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Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two
kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long
outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which
contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately
modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of
vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photore-
ception with a focus on the cone visual transduction cascade.

Keywords Zebrafish . Visual transduction . Photoreceptors . Cones

Introduction

All vertebrates share a canonical retina with light-sensitive
photoreceptors in the outer retina. These photoreceptors are
of two kinds: rods and cones. Rod photoreceptors are charac-
terized by higher light sensitivity and slower kinetics, mainly
mediating monochromatic low-light vision [191, 50, 57, 105].
Cone photoreceptors on the other hand function under bright
light, conveying luminance and color information. In verte-
brates, they come in up to four different subtypes, depending
on their peak absorption. Both photoreceptor types share a
peculiar morphology with a large outer segment comprised
of an ordered stack of discs, which contain the proteins of
the visual transduction cascade. This biochemical pathway
transforms the physical stimulus of light into a biological sig-
nal. Outer segments are modified primary cilia that are con-
nected via an axoneme to the mitochondrium-rich inner seg-
ment [84]. Synapses of the photoreceptors are among the most
complex synapses in the vertebrate brain, featuring ribbons

that are thought to enable tonic glutamate release into the
synapse [162, 175].

Photoreceptors have been intensively studied in different
model organisms. Biochemists favor large bovine eyes for
their large yield of proteins. Electrophysiologists favor the
amphibians for their comparatively large photoreceptors and
geneticists have mainly focused on rodent eyes due to the
genetic amenities available in these systems.

More recently, the small tropical teleost zebrafish (Danio
rerio) joined the ranks of model system for retinal research.
Besides their favorable biological properties, such as small
body size, easy maintenance, and large number of offspring,
there are several properties of their visual system that have
endeared this model system to visual scientists [157]. Unlike
the rod-dominant amphibian or rodent retina, the majority of
photoreceptors in zebrafish are cones, with about 92% in
zebrafish larvae and about 60% in the adult [49, 2, 222].
The larval retina also serves as a model for the primate fovea,
featuring a cone-rich acute zone responsible for prey detection
[212]. Moreover, more than 70% of human genes have direct
orthologues in the zebrafish genome [69], making zebrafish an
ideal model to study eye or more specifically cone diseases in
humans [61, 11, 113]. The genetic toolbox to manipulate
zebrafish has massively expanded during the past decade, in-
cluding DNA insertion, precisely controlled transgene expres-
sion, and CRISPR/Cas genome editing [131]. Because the
zebrafish retina starts to transmit visual information at very
early stages (3 days post fertilization (dpf)), the function of
the visual system can be assessed at early larval stages.
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Finally, zebrafish larvae are transparent, making them well
suited for live imaging (e.g., [135, 222]).

Zebrafish retina signaling with related ocular and retinal
diseases have been reviewed recently [8, 123, 113, 126, 18,
11]. In this review, we will provide an overview of biochem-
ical and physiological processes in zebrafish photoreceptors
with a focus on the visual transduction cascade, the very first
step of image-forming vision.

Zebrafish outer retina

The zebrafish retina possesses one rod type and four morpho-
logically and spectrally distinct cone subtypes, namely short
single cones (ultraviolet (UV)-sensitive), long single cones
(blue-sensitive), double cone accessory members (green-sen-
sitive), and double-cone principle members (red-sensitive).
Double cones exist in most vertebrates, but are absent in most
placental mammals, elasmobranches, and catfish [44].
Zebrafish photoreceptors are coupled by gap junction, mainly
mediated by Connexin 35 (the zebrafish homologue of mam-
malian Cx36) [111]. Fish photoreceptor coupling is regulated
by the circadian clock, with cone-cone and rod-cone coupling
being increased during nighttime [151, 111].

In the absence of pupillary reflexes, many lower vertebrates
developed retinomotor movements to adapt to changes in light
conditions. In darkness, a mobile part of photoreceptor inner
segment, called the myoid, drives cones to elongate and rods
to contract [124, 67]. Meanwhile, pigment granules
(melanosomes) of the retinal pigment epithelium (RPE) con-
centrate at the basal part of the RPE. In this way, cone outer
segments are buried deeply inside basal RPE while rod outer
segments are optimally exposed to incoming light, by being
situated far from pigment granules. During light adaptation,
cones contract while rods elongate concomitant to pigment
granule translocation towards the apical part of the RPE.
Therefore, cone outer segments are exposed to light and the
rod outer segments are protected by the RPE, akin to sun-
glasses [1]. The zebrafish retina shows adult-like retinomotor
movement from 28 dpf on. Pigment granules take about an
hour to migrate to fully light adapted position, while double
cone outer segment contraction finishes in about 20 minutes
[124, 67]

Longitudinal sections of adult retina demonstrate that dif-
ferent photoreceptors are organized into different layers in
zebrafish [153, 20] (Fig. 1a, b). The nuclei of rods are located
distal to all cone nuclei. The nuclei of UV cones, blue cones,
and double cones are located in the distal, medial, and proxi-
mal zones of the outer retina, respectively. Cone photorecep-
tors in the adult zebrafish retina are orderly arranged into a
row mosaic pattern (Fig. 1c), in which a red cone neighbors a
blue cone while a green cone neighbors a UV cone [2, 107].

