mRNA
levels of HDC, histamine H1- and H2-receptors after CLP (n = 6/group). The mRNA levels were quantified by real-
time PCR. The values were expressed as a fold increase above control normalized GAPDH. All values are provided
as means ± SEM. *P< 0.05, **P < 0.01, and ***P < 0.001 vs. control
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WT and HDC−/− mice, but the heart rate responses of the two animal groups were not

substantially different (Fig. 3b). HDC−/− mice had a survival advantage after CLP as

compared with WT controls (Fig. 3c).

Histologic examination of hematoxylin and eosin-stained sections of the lungs

showed massive infiltration of inflammatory cells, disorganized architecture with

irregular alveoli, and intra-alveolar hemorrhage arising from capillary rupture in WT

mice 24 h after sepsis induction by CLP (Fig. 4a). In lungs from HDC−/− mice, these

histopathological changes were lessened. Semiquantitative assessment using lung injury

score revealed that the score was significantly lower in HDC−/− mice than in WT

controls. The sepsis-induced increase in lung staining of MPO, an index of neutrophil

infiltration, was significantly reduced in HDC−/− mice in comparison with WT controls

(Fig. 4b). When the wet-to-dry lung weight ratio was measured for assessment of lung

Fig. 2 Reduced cytokine levels in HDC−/− mice following CLP-induced sepsis. a Blood levels of IL-1β, IL-6,
TNF-α, and MCP-1. The blood was collected 18 h after surgery (n = 4–9/group), and those cytokine levels
were measured by the use of ELISA. b Transcription levels of IL-1β, IL-6, TNF-α, and MCP-1 in lung, liver, and
kidney tissues. Tissues were harvested 18 h after surgery (n = 4–11/group). The mRNA levels were quantified
by real-time PCR. The values were expressed as a fold increase above sham-operated control normalized
GAPDH. All values are provided as means ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the respective
control (18 h after sham operation). #P < 0.05 vs. CLP WT
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vascular leak, the ratio was significantly increased in WT mice after sepsis induction

(Fig. 4c).

Following induction of sepsis by CLP, a marked elevation in serum levels of AST and

ALT, a functional readout for liver damage, was observed in WT mice (Fig. 5a). The

elevation in these serum aminotransferase levels after sepsis was significantly lowered

in HDC−/− mice. When liver injury was assessed using liver specimens stained with

hematoxylin and eosin, massive alterations in hepatocytes, including irregular contour

of cells and nuclei, cytoplasmic vacuolation, cytoplasmic and nuclear degeneration, and

cellular rupture, were found in WT mice after sepsis induction (Fig. 5b). A destruction

of the sinusoidal structure of the liver and erythrocyte agglutination were also observed.

Such histopathological alterations showing the liver damage after sepsis was less pro-

nounced in HDC−/− mice. Furthermore, the highly increased neutrophilic influx in the

liver from septic WT mice was indicated by MPO staining (Fig. 5c). There was much

lower MPO expression in liver specimens from HDC−/− mice.

The serum levels of BUN and creatinine, both of which provide a guide to kidney

function, were markedly elevated in septic WT mice (Fig. 6a, b). Pathologically elevated

Fig. 3 Hypotension, heart rate, and mortality in WT and HDC−/− mice with CLP-induced sepsis. a Systolic arterial
blood pressure (SBP) after surgery. b Heart rate changes after surgery. All values are provided as means ± SEM.
*p < 0.05, **p < 0.01; n = 3–5 per group. c Kaplan-Meier survival curves. Eight mice were used for each group.
*p < 0.05 (log rank test)
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serum BUN and creatinine levels were reduced in HDC−/− mice. No apparent histo-

pathological finding was detectable even in WT mice after sepsis induction when the

renal tissue sections were stained using hematoxylin and eosin (Fig. 6c). However, we

found that septic WT mice displayed the intense staining of NGAL, a biomarker of

kidney damage (Fig. 6d). HDC−/− mice following sepsis induction exhibited weaker

NGAL staining in kidneys. In line with the findings from immunohistochemical assess-

ment of renal NGAL, Western blot analysis showed that a striking rise in renal expres-

sion of NGAL caused by sepsis was more evident in WT as compared with HDC−/−

mice (Fig. 6e).

