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Abstract: Photocatalyzed polymerization using organic molecules as catalysts has attracted broad
interest because of its easy operation in ambient environments and low toxicity compared with
metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole
(DTBT) can act as an efficient photoredox catalyst for photoinduced electron transfer-reversible
addition-fragmentation chain transfer (PET-RAFT) polymerization under green light irradiation.
Well-defined (co)polymers can be obtained using this technique without any additional additives
like noble metals and electron donors or acceptors. The living characteristics of polymerization were
verified by kinetic study and the narrow dispersity (Đ) of the produced polymer. Excellent chain-end
fidelity was demonstrated through chain extension as well. In addition, this technique showed great
potential for various RAFT agents and monomers including acrylates and acrylamides.

Keywords: organic photoredox catalyst; green light; PET-RAFT polymerization

1. Introduction

Photo-polymerization has received great attention because of its easy operation, temporal control,
ambient condition, and so on. It has unique advantages in the synthesis of complex polymers, in
bio-systems, and in microelectronics. Generally, visible light-driven polymerization is favored for its
environmental friendliness and non-invasiveness. However, because conventional monomers have
almost no absorption in visible region, a visible light-driven polymerization system generally requires
photocatalysts or photosensitizers to harvest energy from visible light to trigger polymerization.

In recent years, visible light-driven polymerization has been rapidly developed, as many efficient
photocatalysts or photosensitizers have been found, including metallic and non-metallic materials [1,2].
Owing to long excited lifetimes (microsecond) and high reductive abilities, transition metal compounds
like Ir(ppy)3 and Ru(bpy)3Cl2 have exhibited high capabilities in photocatalyzed polymerization.
Boyer et al. [3] reported photoinduced electron transfer-reversible addition-fragmentation chain
transfer (PET-RAFT) polymerization using Ir(ppy)3 as a photocatalyst, which can be performed even
in the presence of air. In addition, as a useful tool, this technique played an important role in the
synthesis of multi-block copolymers [4,5], various stereopolymers [6], copolymers with well-defined
sequence structures and sophisticated microstructures [7], and discrete oligomers [8]. Hawker et al.
reported that Ir(ppy)3 could be utilized in visible light-induced atom transfer radical polymerization
of methacrylates [9], acrylates [10], and to fabricate a 3D polymer brush [11]. Besides, many other
metallic materials [12–19] have been developed to achieve living/controlled polymerization under
irradiation by visible light as well.
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Nevertheless, concerns of metal contamination in products have impeded its application;
developing metal-free photo-polymerization is favored. Therefore, some dyes [20], phenazine
derivatives [21], phenothiazine derivatives [22], phenoxazine derivatives [23], and other organic
photocatalysts [24–32] have been constructed for visible light-polymerization. Fors [33,34],
Nicewicz [35], and Boydston [36] et al. found that pyrylium salts can drive the polymerization
of vinyl ethers, 4-methoxystyrene, and norbornenes, through cationic pathways or ring-opening
metathesis mechanisms. Yagci et al. [37–44] developed visible light-cationic and radical polymerizations
using various non-metallic materials. Even so, the very limited category and quantity of organic
photocatalysts have motivated researchers to exploit new organic catalysts.

Small organic molecules with donor–acceptor–donor (D–A–D)-type π-conjugated structures
play a significant role in organic photovoltaic devices because of efficient light-generated electron
transfer processes [45]. With a high efficiency of charge separation and a long exciton lifetime,
some of these organic molecules have great potential in the field of photocatalyzed polymerization.
But few successful examples have been published [46,47]. In this study, we found an organic
molecule comprising the thiophene as a donor unit (D), benzothiadiazole as an acceptor unit (A),
and 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) (Scheme 1), which can catalyze PET-RAFT
polymerization for synthesis of well-defined (co)polymers with low molecular weight distribution and
high end-group fidelity of product under green light. In addition, this system has great compatibility
in a variety of RAFT agents and monomers.
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chemical, Shanghai, China, 99%), tetrabutylammonium hydrogen sulfate (Aladdin, Shanghai, China, 
99%), 2,2’-(thiocarbonyldithio)diacetic acid, N,N-dimethyl acrylamide (DMA) (Aldrich, St. Louis, MO, 
USA, 99%), N,N-dimethylaminoethyl acrylate (DMAEA) (Energy chemical, Shanghai, China, 98%), 
N,N-Diethylacrylamide (DEA) (Aladdin, Shanghai, China, 99%), N-(3-
(dimethylamino)propyl)acrylamide (DPAA) (Energy Chemical, Shanghai, China, 98%), 3-

Scheme 1. Diagram of photoredox catalyst for photoinduced electron transfer-reversible addition-
fragmentation chain transfer (PET-RAFT), chemical structure of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]
thiadiazole (DTBT), and RAFT agents and monomers.