Rods project into a square shape around eachUV cone to form
an integral photoreceptor mosaic [49].

The situation is different in the larval retina, where photo-
receptors are anisotropically distributed [222]. All cone types
are concentrated at the horizon and lower visual field, which
may mediate color vision. UV cone density shows a peak at
around 30° above the horizon, which is essential for visual
prey hunting [212]. The upper visual field is dominated by
rods, supporting the effectively achromatic vision towards the
sky. This anisotropic distribution is adapted to the spectral
content in the natural visual environment serving behavioral
demands.

Visual transduction cascade

The main function of photoreceptors is the capture of photons
of visual light and the subsequent transformation of this phys-
ical stimulus into a biological signal, ultimately modifying the
release of the neurotransmitter glutamate by the photoreceptor
synapse [50, 105, 57, 22]. The visual transduction cascade and
its regulation are among the best-understood trimeric G pro-
tein signaling pathways. All reactions take place in the outer
segments of photoreceptors, most of them associated with the
membrane (Fig. 2). Zebrafish genes involved in visual trans-
duction cascade are summarized in Table 1.

The photoreceptor outer segment is a cylindrical structure
comprised of an ordered stack of disc-shaped membranes,
allowing a high concentration of transmembrane visual pig-
ments and increasing the probability of photon catch [92].

Rod and cone photoreceptors share a generally similar vi-
sual transduction cascade, but adopt rod- or cone-specific pro-
tein isoforms for many of the cascade’s components. The evo-
lution of these photoreceptor-specific paralogues is a well-
studied paradigm for the fate of duplicated genes in evolution
[103]. This is particularly true for teleost genomes that
underwent a lineage-specific whole-genome duplication, fol-
lowing two rounds of whole-genome duplications in the early
vertebrate lineage [7, 190, 184].

The generation, deletion, and fate of these duplicated genes
add a fascinating complexity to the teleost visual transduction
cascade that is beyond the scope of this review. However, the
multitude of gene variants to be discussed in the following is
the direct consequence of whole-genome duplications in the
past [63, 103, 104, 106, 99, 100, 60].

The visual transduction cascade is initiated by the absorp-
tion of photons by opsins. These G protein–coupled 7-
transmembrane receptors are covalently bound to a light-
sensitive chromophore via a Schiff base forming the
photopigment complex [73]. Upon the absorption of a photon,
chromophore (most commonly vitamin A1 11-cis-retinal) in
the photopigment complex isomerizes to all-trans-retinal,
which activates the opsin (now referred to R*) by inducing a
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Fig. 1 Adult zebrafish retina and photoreceptor mosaic. Dark-adapted
adult zebrafish retina section (a) and light-adapted section (b) are orga-
nized into different cellular layers. The nuclei of rod and cone photore-
ceptors are located in the outer nuclear layer. During light adaptation,
photoreceptor myoid drives cones to contract and rods to elongate to

protect rods from over-bleaching, known as retinomotor movement.
UV opsin (sws1) is labeled by in situ hybridization. Arrowhead denotes
double cone. Arrow denotes blue cone. Star denotes cell body of rod.
Schematic of the zebrafish photoreceptor planar mosaic arrangement (c)
[153, 2, 49]. UV, UV cone; R, red cone; G, green cone; B, blue cone

Fig. 2 Cone photoreceptor morphology (a). Schematic representation of
vertebrate visual transduction cascade and Ca2+-regulated deactivation
processes (b). Photon absorption activates R. R* then triggers the
exchange of GTP for GDP on the Tα. Tα-GTP binds to cyclic nucleotide
PDE. Stimulated PDE hydrolyzes free cyclic guanosine monophosphate
(cGMP). In darkness, CNGC allows an influx of Na+ and Ca2+, while
during illumination CNGC is shut off by cGMP decrease. NCKX is not
affected by light, which results in a light-induced intracellular Ca2+ con-
centration decline. Rcv modulates phosphorylation of R* via GRK in a
Ca2+-dependent manner. Phosphorylated R then is fully deactivated by

the binding of Arr. R, visual pigment (inactive); R*, light-activated visual
pigment; Tα, transducin α subunit; Tβγ, transducin β and γ subunits;
PDE, phosphodiesterase (inactive); PDE*, PDE-transducin α complex:
NCKX, Na+/Ca2+, K+ exchanger; Arr, arrestin; GRK, G protein–coupled
receptor kinase; Rcv, Recoverin; CNGC, cyclic nucleotide–gated ion
channel; P, phosphorylation; M, CNG-modulin; GC, guanylate cyclase;
GCAP, guanylate cyclase activating protein. Figure was drawn using
Inkscape. Inkscape http://www.inkscape.org/. Reproduced with
permission from Zang and Neuhauss [217]