Fig. 4 Reduced lung injury in HDC−/− mice following CLP-induced sepsis. Lung tissues were harvested from
sham-operated and CLP-induced septic mice 24 h after surgery. a Lung sections stained with hematoxylin
and eosin. Original magnification, ×200. A bar graph shows semiquantitative analysis of lung tissues by lung
injury score, which was performed by scoring from 0–4 as described in Methods. A total lung injury score
was calculated by adding the individual scores in every animal and averaging the total values in each
group (n = 4–10/group). b Sections were stained with antibody against MPO followed by peroxidase
staining. Original magnification, x200 or x400. A bar graph shows the summary of quantitation of
MPO-positive cell counts. The average of MPO-positive cell number in three fields per sample was
calculated (n = 4–10/group). c Wet-to-day ratios of lungs harvested from the animals were determined to
assess pulmonary edema (n= 6/group). The summarized results are presented as means ± SEM. *P< 0.05, **P< 0.01,
and ***P< 0.001 vs. the respective control (24 h after sham operation). ##P< 0.01 vs. CLP WT
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Sepsis-induced NF-κB activation is reduced in HDC knockout mice

We examined whether sepsis-induced activation of the transcription factor NF-κB is

altered in HDC−/− mice. Since the activity of NF-κB is primarily regulated by inter-

action with its inhibitory protein IκBα, phosphorylation and degradation of IκBα in

lung tissues after sepsis induction were monitored by Western blot (Fig. 7a). Induction

of sepsis resulted in greatly increased phosphorylation and degradation of IκBα in lungs

of WT mice. Such changes were diminished in HDC−/− mice. The translocation of NF-

κB p65 into the nucleus was increased in lung nuclear extracts from septic WT mice

(Fig. 7b). In HDC−/− mice, the nuclear translocation of NF-κB p65 was weak. In line

with this finding, nuclear staining for NF-κB p65 was more detectable in WT than in

HDC−/− mice after sepsis induction (Fig. 7c).

Fig. 5 Reduced liver injury in HDC−/− mice following CLP-induced sepsis. a, b Serum levels of AST and ALT.
Blood samples were collected from sham-operated and CLP-induced septic mice 18 h after surgery (n= 4–11/
group). All values are provided as means ± SEM. ***P< 0.001 vs. the respective control (18 h after sham operation).
##P < 0.01 vs. CLP WT. c, d Representative micrographs liver sections stained with hematoxylin and eosin and anti-
MPO antibody followed by peroxidase staining. Original magnification, ×200. Tissues were harvested
from sham-operated and CLP-induced septic mice 24 h after surgery. The same results were obtained
with two other experiments
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Sepsis-induced inflammation and organ injury are alleviated in H1-/H2-receptor double

knockout mice

When H1R
−/−/H2R

−/− mice were rendered septic by CLP, the rise in blood levels of

cytokines, IL-6 and MCP-1, was evidently attenuated in comparison with WT

(Fig. 8a). In addition, H1R
−/−/H2R

−/− mice exhibited lower levels of IL-1β, IL-6, and

MCP-1 mRNAs in lung, liver, and kidney tissues as compared with WT following

sepsis (Additional file 2: Figure S2). The histological derangements of the lungs,

liver, and kidney following CLP-induced sepsis were reduced in H1R
−/−/H2R

−/−

mice (Fig. 8b). When serum ALT in H1R
−/−/H2R

−/− mice was measured as a

marker indicative of liver damage, the markedly increased level after sepsis was

subsided (Fig. 8c). Also, the high levels of serum BUN and creatinine, routine mea-

sures of kidney function, observed after sepsis were alleviated in H1R
−/−/H2R

−/−

mice (Fig. 8d).