2. Materials and Methods

2.1. Materials

1-Butanethiol (Energy Chemical, Shanghai, China, 98%), 2-bromopropionic acid (Energy chemical,
Shanghai, China, 99%), tetrabutylammonium hydrogen sulfate (Aladdin, Shanghai, China, 99%),
2,2′-(thiocarbonyldithio)diacetic acid, N,N-dimethyl acrylamide (DMA) (Aldrich, St. Louis, MO,
USA, 99%), N,N-dimethylaminoethyl acrylate (DMAEA) (Energy chemical, Shanghai, China, 98%),
N,N-Diethylacrylamide (DEA) (Aladdin, Shanghai, China, 99%), N-(3-(dimethylamino)propyl)acrylamide
(DPAA) (Energy Chemical, Shanghai, China, 98%), 3-mercaptopropionic acid (Aladdin, Shanghai,
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China, 99%), 2-Bromoisobutyric acid (Energy chemical, Shanghai, China, 98%), 4,7-Di(thiophen-2-yl)
benzo[c][1,2,5]thiadiazole (DTBT as photoredox catalyst in this study) (ARK, Chicago, IL, USA, >98.0%),
bis(carboxymethyl) trithiocarbonate, CAS: 6326-83-6) (BCMT) (Energy Chemical, Shanghai, China, 98%),
N, N-dimethylformamide (DMF) (Aladdin, Shanghai, China, 99.8%) were purchased from chemical
company, respectively. Acetone, hydrochloric acid, carbon disulfide, chloroform, DCM, hexane, ether,
K3PO4·3H2O, NaCl, NaOH, D2O, CDCl3, anhydrous Na2SO4 were obtained from Shanghai Chemical
Reagent Co., Shanghai, China.

2.2. Characterization

All chemical structures were measured by a 400 MHz nuclear magnetic resonance (NMR)
spectrometer (Bruker, Karlsruhe, Germany). The number-average molar mass (Mn,GPC) and Đ were
determined by a gel permeation chromatography (Waters, Milford, MA, USA) using DMF (1.0 mL/min)
as the eluent with polystyrene standards. The absorption spectrum was measured by UV-Visible
Spectroscopy (Sahimadzu, Kyoto, Japan).

2.3. Polymerizations

The polymerizations were conducted in a sealed glass tube, in a typical experiment, a 3 mL glass
vial charged with monomer, chain transfer agent (CTA), catalyst and DMF as solvent. The mixture was
deoxygenated by three freeze-pump-thaw cycles and sealed under vacuum. Then, it were irradiated
under LED light at ambient temperature. Monomer conversions were measured by 1H-NMR, the final
polymers were obtained by precipitation and analyzed by 1H NMR and GPC.

3. Results and Discussion

According to the reported PET-RAFT polymerization, the redox property and lifetime of the excited
state of the photocatalyst are important [20]. DTBT is a small organic molecule semiconductor. It has a
broad absorption area in visible light, even to 550 nm (Figure 1A), and can be excited by blue or green
light. It has a low reduction potential value of –1.15 V and a long-living photogenerated exciton, [48]
which is comparable with the mostly used transition metal photocatalyst (Ru(III)/Ru(II)* = –0.8 V) [12].
Therefore, we can envision that DTBT will be a promising photocatalyst for PET-RAFT polymerization.