1571Pflugers Arch - Eur J Physiol (2021) 473:1569–1585

http://www.inkscape.org/


Ta
bl
e
1

Su
m
m
ar
y
of

ze
br
af
is
h
ge
ne
s
in
vo
lv
ed

in
vi
su
al
tr
an
sd
uc
tio

n
ca
sc
ad
e

G
en
e

na
m
e

Pr
ot
ei
n
en
co
de
d

E
xp
re
ss
io
n
pa
tte
rn

in
ph
ot
or
ec
ep
to
r

la
ye
r

Ph
en
ot
yp
e
in

ze
br
af
is
h
w
ith

ab
no
rm

al
ge
ne

ex
pr
es
si
on

M
ou
se

ho
m
ol
og
s

A
ss
oc
ia
te
d
hu
m
an

ey
e
di
se
as
es

op
n1
sw

1
U
V
op
si
n

U
V
co
ne
s

O
pn
1s
w

T
ri
ta
n
co
lo
r
bl
in
dn
es
s
[2
00
,2
01
]

op
n1
sw

2
B
lu
e
op
si
n

B
lu
e
co
ne
s

op
n1
m
w
1

G
re
en

op
si
n

G
re
en

co
ne
s

A
ch
ro
m
at
op
si
a
[1
30
]

op
n1
m
w
2

G
re
en

op
si
n

G
re
en

co
ne
s

op
n1
m
w
3

G
re
en

op
si
n

G
re
en

co
ne
s

op
n1
m
w
4

G
re
en

op
si
n

G
re
en

co
ne
s

op
n1
lw
1

R
ed

op
si
n

R
ed

co
ne
s

O
pn
1m

w
A
ch
ro
m
at
op
si
a
[1
30
]

op
n1
lw
2

R
ed

op
si
n

R
ed

co
ne
s

O
pn
1m

w
rh
o

R
od

op
si
n

R
od
s

R
od

ph
ot
or
ec
ep
to
r
de
ge
ne
ra
tio
n
[2
18
]

R
ho

N
ig
ht

bl
in
dn
es
s
[1
68
],
re
tin

iti
s

pi
gm

en
to
sa

[4
3]

gn
at
1

T
ra
ns
du
ci
n
α
su
bu
ni
ts

R
od
s
an
d
U
V
co
ne
s

G
na
t1

N
ig
ht

bl
in
dn
es
s
[1
28
]

gn
b1
a

T
ra
ns
du
ci
n
β
su
bu
ni
ts

R
od
s
an
d
U
V
co
ne
s

G
nb
1

gn
b1
b

T
ra
ns
du
ci
n
β
su
bu
ni
ts

R
od
s
an
d
U
V
co
ne
s

G
nb
1

gn
gt
1

T
ra
ns
du
ci
n
γ
su
bu
ni
ts

R
od
s
an
d
U
V
co
ne
s

G
ng
t1

gn
at
2

T
ra
ns
du
ci
n
α
su
bu
ni
ts

C
on
es

L
ar
ge
ly

re
du
ce
d
ph
ot
or
es
po
ns
e
[2
1]

G
na
t2

A
ch
ro
m
at
op
si
a
[9
1]

gn
b3
a

T
ra
ns
du
ci
n
β
su
bu
ni
ts

C
on
es

G
nb
3

gn
b3
b

T
ra
ns
du
ci
n
β
su
bu
ni
ts

C
on
es

G
nb
3

gn
gt
2a

T
ra
ns
du
ci
n
γ
su
bu
ni
ts

C
on
es

G
ng
t2

gn
gt
2b

T
ra
ns
du
ci
n
γ
su
bu
ni
ts

C
on
es

G
ng
t2

pd
e6
a

PD
E
ca
ta
ly
tic

α
su
bu
ni
t

R
od
s
an
d
U
V
co
ne
s

P
de
6a

A
ut
os
om

al
re
ce
ss
iv
e

re
tin

iti
s
pi
gm

en
to
sa

[7
2]

pd
e6
b

PD
E
ca
ta
ly
tic

β
su
bu
ni
t

R
od
s
an
d
U
V
co
ne
s

P
de
6b

A
ut
os
om

al
re
ce
ss
iv
e

re
tin

iti
s
pi
gm

en
to
sa

[1
22
]

pd
e6
ga

PD
E
in
hi
bi
to
ry

γ
su
bu
ni
t

R
od
s
an
d
U
V
co
ne
s

P
de
6g

pd
e6
gb

PD
E
in
hi
bi
to
ry

γ
su
bu
ni
t

R
od
s
an
d
U
V
co
ne
s

P
de
6g

pd
e6
c

PD
E
ca
ta
ly
tic

α
′s
ub
un
it

C
on
es

D
im

in
is
he
d
co
ne

E
R
G
an
d
O
K
R
,a
nd

co
ne

de
ge
ne
ra
tio
n
[1
34
,1
72
]