Fig. 6 Reduced kidney injury in HDC−/− mice following CLP-induced sepsis. a, b Serum levels of BUN and
creatinine. Blood samples were collected from sham-operated and CLP-induced septic mice 18 h after
surgery (n = 4–11/group). All values are provided as means ± SEM. ***P < 0.001 vs. the respective control
(18 h after sham operation). #P < 0.05 and ##P < 0.01 vs. CLP WT. c, d Representative micrographs liver
sections stained with hematoxylin and eosin and anti-NGAL antibody followed by peroxidase staining.
Original magnification, ×200. The same results were obtained with two other experiments. e Western
blot image of NGAL protein expression. GAPDH served as loading control. Shown are representative
blots from three independent experiments in which the same results were obtained. Tissues were
harvested from sham-operated and CLP-induced septic mice 24 h after surgery
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Effects of H1- and H2-receptor antagonists on sepsis-induced inflammation and organ

injury

Mice were injected intraperitoneally with a single dose of d-chlorpheniramine (10 mg/

kg) and famotidine (20 mg/kg) 60 min before CLP to block H1- and H2-receptors,

respectively. The elevated blood levels of IL-6 and MCP-1 after sepsis appeared to be

reduced more by combined treatment with d-chlorpheniramine and famotidine than

with famotidine alone (Fig. 9a). Furthermore, the sepsis-induced increases in tissue

levels of IL-1β, IL-6, and TNF-α mRNAs were lowered when the two blockers were

given together to the animals (Additional file 3: Figure S3).

Fig. 7 Kinetics of NF-κB activation in lungs of HDC−/− mice following CLP-induced sepsis. Lung tissues were
harvested from sham-operated and CLP-induced septic mice 18 h after surgery. a Western blot analysis
using anti-IκBα antibody and anti-phospho-IκBα antibody. β-Actin served as loading control. b Nuclear
proteins were extracted, and then NF-κB p65 was detected by Western blot analysis. Lamin B served
as a nuclear marker. c Immunofluorescent images for NF-κB p65 (red) in lung sections. Nuclei were
counterstained with Hoechst 33342 dye (blue). Original magnification, x400. Shown are representative
blots from two independent experiments in which the same results were obtained
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When CLP-induced septic mice received treatment with d-chlorpheniramine,

famotidine, or both, the histological damage in the lungs was apparently mini-

mized and the increase in MPO-positive cells was blunted by each treatment

(Fig. 9b). In liver histology, d-chlorpheniramine, famotidine, or both showed a

Fig. 8 Reduced tissue injury in H1R
−/−/H2R

−/− mice following CLP-induced sepsis. a Blood levels of IL-6 and
MCP-1. b Representative micrographs of tissue sections stained with hematoxylin and eosin, anti-MPO antibody,
and anti-NGAL antibody. Lung, liver, and kidney tissues were harvested from sham-operated and CLP-induced
septic mice 24 h after surgery. Original magnification, ×200 or ×400. The same results were obtained with two
other experiments. c Serum levels of ALT. d Serum levels of BUN and creatinine. Blood and tissue samples were
taken at 18 h after surgery (n = 5–8). All values are provided as means ± SEM. #p < 0.05 vs. CLP WT
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protective effect on liver damage caused by CLP-induced sepsis (Fig. 9b). The

serum ALT levels, which were markedly increased at 18 h after sepsis induction,

were reduced by treatment with each of d-chlorpheniramine and famotidine

(Fig. 9c). In the kidneys, intense accumulation of immunoreactive NGAL that came

along with sepsis remained unchanged with d-chlorpheniramine, but was attenu-

ated by famotidine alone or combined with d-chlorpheniramine (Fig. 9b). Serum

Fig. 9 Effects of treatment with d-chlorpheniramine and famotidine on elevated blood cytokines and organ
injury following CLP-induced sepsis. a Blood levels of IL-6 and MCP-1. b Representative micrographs of tissue
sections stained with hematoxylin and eosin, anti-MPO antibody, and anti-NGAL antibody. Lung, liver, and kidney
tissues were harvested from sham-operated and CLP-induced septic mice 24 h after surgery. Original
magnification, ×200 or ×400. The same results were obtained with two other experiments. c Serum
levels of ALT. d Serum levels of BUN and creatinine. Blood and tissue samples were taken at 18 h after
surgery (n = 6–10/group). All values are provided as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 vs.
the respective sham control. #p < 0.05, ##p < 0.01 vs. CLP alone
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BUN and creatinine levels showed no difference between septic mice untreated

and treated with d-chlorpheniramine, but famotidine treatment blunted the rise in

the serum markers (Fig. 9c).