In order to verify whether DTBT was effective for PET-RAFT polymerization, we chose N,
N-dimethylacrylamide (DMA) as the model monomer, 2-((((2-carboxyethyl)thio)carbonothioyl)
thio)-2-methylpropanoic acid (CEMP) (Figure S1) as the RAFT agent, N, N-dimethylformamide
(DMF) as the solvent, and a blue (λmax = 460 nm) or green (λmax = 530 nm) LED as the light source.
When in the presence of DTBT, poly-(N,N-dimethylacrylamide) (PDMA) with an Mn of 11600 Da and a
narrow dispersity (Đ = 1.23) formed after 12.0 h irradiation (Table 1, Entry 1, Figure S2), and higher
conversion would be reached if we increased the amount of catalyst (Table 1, Entry 2-3, Figure S3). In
1H-NMR spectroscopy of the formed PDMA, the signal peak at 0.8 ppm was assigned to the proton of
–CH3 from the RAFT agent of CEMP (Figure S2). Also, several control experiments were set to prove the
roles of light, RAFT agent, and photocatalyst. As shown in Table 1, when we operated the experiment
in dark conditions, no monomer consumption was detected over 12.0 h, indicating that polymerization
was triggered by light. If we conducted polymerization under irradiation by green light without DTBT,
no polymer was obtained because of very low monomer conversion (2.0%). But if blue light was used
instead of green light, some polymers were obtained, because CEMP had an absorption in the blue
region and a maximal absorption peak at 441 nm [49,50]. CEMP can be excited into the excitation state
through the n→π* forbidden transition of the C=S group under blue light irradiation, then generate
radicals, which could initiate polymerization [51–53]. Furthermore, a control experiment without the
RAFT agent was also carried out, but no polymerization occurred either. All these results indicated
that DTBT can act as a photocatalyst for PET-RAFT polymerization, and the trithiocarbonate molecule
acted as both initiator and chain transfer agent.



Polymers 2019, 11, 892 4 of 10

Table 1. Results of poly-(N,N-dimethylacrylamide) (PDMA) synthesized under different conditions. a

Entry [DMA]0:[CEMP]0:[DTBT]0 conv. (%) d Mn,th
e

(Da)
Mn,GPC

f

(Da) Đ f

1 200:1:0.1 78.9 15900 11600 1.23
2 200:1:0.2 87.5 17500 12700 1.25
3 200:1:0.02 50.0 10170 6200 1.32

4 b 200:1:0.1 0 0 - -
5 200:1:0 0 0 - -

6 c 200:1:0 18.0 2830 - -
7 200:1:0.1 2.0 660 - -

a Reaction conditions: N,N-dimethylacrylamide [DMA]0 = 3.0 M, N,N-dimethylformamide (DMF) as solvent, the reactions
were performed at room temperature under green LED light for 12.0 h. b In dark conditions. c Blue LED as light
source. d Monomer conversion was determined by 1H-NMR spectroscopy. e Mn,th = [DMA]0/[2-((((2-carboxyethyl)
thio)carbonothioyl)thio)-2-methylpropanoic acid (CEMP)]0 ×MWDMA

× conv. + MWCEMP, where [DMA]0, [CEMP]0,
MWDMA, conv., and MWCEMP correspond to DMA and CEMP concentration, molar mass of DMA, monomer conversion,
and molar mass of CEMP. f Mn,GPC and Đ were determined by GPC with PS standards.

Based on the above study, we proposed the polymerization procedure in Scheme 2. DTBT generated
conduction-band electrons (e−) and valence-band holes (h+) under green light. The photo-generated
electron (e−) had stronger reduction activity than the RAFT agent. Hence, the RAFT agent was
deoxidized to produce a radical, which provided a radical source to initiate RAFT polymerization The
thiocarbonylthio compound acted as both initiator and chain transfer agent, which was why DTBT
became indispensable in polymerization. At the same time, the radical (Pn•) may also be deactivated
by holes (h+) to regenerate the thiocarbonylthio compound, and the whole catalytic cycle would be
restarted again.
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Scheme 2. Outline of PET-RAFT polymerization in this study.