P
de
6c

C
on
e
dy
sf
un
ct
io
n
an
d

ac
hr
om

at
op
si
a
[2
7,
59
,1
86
]

pd
e6
ha

PD
E
in
hi
bi
to
ry

γ
′s
ub
un
it

C
on
es

P
de
6h

pd
e6
hb

PD
E
in
hi
bi
to
ry

γ
′s
ub
un
it

C
on
es

P
de
6h

pd
e6
i

PD
E
in
hi
bi
to
ry

γ
′s
ub
un
it

cn
ga
1a

C
N
G
ch
an
ne
lα

1
su
bu
ni
t

R
od
s

C
ng
a1

A
ut
os
om

al
re
ce
ss
iv
e
re
tin
iti
s

pi
gm

en
to
sa

[4
2]

cn
ga
1b

C
N
G
ch
an
ne
lα

1
su
bu
ni
t

R
od
s

C
ng
a1

cn
gb
1a

C
N
G
ch
an
ne
lβ

1
su
bu
ni
t

R
od
s

C
ng
b1

A
ut
os
om

al
re
ce
ss
iv
e
re
tin
iti
s

pi
gm

en
to
sa

[5
,1
4,
93
]

cn
gb
1b

C
N
G
ch
an
ne
lβ

1
su
bu
ni
t

R
od
s

C
ng
b1

cn
ga
3a

C
N
G
ch
an
ne
lα

3
su
bu
ni
t

C
on
es

C
ng
a3

cn
ga
3b

C
N
G
ch
an
ne
lα

3
su
bu
ni
t

C
on
es

C
ng
a3

cn
gb
3.
1

C
N
G
ch
an
ne
lβ

3
su
bu
ni
t

C
on
es

C
ng
b3

cn
gb
3.
2

C
N
G
ch
an
ne
lβ

3
su
bu
ni
t

C
on
es

C
ng
b3

gr
k1
a

G
pr
ot
ei
n–
co
up
le
d
re
ce
pt
or

ki
na
se

1a
R
od
s

O
ve
re
xp
re
ss
io
n
of

gr
k1
a
in

ro
ds

sh
ow

s
m
in
or

ef
fe
ct
[1
94
]

G
rk
1

O
gu
ch
id

is
ea
se

[2
09
]

gr
k1
b

G
pr
ot
ei
n–
co
up
le
d
re
ce
pt
or

ki
na
se

1b
C
on
es

D
el
ay
ed

E
R
G
re
sp
on
se

re
co
ve
ry

an
d
re
du
ce
d
te
m
po
ra
lc
on
tr
as
ts
en
si
tiv
ity
[3
1]

G
rk
1

1572 Pflugers Arch - Eur J Physiol (2021) 473:1569–1585



T
ab

le
1

(c
on
tin

ue
d)

G
en
e

na
m
e

Pr
ot
ei
n
en
co
de
d

E
xp
re
ss
io
n
pa
tte
rn

in
ph
ot
or
ec
ep
to
r

la
ye
r

Ph
en
ot
yp
e
in

ze
br
af
is
h
w
ith

ab
no
rm

al
ge
ne

ex
pr
es
si
on

M
ou
se

ho
m
ol
og
s

A
ss
oc
ia
te
d
hu
m
an

ey
e
di
se
as
es

gr
k7
a

G
pr
ot
ei
n–
co
up
le
d
re
ce
pt
or

ki
na
se

7a
C
on
es

gr
k7
a
kn
oc
kd
ow

n
[1
52
],
gr
k7
a
kn
oc
ko
ut

[3
1]
,e
ct
op
ic
ex
pr
es
si
on

of
gr
k7
a
in

ro
ds

[1
94
]

gr
k7
b

G
pr
ot
ei
n–
co
up
le
d
re
ce
pt
or

ki
na
se

7b
U
V
co
ne
s

ar
rS
a

A
rr
es
tin

Sa
R
od
s
an
d
U
V
co
ne
s

A
rr
1

O
gu
ch
id

is
ea
se

[5
8]

ar
rS
b

A
rr
es
tin

Sb
R
od
s
an
d
U
V
co
ne
s

A
rr
1

ar
r3
a

A
rr
es
tin

3a
D
ou
bl
e
co
ne
s

D
el
ay
ed

E
R
G
re
sp
on
se

re
co
ve
ry

an
d

de
cr
ea
se
d
te
m
po
ra
lc
on
tr
as
ts
en
si
tiv
ity

[1
48
]

A
rr
3

ar
r3
b

A
rr
es
tin

3b
B
lu
e
an
d
U
V
co
ne
s

A
rr
3

rg
s9
a

R
eg
ul
at
or
s
of

G
pr
ot
ei
n
si
gn
al
in
g
9a

C
on
es

R
gs
9

B
ra
dy
op
os
ia
[1
33
]

rg
s9
b

R
eg
ul
at
or
s
of
G
pr
ot
ei
n
si
gn
al
in
g
9b

R
od
s

R
gs
9

gu
cy
2e

G
ua
ny
la
te
cy
cl
as
e
E

R
od
s
an
d
U
V
co
ne
s

O
ut
er

se
gm

en
tl
os
s
an
d
sh
or
te
ni
ng
,O

M
R
de
fe
ct
s
[1
76
]

G
uc
y2
e

L
eb
er

co
ng
en
ita
la
m
au
ro
si
s
1
[1
42
]

gu
cy
2f

G
ua
ny
la
te
cy
cl
as
e
F

R
od
s
an
d
U
V
co
ne
s

G
uc
y2
f

gu
cy
2d

G
ua
ny
la
te
cy
cl
as
e
D

C
on
es

O
K
R
an
d
O
M
R
im

pa
ir
m
en
ts
[1
27
],
PD

E
6c

do
w
nr
eg
ul
at
io
n

[7
9]