Discussion
The specific pathophysiology and molecular basis of sepsis-associated multiple organ failure

is still not fully understood. The updated definition of sepsis and septic shock has unveiled

that organ dysfunction/failure is critical in determining the clinical outcome of sepsis [3].

Here, we provide clear evidence that histamine is identified as an aggravating mediator to

contribute to the development of major end-organ (that is, lung, liver, and kidney) injury in

sepsis.

Circulating levels of histamine were significantly elevated in mice after induction

of polymicrobial sepsis by CLP, as fully demonstrated in our previous report [10].

This elevation in the circulating histamine levels was associated with increased

tissue expression of HDC, an enzyme that only forms histamine in mammals. This

could result in locally elevated levels of histamine concentrations in tissues. Indeed,

we found that histamine levels elevated in the lung, liver, and kidney tissues in a

time-dependent manner. In addition, the upregulation of gene expression levels of

H1- and H2-receptors was observed after sepsis induction but quite varied between

tissues. Taken together, these data shadow a possible role of histamine in the patho-

physiology of sepsis.

Our CLP murine model of sepsis developed lung, liver, and kidney injury, as evidenced

by histological changes, neutrophil filtration index, and biochemical variables. We found

that sepsis-induced multiple organ injury was significantly attenuated in HDC−/− mice.

This suggests that the lack of endogenous histamine could help to reduce sepsis-induced

multiple organ injury. Alternatively, we interpret this finding to assume that histamine

acts as a mediator to promote the development of multiple organ injury in sepsis. The

attenuation of septic organ injury in HDC−/− mice may be partly the result of a reduction

in cytokine production. Sepsis triggers overproduction of a diverse set of proinflammatory

and chemotactic cytokines as demonstrated in this study. Their uncontrolled, exuberant

production can be deleterious to various tissues and can lead to organ injury and dysfunc-

tion [24], although the pathogenesis of multiple organ dysfunction is multifactorial and is

still being explored [25]. In agreement with the present results on cytokines in HDC−/−

mice, LPS-stimulated IL-6 production in liver tissues has been shown to fall to a low level

in HDC−/− mice [26]. Moreover, in vitro experiments have reported that histamine

increases IL-6 production in B cells and glial cells [27], endothelial cells [28], and periph-

eral blood mononuclear cells [29], although there is found to be a report showing that

histamine suppresses LPS-induced gene expression and synthesis of TNF-α in peripheral

blood mononuclear cells mediated by H2-receptors [30].

However, our experiments with the H1-receptor antagonist d-chlorpheniramine

and the H2-receptor antagonist famotidine indicate that the lessening of sepsis-

induced organ injury observed in HDC−/− mice cannot be solely attributed to alter-

ations in proinflammatory and chemotactic cytokine production. These antagonists

were not necessarily effective in reducing some cytokines in blood, such as IL-1β

and IL-6, which is inconsistent with their changes obtained in HDC−/− mice. Yet,
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both d-chlorpheniramine and famotidine were effective in reducing septic lung and

liver injury, whereas famotidine, but not d-chlorpheniramine, mitigated septic

kidney injury. This suggests that, while both H1- and H2-receptors are involved in

lung and liver injury, only H2-receptors contribute to kidney injury in sepsis. The

involvement of histamine via H1-receptors in lung vascular hyperpermeability in

sepsis has been documented [9, 31]. H2-receptors have also been shown to be

involved in the recruitment of neutrophils and protein leaks in LPS-induced acute

lung injury [32]. These adverse effects of histamine mediated by H1- and H2-recep-

tors could be responsible for liver injury in sepsis. In renal ischemia/reperfusion

injury, the beneficial effects of the H2-receptor antagonist ranitidine have been

found to be partly mediated by decreased IL-6 production [33]. Furthermore, it has

been reported that mast cell-deficient mice exhibit attenuated acute kidney injury

with cisplatin which is associated with reduced serum TNF-α levels and reduced

recruitment of leukocytes to the inflamed kidney [34].