As shown in Figure 1, the first order kinetic plot of ln([M]0/[M]t) as a function of polymerization
time (Figure 1B) as well as the linear relationship between Mn,GPC of polymer and monomer conversion
(Figure 1C) were observed. The plot of Mn,NMR (Figure 1C and Figure S4) versus monomer conversion
gave a linear relationship in good agreement with that of the Mn,th (calculated by NMR). It demonstrated
that almost constant active radicals existed in this system, and DTBT had remarkable activity in
PET-RAFT polymerization of acrylamide driven by low-energy green light in ambient conditions.
Moreover, GPC curves showed a single peak of produced polymer with narrow dispersity (Đ < 1.30),
and it shifted to a short retention time (high molecular weight) region along with an increased
polymerization time.
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Figure 1. (A) The absorption spectrum of DTBT. Kinetic study of the PET-RAFT polymerization. 
Reaction conditions: [DMA]0:[CEMP]0:[DBTB]0 = 200:1:0.1, [DMA]0 = 3.0 M, DMF as solvent, the 
reactions were performed at room temperature under green LED. (B) The plot of ln([M]0/[M]t) as a 
function of reaction time. (C) The relationship of Mn,GPC, Mn,NMR, Mn,th, and Đ versus monomer 
conversion. (D) GPC traces at different times of irradiation. 

Chain extension is an available path to synthesize block copolymers to further attest fidelity of 
the polymeric chain, although the corresponding functional group has already been identified using 
1H NMR spectroscopy. Chain extension of PDMA was performed using N, N-dimethylaminoethyl 
acrylate (DMAEA) as the second monomer. The shift of trace GPC product to the higher molecular 
weight side (Figure 2A) after the chain extension reaction and the signal peaks of protons of 
poly(N,N-dimethylaminoethyl acrylate) (PDMEA) and PDMA were all present (Figure 2B), verifying 
high end-group fidelity of PDMA. 
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Figure 1. (A) The absorption spectrum of DTBT. Kinetic study of the PET-RAFT polymerization.
Reaction conditions: [DMA]0:[CEMP]0:[DBTB]0 = 200:1:0.1, [DMA]0 = 3.0 M, DMF as solvent, the
reactions were performed at room temperature under green LED. (B) The plot of ln([M]0/[M]t) as a
function of reaction time. (C) The relationship of Mn,GPC, Mn,NMR, Mn,th, and Đ versus monomer
conversion. (D) GPC traces at different times of irradiation.

Chain extension is an available path to synthesize block copolymers to further attest fidelity of
the polymeric chain, although the corresponding functional group has already been identified using
1H NMR spectroscopy. Chain extension of PDMA was performed using N, N-dimethylaminoethyl
acrylate (DMAEA) as the second monomer. The shift of trace GPC product to the higher molecular
weight side (Figure 2A) after the chain extension reaction and the signal peaks of protons of
poly(N,N-dimethylaminoethyl acrylate) (PDMEA) and PDMA were all present (Figure 2B), verifying
high end-group fidelity of PDMA.
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Figure 2. Chain extension of PDMA using PET-RAFT polymerization. Reaction conditions:
[DMAEA]0:[macro-CTA]0:[DBTB]0 = 195:1:0.45, [DMAEA]0 = 1.3 M, DMF as solvent, the reactions
were performed at room temperature under green LED light for 12.5 h. (A) GPC traces of PDMA and
PDMA-b-PDMAEA. (B) 1H-NMR spectrum of PDMA-b-PDMAEA in D2O.
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To take full advantage of light stimulus, we performed “On” (in the presence of light) and “Off” (in
the absence of light) experiments to investigate the temporal control of this DTBT-catalyzed PET-RAFT
system. When the light was switched to the “On” state, polymerization occurred. When the light
was in the “Off” state, no polymerization occurred based on 1H-NMR results (Figure 3A). The final
product with a low Đ of 1.20 and an expected molecular weight in line with the trait of living/controlled
polymerization was obtained (Figure 3B), which showed good ability of this system in the temporal
control process.
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Figure 3. PET-RAFT polymerization of DMA in the presence (“On”) or in the absence (“Off”) of green
light. Reaction conditions: [DMA]0:[CEMP]0:[DBTB]0 = 200:1:0.1, [DMA]0 = 3.0 M, DMF as solvent,
the reactions were performed at RT under green LED. (A) Monomer conversion versus time. (B) GPC
curve of final polymer.