G
uc
y2
d

sl
c2
4a
1

N
a+
/C
a2

+
,K

+
ex
ch
an
ge
r
1

Sl
c2
4a
1

C
on
ge
ni
ta
ls
ta
tio

na
ry
ni
gh
tb
lin

dn
es
s
[1
50
]

sl
c2
4a
2

N
a+
/C
a2

+
,K

+
ex
ch
an
ge
r
2

Sl
c2
4a
2

rc
v1
a

R
ec
ov
er
in

1a
R
od
s
an
d
U
V
co
ne
s

A
cc
el
er
at
es

ph
ot
or
es
po
ns
e
re
co
ve
ry

[2
15
]

R
cv
1

rc
v1
b

R
ec
ov
er
in

1b
C
on
es

rc
v2
a

R
ec
ov
er
in

2a
C
on
es

A
cc
el
er
at
es

ph
ot
or
es
po
ns
e
re
co
ve
ry

[2
15
]

rc
v2
b

R
ec
ov
er
in

2b
C
on
es

A
cc
el
er
at
es

ph
ot
or
es
po
ns
e
re
co
ve
ry

[2
15
]

gc
ap
1

G
ua
ny
la
te
cy
cl
as
e
ac
tiv
at
io
n
pr
ot
ei
n

1
R
od
s
an
d
U
V
co
ne
s

G
uc
a1
a

A
ut
os
om

al
do
m
in
an
tc
on
e
dy
st
ro
ph
y
[1
40
]

gc
ap
2

G
ua
ny
la
te
cy
cl
as
e
ac
tiv
at
io
n
pr
ot
ei
n

2
R
od
s
an
d
U
V
co
ne
s

G
uc
a2
b

A
ut
os
om

al
do
m
in
an
tr
et
in
al
dy
st
ro
ph
ie
s

[1
60
]

gc
ap
3

G
ua
ny
la
te
cy
cl
as
e
ac
tiv
at
io
n
pr
ot
ei
n

3
C
on
es

Pr
ol
on
ge
d
ph
ot
or
es
po
ns
e
re
co
ve
ry

[9
]

gc
ap
4

G
ua
ny
la
te
cy
cl
as
e
ac
tiv
at
io
n
pr
ot
ei
n

4
C
on
es

gc
ap
5

G
ua
ny
la
te
cy
cl
as
e
ac
tiv
at
io
n
pr
ot
ei
n

5
C
on
es

gc
ap
7

G
ua
ny
la
te
cy
cl
as
e
ac
tiv
at
io
n
pr
ot
ei
n

7
C
on
es

em
l1

C
N
G
-m

od
ul
in

C
on
es

R
ed
uc
ed

lig
ht

se
ns
iti
vi
ty

[9
4]

E
m
l1

1573Pflugers Arch - Eur J Physiol (2021) 473:1569–1585



transformational change [51, 52]. Zebrafish cones express a
total of 8 cone opsins, namely opn1sw1 (also known as sws1),
opn1sw2 (also known as sws2), opn1mw1 (also known as rh2-
1), opn1mw2 (also known as rh2-2), opn1mw3 (also known as
rh2-3), opn1mw4 (also known as rh2-4), opn1lw1 (also
known as lws1), and opn1lw2 (also known as lws2) [2, 145,
182]. Hence, there are four green (short wave length) and two
red (long wavelength) opsin variants. These variants have
slightly different peak absorption properties potentially
allowing a bewildering range of fine-tuning of color percep-
tion [30, 23]. The expressions of these multiple rh2 and lws
genes follow a spatiotemporal order during development
[182]. Rod photoreceptors express only a single-rod opsin
gene rho (also known as rh1) [218]. Mutations in human
rod opsin may produce night blindness or retinal degeneration,
while cone opsin defects may lead to achromatopsia [168, 43,
130, 200, 201]. For years, vitamin A1-based photopigment has
been recognized as the sole photopigment existing in
zebrafish photoreceptors under standard laboratory conditions
[23, 30]. The peak absorption spectra (λmax) of A1-based
photopigments differ markedly and cover a wide spectrum
from 355 nm (UV) to 558 nm (red) in vivo. However, thyroid
hormone (TH) treatment or colder water temperature may re-
sult in a transition from A1 to vitamin A2 (11-cis 3,4-
didehydroretinal)-based photopigments. This demonstrates a
functional A1-A2 photopigment interchange system in
zebrafish [159, 3, 48]. The λmax of A2-based photopigments
shifts towards longer wavelength relative to A1-based
photopigment [115, 66]. This interchange system is frequently
observed in freshwater fishes and amphibians, and may be
adapted to the red-shifted light environment in fresh water
compared with marine and terrestrial environments [149,
197, 222]. Another mechanism to tune photopigments is to
change opsin expression levels. TH treatment has been report-
ed to reduce lws2 (548 nm) and rh2-1 (467 nm), while increas-
ing lws1 (558 nm) and rh2-2 (488 nm) in larvae, favoring the
opsins with longer λmax [119]. Both the mechanisms red-shift
the zebrafish photoreceptor spectral sensitivity. Moreover, in
TH receptor-defective fish, retinal progenitors designed to be-
come red cones are transfated into UV cones, providing an-
other mechanism for TH to regulate long-wavelength vision
[180, 195, 37].