The transcription factor NF-κB has been well recognized as a pivotal player in

the pathophysiology of sepsis [35]. NF-κB is involved in regulating the transcription

of many of the immunomodulatory mediators that can participate in the develop-

ment of sepsis-induced organ failure [36]. In a myriad of stimuli, commencing with

endotoxin, IκBα is quickly phosphorylated, ubiquitinated, and degraded, releasing

the NF-κB heterodimer, which then translocates from cytoplasm into nucleus to

mediate the transcription of inflammatory genes. Interestingly, IκBα phosphoryl-

ation and degradation following CLP were impaired in lungs of HDC−/− mice. As a

result, HDC−/− mice displayed low nuclear levels of NF-κB p65 in CLP-induced

sepsis. We interpret these results to indicate that histamine can exert a facilitatory

effect on activation of the NF-κB signaling pathway. Thus, histamine may help to

promote the development of major end-organ injury in sepsis by enhancing NF-κB

activity.

Contrary to the present findings indicative the role of H2-receptor activation in worsening

septic liver injury, a previous report has demonstrated that histamine pretreatment can

ameliorate D-galactosamine/LPS-induced liver injury in WT and H1-receptor knockout

mice, but not H2-receptor knockout mice [37]. Furthermore, histamine through H2-recep-

tors has been documented to protect the liver against alcohol-induced injury in rats [38]. It

is difficult to reconcile these findings at present, but possible reasons for the apparent

discrepancy may include different regulatory mechanisms between systemic vs.

local inflammation and concentration-related differences between endogenous vs.

exogenous histamine.

It is now well established that histamine exerts its biological effects by binding to and

activating four distinct separate receptors: H1-, H2-, H3-, and H4-receptors [12].

Although our experiments with d-chlorpheniramine and famotidine imply that H1- and

H2-receptors are involved in the development of septic organ injury, we cannot entirely

exclude that the lack of activation of H3- and H4-receptors may contribute to reduced

organ injury in HDC−/− mice following sepsis. Interestingly, H4-receptors appear to

play a role in sepsis-associated induction of apoptosis in the key organs [10]. The exact

role of H3- and H4-receptors in the pathophysiology of sepsis awaits further study using

the animals deleted for their genes. It should be noted, however, that H1R
−/−/H2R

−/−

mice displayed lesser degree of sepsis-related organ injuries as seen in HDC−/− mice.
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Clinically, H1-receptor antagonists may be prescribed in perioperative settings,

since many narcotics can induce itching [39]. H2-receptor antagonists are widely

used in critically ill patients to reduce the risk of gastrointestinal bleeding [40, 41].

Intriguingly, a significant risk for hospital-acquired pneumonia has been found for

proton pump inhibitor (PPI) use but not H2-receptor antagonists in hospitalized

patients [42], although the findings of an updated meta-analysis to evaluate the

effects of PPIs vs. H2-receptor antagonists on clinically gastrointestinal bleeding in

critically ill patients have shown no differences between drugs in the risk of pneu-

monia, death, or ICU length of stay [43]. Whether H2-receptor antagonists vs. PPIs,

when used for the prevention of gastrointestinal bleeding in the ICU, can differently

affect the development of sepsis-associated organ failure awaits future clinical trials.

Conclusions
This study sheds light on the new role of histamine in the pathophysiology of sepsis. We

represent the first report that endogenous histamine acting on H1- and H2-receptors is

identified as an aggravating mediator to contribute to the development of major end-

organ (that is, lung, liver, and kidney) injury in sepsis. While our present study suggests

the benefit of their treatment in reducing sepsis disorder and supports that they may be

safe medications in critically ill patients with sepsis, the validity and feasibility of the use

of these histamine receptor antagonists to avoid the development of septic organ injury

warrant further clinical investigations and evaluation.
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values were expressed as a fold increase above sham-operated WT normalized GAPDH. (PNG 10 kb)

Additional file 3: Figure S3. Transcription levels of IL-1β, IL-6, and TNF-α in lung, liver, and kidney tissues of
d-chlorpheniramine- and famotidine-treated mice following CLP-induced sepsis. Tissues were harvested 18 h
after surgery (n = 7–15/group). The values were expressed as a fold increase above sham-operated control
normalized GAPDH. (PNG 8 kb)

Acknowledgements
The authors thank Nan Fukudo and Misuzu Nakamura for their expert technical assistance. They also thank
Prof. Joji Imura for his valuable contribution to histological work and Prof. Toshimasa Toyo’oka for giving K.T.
the opportunity to join this research project. This study was supported by Grant-in-Aids for Scientific Research
(26460336) and for Challenging Exploratory Research (15 K15661) from the Ministry of Education, Culture,
Sports, Science, and Technology of Japan.