In light of the versatility of PET-RAFT polymerization, it could be used in broad monomers and a
variety of RAFT agents. Therefore, we envisioned that our DTBT-catalyzed PET-RAFT system had the
same capabilities. As shown in Table 2, S,S′-bis(α,α′-dimethyl-α”-acetic acid)trithiocarbonate (BDMAT)
(Figure S5), 2-(n-butyltrithiocarbonate)-propionic acid (BTPA) (Figure S6), and bis(carboxymethyl)
trithiocarbonate (BCMT) were used as RAFT agents in this system instead of CEMP. As expected, all
polymerizations (Figure S7–S9) were carried out successfully using these trithiocarbonates as chain
transfer agents and initiators, and as a result, polymers with narrow dispersity and unimodal peaks in
GPC curves were obtained.

Table 2. Results of polymers synthesized by PET-RAFT polymerization a.

Entry CTA Monomer conv. (%) b Mn,th
c

(Da)
Mn,GPC

d

(Da) Đ d

1 S, S′-bis(α, α′-dimethyl-α”-acetic
acid)trithiocarbonate (BDMAT) DMA 65.7 13300 7700 1.62

2 2-(n-butyltrithiocarbonate)-propionic acid
(BTPA) DMA 35.1 7190 2400 1.40

3 bis(carboxymethyl) trithiocarbonate
(BCMT) DMA 45.2 9180 7300 1.63

4 CEMP DEA 85.9 21800 12040 1.31
5 CEMP DMAEA 61.5 17900 25500 1.38
6 CEMP DPAA 57.6 18200 6540 1.27
a Reaction conditions: [DMA]0:[CEMP]0:[DBTB]0 = 200:1:0.1, [M]0 = 3.0 M, DMF as solvent, the reactions were
performed at room temperture under green LED for 12.0 h. b Monomer conversion was determined by 1H NMR
spectroscopy. c Mn,th = [DMA]0/[CEMP]0 ×MWDMA

× conv. + MWCEMP, where [DMA]0, [CEMP]0, MWDMA, conv.,
and MWCEMP correspond to DMA and CEMP concentration, molar mass of DMA, monomer conversion, and molar
mass of CEMP. d Mn,GPC and Đ were determined by GPC with PS standards.

Subsequently, some other monomers, such as N-(3-(dimethylamino)propyl)acrylamide (DPAA), N,
N-dimethylaminoethyl acrylate (DMAEA), N, N-diethylacrylamide (DEA) and N-(3-(dimethylamino)
propyl)acrylamide (DPAA), were applied in this system. Polymerizations of DPAA, DMAEA, and
DEA were carried out under the same conditions as those of DMA. Polymerization of DEA resulted
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in a conversion of 85.9% with a low Đ of 1.31, which was similar to that of DMA because of their
similar structures. Polymerization of DMAEA and DPAA had lower monomer conversions than DMA
and DEA, but still produced polymers (Figure S10–S13) with low Đ, revealing the generality and
compatibility of DTBT as a photocatalyst for the polymerization of these two monomers.

4. Conclusions

In conclusion, we developed a small organic molecule, DTBT, as photocatalyst for PET-RAFT
polymerization. DTBT had noticeable activity in catalyzing PET-RAFT polymerization of common
monomers (acrylamides and acrylates), and applying in several chain transfer agents without any
help of sacrificial reagents or precious metal co-catalysts. Furthermore, this DTBT-catalyzed system
showed excellent control over molecular weight, dispersity, and high group fidelity with successful
chain extension.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/5/892/s1.
Figure S1: 1H-NMR spectrum of CEMP, Figure S2: 1H-NMR spectrum and GPC curve of PDMA (CEMP as RAFT
agent), Figure S3: GPC curve of PDMA, Figure S4: 1H-NMR spectra of obtained PDMA in D2O at different reaction
time (Figure 1C) (Mn,NMR = 3 × (I1)/(I2) × MWDMA + MWCEMP)., Figure S5. 1H-NMR spectrum of BDMAT,
Figure S6: 1H-NMR spectrum of BTPA, Figure S7: 1H-NMR spectrum and GPC curve of PDMA (BCMT as RAFT
agent), Figure S8: 1H-NMR spectrum and PDMA curve of PDMA (BTPA as RAFT agent), Figure S9: 1H-NMR
spectrum and GPC curve of PDMA (BDMAT as RAFT agent), Figure S10: 1H-NMR spectrum of PDMAEA, Figure
S11: 1H-NMR spectrum of PDEA, Figure S12: 1H-NMR spectrum of PDPAA, Figure S13: GPC curves of PDEA,
PDMAEA and PDPAA.
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