Besides the visual opsins, the zebrafish genome harbors 32
nonvisual opsin genes, which encode opsins forming func-
tional photopigments with different chromophores [35, 34,
56]. Many, but not all of them, are expressed in the photore-
ceptor layer. Their functions in photoreceptors are largely un-
known, but a role in circadian light entrainment is discussed
[56, 174, 26].

Activated opsin (R*) interacts with the trimeric G protein
transducin [22, 50, 105]. Binding of R* to transducin results in
the replacement of GDP by GTP at the active site of the
transducin α subunit. This nucleotide exchange dissociates

the activated α subunit (Gα*) and the heterodimer of β and
γ subunits (Gβγ) . Gα* then binds to the cGMP
Phosphodiesterase 6 (PDE6) [91, 128].

Zebrafish rod and cone photoreceptors express different
variants of three subunits [99, 28]. In rods, gnat1 encodes
transducin α subunits, gnb1a and gnb1b encode β subunits,
and gngt1 encodes γ subunits (all these variants possibly also
in UV cones), while in cones, gnat2 encodes α subunits,
gnb3a and gnb3b encode β subunits, and gngt2a and gngt2b
encode γ subunits.

Surprisingly, a zebrafish mutant defective in the cone-
specific gnat2 gene (no optokinetic response f (nof)) shows a
residual photoresponse that needs to be mediated by an un-
known transducin-independent mechanism [21].

Interestingly, both Gα and Gβ showmassive light-induced
translocation from rod outer segment to inner segment in
mice, which may contribute to light adaptation in rods [170].
However, Gα translocation has not been observed in zebrafish
cones (or mouse cone), indicating light adaptation mecha-
nisms may vary between rods and cones [85, 46, 114].

When Gα* binds to PDE6, two PDE6 inhibitory subunits
dissociate from the active sites and allow the activation of
PDE6 to hydrolyze cGMP [32]. The rod PDE6 variant is
expressed as a heterotetramer consisting of two catalytic α
and β subunits encoded by pde6a and pde6b, and two identi-
cal inhibitory γ subunits encoded by pde6g. Cone PDE6 com-
prises two homodimers of two catalytic α′ subunits encoded
by pde6c and two inhibitory γ′ subunits encoded by pde6h
[106, 62, 32, 72, 122].

Zebrafish retain the same set of catalytic subunit genes as in
humans (pde6a, pde6b, and pde6c), while inhibitory subunits
are encoded by duplicated paralogues: pde6ga and pde6gb in
rods and possibly UV cones and pde6ha and pde6hb in all
cones [100, 134]. An additional inhibitory subunit gene pde6i
has also been found in zebrafish, and some other lower verte-
brates including fish (teleost and non-teleost) and amphibians
[100].

Mutations in the cone-specific pde6c gene are associated
with cone dysfunction in human patients with achromatopsia
[27, 59, 186]. Mutations in cone-catalytic subunit pde6c result
in almost diminished cone electroretinogram (ERG) and op-
tokinetic response (OKR), and cone photoreceptor degenera-
tion in zebrafish [134, 172]. The mechanism underlying cone
degeneration is unknown and is not linked to increased cyto-
solic Ca2+ levels [118].

Ultimately, the visual transduction cascade regulates the
opening of cyclic nucleotide-gated (CNG) ion channels.
These non-selective cation channels are opened by cGMP
binding [210]. Falling cGMP concentration due to cGMP hy-
drolysis by PDE6 leads to the closure of these CNG channels,
suppressing the circulating dark current and resulting in pho-
toreceptor hyperpolarization. CNG channels are heteromeric
proteins consisting of α and β subunits [81, 125]. Rod
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channels are assembled from 3 CNGA1 subunits and 1
CNGB1, while cone channels are assembled from 2 CNGA3
subunits and 2 CNGB3 subunits [202, 220, 221, 102].

Mutations in CNGA1 and CNGB1 have been identified in
human patients with autosomal-recessive retinitis pigmentosa
[14, 5, 93, 42]. In zebrafish, all visual CNG channel genes
have retained two paralogues, but no additional information
is available.

Regulation of visual transduction

At the biochemical level, visual transduction is mainly regu-
lated by its deactivation kinetics. To deactivate the visual
transduction cascade, deactivation of both R* and Gα-PDE*
complex and the restoration of cGMP concentrations are re-
quired [22, 50].

The lifetime of R* is tightly regulated by arrestin proteins
that efficiently inactivate photopigmet by binding to its phos-
phorylated form. Therefore, the first step of R* inactivation is
phosphorylation. R* is phosphorylated by G protein–coupled
receptor kinases (GRKs). Mice and rats express only GRK1 in
both rods and cones, while humans express GRK1 in rods and
GRK1 and GRK7 in cones [219, 117, 165, 199]. In zebrafish,
both visual grk genes are present as two paralogues. grk1a is
expressed exclusively in rods, grk1b and grk7a in all cones,
and grk7b only in UV cones [152, 196] (unpublished data).
GRK deficiency in humans leads to Oguchi disease, which is
characterized by a delay of rod recovery [209]. A grk7a
knockdown model produces largely delayed ERG response
recovery and reduced temporal contrast sensitivity in the
OKR [152]. Another study demonstrates similar but more
modest effects in either grk1b or grk7a mutants [31].