Authors’ contributions
MY, NM, and YH conceived and designed the experiments. MH, WO, ST, KT, TF, and HO performed the experiments.
MH, WO, and TF analyzed the data. KH, NM, and YH wrote the paper. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval
Animal experimentation was performed according to national and institutional animal care and ethical guidelines and
was approved by the local board.

Author details
1Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences,
University of Toyama, Toyama, Japan. 2Department of Anesthesiology, Graduate School of Medicine and

Hattori et al. Intensive Care Medicine Experimental  (2016) 4:36 Page 17 of 19

dx.doi.org/10.1186/s40635-016-0109-y
dx.doi.org/10.1186/s40635-016-0109-y
dx.doi.org/10.1186/s40635-016-0109-y


Pharmaceutical Sciences, University of Toyama, Toyama, Japan. 3Department of Immunobiology, Division of
Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences,
Okayama, Japan. 4Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo,
Japan. 5Department of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of
Shizuoka, Shizuoka, Japan. 6Department of Applied Quantum Medical Engineering, School of Engineering, Tohoku
University, Sendai, Japan. 7Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of
Medicine, Nagoya, Japan.

Received: 28 July 2016 Accepted: 29 October 2016

References
1. Wang HE, Shapiro NI, Angus DC, Yealy DM (2007) National estimates of severe sepsis in Unites States emergency

departments. Crit Care Med 35:1928–1936
2. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851
3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD,

Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL,
Angus DC (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–810

4. Gustot T (2011) Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin
Crit Care 17:153–159

5. Deutschman CS, Tracey KJ (2014) Sepsis: current dogma and new perspectives. Immunity 40:463–475
6. Rossaint J, Zarbock A (2015) Pathogenesis of multiple organ failure in sepsis. Crit Rev Immunol 35:277–291
7. Neugebauer E, Lorenz W, Rixen D, Stinner B, Sauer S, Dietz W (1996) Histamine release in sepsis: a prospective,

controlled, clinical study. Crit Care Med 24:1670–1677
8. Matsuda N, Hattori Y, Sakuraya F, Kobayashi M, Zhang XH, Kemmotsu O, Gando S (2002) Hemodynamic

significance of histamine synthesis and histamine H1- and H2-receptor gene expression during endotoxemia.
Naunyn-Schmiedeberg’s Arch Pharmacol 366:513–521

9. Matsuda N, Hattori Y, Takahashi Y, Nishihira J, Jesmin S, Kobayashi M, Gando S (2004) Therapeutic effect of
in vivo transfection of transcription factor decoy to NF-κB on septic lung in mice. Am J Physiol Lung Cell
Mol Physiol 287:L1248–L1255

10. Matsuda N, Teramae H, Futatsugi M, Takano K, Yamamoto S, Tomita K, Suzuki T, Yokoo H, Koike K, Hattori Y (2010)
Up-regulation of histamine H4 receptors contributes to splenic apoptosis in septic mice: Counteraction of
antiapoptotic action of nuclear factor-κB. J Pharmacol Exp Ther 332:730–737

11. Matsuda N, Hattori Y, Zhang XH, Fukui H, Kemmotsu O, Gando S (2003) Contractions to histamine in pulmonary
and mesenteric arteries from endotoxemic rabbits: modulation by vascular expression of inducible nitric-oxide
synthase and histamine H1-receptors. J Pharmacol Exp Ther 307:175–181

12. Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL (2015) International
Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 67:601–655

13. Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, Chaudry IH (2005) Cecal ligation and
puncture. Shock 24(Suppl 1):52–57

14. Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, Tchougounova E, Hellman L, Gertsenstein M,
Hirasawa N, Sakurai E, Buzás E, Kovács P, Csaba G, Kittel A, Okada M, Hara M, Mar L, Numayama-Tsuruta K, Ishigaki-
Suzuki S, Ohuchi K, Ichikawa A, Falus A, Watanabe T, Nagy A (2001) Mice lacking histidine decarboxylase exhibit
abnormal mast cells. FEBS Lett 502:53–56

15. Inoue I, Yanai K, Kitamura D, Taniuchi I, Kobayashi T, Niimura K, Watanabe T, Watanabe T (1996) Impaired
locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci U S
A 93:13316–13320

16. Kobayashi T, Tonai S, Ishihara Y, Koga R, Okabe S, Watanabe T (2000) Abnormal functional and morphological
regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest 105:1741–1749

17. Oishi H, Takano K, Tomita K, Takebe M, Yokoo H, Yamazaki M, Hattori Y (2012) Olprinone and colforsin
daropate alleviate septic lung inflammation and apoptosis through CREB-independent activation of the Akt
pathway. Am J Physiol Lung Cell Mol Physiol 303:L130–L140

18. Tomita K, Takashina M, Mizuno N, Sakata K, Hattori K, Imura J, Ohashi W, Hattori Y (2015) Cardiac fibroblasts:
contributory role in septic cardiac dysfunction. J Surg Res 193:874–887

19. Wang Q, Yokoo H, Takashina M, Sakata K, Ohashi W, Abedelzaher LA, Imaizumi T, Sakamoto T, Hattori K, Matsuda
N, Hattori Y (2015) Anti-inflammatory profile of levosimendan in cecal ligation-induced septic mice and in
lipopolysaccharide-stimulated macrophages. Crit Care Med 43:e508–e520

20. Takano K, Yamamoto S, Tomita K, Takashina M, Yokoo H, Matsuda N, Takano Y, Hattori Y (2011) Successful
treatment of acute lung injury with pitavastatin in septic mice: potential role of glucocorticoid receptor
expression in alveolar macrophages. J Pharmacol Exp Ther 336:381–390

21. Yamatodani A, Fukuda H, Wada H, Iwaeda T, Watanabe T (1985) High-performance liquid chromatographic
determination of plasma and brain histamine without previous purification of biological samples: cation-exchange
chromatography coupled with pot-column derivatization fluorometry. J Chromatogr 344:115–123

22. Matsuda N, Hattori Y, Jesmin S, Gando S (2005) Nuclear factor-κB decoy oligodeoxynucleotides prevent acute
lung injury in mice with cecal ligation and puncture-induced sepsis. Mol Pharmacol 67:1018–1025

23. Takebe M, Oishi H, Taguchi K, Aoki Y, Takashina M, Tomita K, Yokoo H, Takano Y, Yamazaki M, Hattori Y (2014)
Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis. J Surg Res 187:559–570

24. Benjamin CF, Hagaboam CM, Kunkel SL (2004) The chronic consequences of severe sepsis. J Leukoc Biol
75:408–412

25. Wang H, Ma S (2008) The cytokine storm and factors determining the sequence and severity of organ dysfunction
in multiple organ dysfunction syndrome. Am J Emerg Med 26:711–715

Hattori et al. Intensive Care Medicine Experimental  (2016) 4:36 Page 18 of 19



26. Horváth BV, Falus A, Tóth S, Szalai C, Lázár-Molnár E, Holub MC, Buzás E, Nagy A, Fulop AK (2002) Inverse
regulation of interleukin-6 (IL-6) and IL-6 receptor in histamine deficient histidine decarboxylase-knock-out mice.
Immunol Lett 80:151–154

27. Falus A (1993) Interleukin-6 biosynthesis is increased by histamine in human B-cell and glioblastoma cell lines.
Immunology 78:193–196

28. Delneste Y, Lassalle P, Jeannin P, Joseph M, Tonnel AB, Gosset P (1994) Histamine induces IL-6 production by
human endothelial cells. Clin Exp Immunol 98:344–349

29. Mor S, Nagler A, Barak V, Handzel ZT, Geller-Bernstein C, Fabian I (1995) Histamine enhances granulocyte-
macrophage colony-stimulating factor and interleukin-6 by human peripheral blood mononuclear cells.
J Leukoc Biol 58:445–450