Overexpression of grk1a in zebrafish rods shows minor
effect on rod photoresponse, suggesting that endogenous
GRK1a protein is already at saturation levels. Ectopic expres-
sion of cone grk7a in rods resulted in cone-like rod responses
[194].

The binding of arrestin completely deactivates the phos-
phorylated photopigment [98, 203]. In the mouse retina, both
rod (ARR1) and cone (ARR3) arrestins are co-expressed in
cone photoreceptors [132, 203]. Mutations in ARR1 are a
cause of Oguchi disease in human [58]. In zebrafish, arrsa
and arrsb (orthologues of Arr1) are expressed in rods while
arr3a exists in double cones and arr3b exists in blue and UV
cones, indicating subfunctionalization of the two paralogues.
arr3a knockdown resulted in a severe delay in ERG response
recovery and decreased temporal contrast sensitivity [148].

Regulators of G protein signaling 9 (RGS9) act as GTPase
activating protein to deactivate Gα*-PDE complex [17].
Mammals have a single Rgs9 gene, while zebrafish have
two rgs9 genes, with rgs9a being expressed in cones and
rgs9b in rods [33, 104] (unpublished data). Inactivating

mutations in humans lead to bradyopsia, a rare condition char-
acterized by slower photoreceptor deactivation [133]. A land-
mark study using Rgs9 overexpression in mice demonstrated
its crucial role to rate-limit rod visual transduction recovery
[96].

To restore the dark current, cGMP needs to be
resynthesized by membrane-bound guanylate cyclases (GCs)
[88, 167]. Photoreceptor-specific GCs are regulated by the
small Ca2+-binding guanylate cyclase activation proteins
(CGAPs) [90].

Mammals have two photoreceptor-specific GCs, GC-E
(known as GC1) and GC-F (known as GC2), both of which
are co-expressed in rods and cones [103, 88, 60]. GC-E is
more concentrated in cones, while the expression of GC-F is
more prominent in rods. Mutations in GC-E have been shown
to cause Leber congenital amaurosis 1 (LCA1), a severe form
of pediatric blindness in humans [142]. The zebrafish possess
3 GCs. GC-E (known as GC1), GC-F (known as GC2), and
GC-D (known as GC3) are encoded by gucy2e (previous
name gucy2f), gucy2f (previous name gc2), and gucy2d (pre-
vious name gc3), respectively. Both gucy2e and gucy2f are
expressed in rods and UV cones, while gucy2d encodes the
only cone-specific GC in all cone subtypes [55, 144].

A zebrafish gucy2dmutant has been identified in behavior-
al screen by displaying OKR and optomotor response (OMR)
impairments [127]. PDE6c protein levels are downregulated
in gucy2d knockdown larvae, indicating the interdependence
between these two regulators of cGMP metabolism [79]. A
knockdown of the gucy2d gene results in the loss and short-
ening of outer segments and defects in the OMR [176].

In darkness, the open non-selective CNG channels mediate
a Ca2+ influx into the photoreceptor outer segment. Ca2+ ef-
flux via Na+/Ca2+, K+ exchanger (NCKX) balances this in-
flux, producing a moderately high intracellular Ca2+ concen-
tration as shown in rods of different species [101, 207]. Under
light illumination, CNG channels are closed due to the de-
crease in cGMP concentration, while Ca2+ efflux continues,
resulting in a decrease of intracellular Ca2+ concentration in
the outer segment [211]. This light-induced Ca2+ decline can
be simultaneously measured with light response in zebrafish
UV cones, demonstrating similar kinetics of Ca2+ extrusion
via NCKX to that of CNG channel current [109].

NCKX proteins are encoded by SLC24 gene family mem-
bers. They show a cell-type-specific expression with NCKX1
being expressed in rods and NCKX2 in cones [193, 147, 143,
150]. NCKX2-deficient mice show no or only mild functional
defect, suggesting that compensating transporters may medi-
ate ion exchange as well [112, 156]. A recent study proposed
that NCKX2 and NCKX4 cooperated to facilitate the rapid
and efficient extrusion of Ca2+ from mouse cones. NCKX4
has its well-established function in olfactory sensory neurons
and is similarly expressed in all cones in the zebrafish retina
[192]. The expression pattern of the other NCKX coding
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genes is unknown in zebrafish, but studies in the striped bass
show expression of nckx1 in rods and four splice variants of
nckx2 in cones [137].

The reduction of cytoplasmic Ca2+ negatively feedbacks to
the phototransduction cascade, triggering the rapid
photoresponse recovery and facilitating photoreceptor adapta-
tion to background light [120, 129]. During light adaptation,
photoreceptor light sensitivity is reduced and response kinet-
ics is accelerated, to avoid saturation and to operate across a
wide range of environmental light intensity [50]. This has
been achieved by mechanisms that primarily involve the reg-
ulation of GRKs by Recoverin, GCs by GCAPs, and CNG
channels by CNG-modulin (or Calmodulin) [138, 191].