30. Vannier E, Miller LC, Dinarello CA (1991) Histamine suppresses gene expression and synthesis of tumor necrosis
factor α via histamine H2 receptors. J Exp Med 174:281–284

31. Brigham KL, Padove SJ, Bryant D, McKeen CR, Bowers RE (1980) Diphenhydramine reduces endotoxin effects on
lung vascular permeability in sheep. J Appl Physiol 49:516–520

32. Kim TH, Yoon HJ, Lim CM, Kim EK, Kim MJ, Koh Y (2005) The role of endogenous histamine on the pathogenesis
of the lipopolysaccharide (LPS)-induced, acute lung injury: a pilot study. Inflammation 29:72–80

33. Vannay A, Fekete A, Müller V, Strehlau J, Viklicky O, Veres T, Reusz G, Tulassay T, Szabó AJ (2004) Effects of
histamine and the h2 receptor antagonist ranitidine on ischemia-reperfusion acute renal failure:
involvement of IL-6 and vascular endothelial growth factor. Kidney Blood Press Res 27:105–113

34. Summers SA, Chan J, Gan PY, Dewage L, Nozaki Y, Steinmetz OM, Nikolic-Paterson DJ, Kitching AR, Holdsworth SR
(2011) Mast cells mediate acute kidney injury through the production of TNF. J Am Soc Nephrol 22:2226–2236

35. Liu SF, Malik AB (2006) NF-κB activation as a pathological mechanism of septic shock and inflammation.
Am J Physiol Lung Cell Mol Physiol 290:L622–L645

36. Abraham E (2003) Nuclear factor-kappaB and its role in sepsis-associated organ failure. J Infect Dis 187(Suppl 2):S364–S369
37. Masaki T, Chiba S, Tatsukawa H, Noguchi H, Kakuma T, Endo M, Seike M, Watanabe T, Yoshimatsu H (2005) The

role of histamine H1 receptor and H2 receptor in LPS-induced liver injury. FASEB J 19:1245–1252
38. Hornyak SC, Gehlsen KR, Haaparanta T (2003) Histamine dihydrochloride protects against early alcohol-induced

liver injury in a rat model. Inflammation 27:317–327
39. St Peter SD, Sharp SW, Ostlie DJ (2010) Influence of histamine receptor antagonists on the outcome of perforated

appendicitis: analysis from a prospective trial. Arch Surg 145:143–146
40. Brett S (2005) Science review: The use of proton pump inhibitors for gastric acid suppression in critical

illness. Crit Care 9:45–50
41. Marik PE, Vasu T, Hirani A, Pachinburavan M (2010) Stress ulcer prophylaxis in the new millennium: a systematic

review and meta-analysis. Crit Care Med 38:2222–2228
42. Herzig SJ, Howell MD, Ngo LH, Marcantonio ER (2009) Acid-suppressive medication use and the risk for

hospital-acquired pneumonia. JAMA 301:2120–2128
43. Alhazzani W, Alenezi F, Jaeschke RZ, Moayyedi P, Cook DJ (2013) Proton pump inhibitors versus

histamine 2 receptor antagonists for stress ulcer prophylaxis in critically ill patients: a systematic review
and meta-analysis. Crit Care Med 41:693–705

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Hattori et al. Intensive Care Medicine Experimental  (2016) 4:36 Page 19 of 19


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Generation of HDC−/− mice and H1R−/−/H2R−/− mice
	Animal model of sepsis
	Measurement of histamine
	RNA extraction and quantitative real-time PCR
	Serum analysis
	Lung wet-to-dry weight ratio
	Histologic examination
	Immunohistochemistry
	Immunofluorescence staining
	Western blot analysis
	Statistical analysis

	Results
	Changes in tissue histamine concentrations, HDC expression, and histamine receptor expression after sepsis induction
	Sepsis-induced inflammation and organ injury are alleviated in HDC knockout mice
	Sepsis-induced NF-κB activation is reduced in HDC knockout mice
	Sepsis-induced inflammation and organ injury are alleviated in H1-/H2-receptor double knockout mice
	Effects of H1- and H2-receptor antagonists on sepsis-induced inflammation and organ injury

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Authors’ contributions
	Competing interests
	Ethics approval
	Author details
	References