Recoverin (RCV) is a small neuronal calcium sensor
(NCS), which is primarily located in vertebrate photorecep-
tors. Upon Ca2+ binding, RCV undergoes a pronounced con-
formational change, the so-called Ca2+-myristoyl switch,
which translocates the proteins from a cytosolic form to a
membrane tethered conformation, allowing targeting and
inhibiting GRK proteins [82, 166, 183, 6, 40, 83, 217].
Light stimulation reduces intracellular Ca2+ concentration,
allowing the Ca2+-free RCV releasing GRK. GRK disinhibi-
tion accelerates R* phosphorylation, enabling arrestin
binding.

While there is only one RCV isoform in mammals
(RCV1), four rcv genes are encoded in the zebrafish ge-
nome (rcv1a, rcv1b, rcv2a, and rcv2b) [215]. rcv1b, rcv2a,
and rcv2b are cone RCV, while rcv1a is expressed in rods
and UV cones. Mouse RCV1 experiences a remarkable
light-induced translocation from outer and inner segment
towards synaptic terminals in rods, which has not been
observed in zebrafish photoreceptors by studying all
zebrafish RCVs [177] (unpublished observation).
Downregulation of cone RCV accelerates photoresponse
recovery, but this effect is abolished when cone GRK7a
is simultaneously knocked-down. This result not only in-
dicates that RCV regulates opsin deactivation via GRK,
but also demonstrates that the cone opsin deactivation ki-
netics dominates the overall photoresponse shut off kinet-
ics in vivo [215]. Interestingly, different RCVs contribute
at distinct light intensities. This implies different Ca2+ sen-
sitivities for these RCVs, since intracellular Ca2+ concen-
tration correlates with light levels [158]. Indeed, a recent
biochemical work demonstrated distinct Ca2+ affinities,
Ca2+-dependent membrane binding, and Ca2+-induced
conformational changes among zebrafish isoforms [45].
Furthermore, salamander cone photoresponse, but not rod
response, is also dominated by a Ca2+-sensitive mechanism
[121, 216]. If the Ca2+-sensitive dominance is a general
feature in cone photoresponse, it may contribute to the
more powerful light adaptation of cones compared to rods.

To restore the dark current, cGMP needs to be
resynthesized by GC, which is under the regulation of small

Ca2+-binding proteins called GCAPs [90, 39]. GCAPs belong
to the superfamily of EF-hand Ca2+-binding proteins, harbor-
ing four EF-hand Ca2+-binding motifs, three of which are
functional [89]. Unlike RCVs, GCAPs do not undergo a clas-
sical Ca2+-myristoyl switch, but the myristoyl group does play
an important role to regulate GCAP properties, including Ca2+

sensitivity, GC affinity, and the catalytic efficiency of the
enzyme. Ca2+-binding GCAPs together with GCs form GC/
GCAP complex in darkness. Ca2+ reduction during light ex-
posure triggers a conformational change in GCAPs, which
results in a transformational change within the GC/GCAP
complex, increases GC catalytic activity and reopens the
CNG channels. During light adaptation, the Ca2+-sensitive
GCAP activity will also prevent the closure of all CNG chan-
nels and keep photoreceptors responsive.

GCAP1 and 2 are expressed in mammalian rods and cones.
The human (but not the mouse) genome also processes a cone-
specific CGAP3 [75, 140, 160]. Zebrafish photoreceptors ex-
press six GCAPs, of which gcap3, 4, 5, and 7 are restricted to
cones and gcap1 and 2 are exclusively expressed in rods and
UV cones [76, 144, 54]. These isoforms show distinct Ca2+

sensitivities of GC activation, Ca2+/Mg2+-dependent confor-
mational changes, and Ca2+-binding affinities [164, 179].
Light exposure allows intracellular Ca2+ fluctuating to differ-
ent levels, in which distinct CGAPs may reach their optimal
working range.

GCAP3 is first expressed in a non-myristoylated form
in larvae and then becomes myristoylated in the adult
retina [54]. Although GCAP3 has been shown to produce
the highest Ca2+-dependent activation of GCs in native
zebrafish retina, gcap3 knockdown does not induce any
visual behavioral abnormalities [55]. In another study,
GCAP3 in green cone was inactivated by antibody injec-
tions. Whole-cell patch clamp recordings demonstrated
that the photoresponse recovery is strongly prolonged,
confirming GCAP3 function to activate GC to restore
CNG channel current in cones [9].

cGMP affinity of CNG channels is regulated in a Ca2+-
dependent manner in all sensory neurons [19]. Ca2+ cannot
directly bind to the channels but work via modulator proteins,
which have been identified as calmodulin in mammalian rods
and CNG-modulin in fish cones [70, 146]. However, the con-
tribution of CNG channel modulation by Ca2+ in regulating
light adaptation is very limited in rods [29, 95]. On the other
hand, CNG-modulin has been shown to regulate the cGMP
dependence of CNG channels in a Ca2+-sensitive manner, and
to modulate the light response kinetics in striped bass cone
[146]. CNG-modulin is encoded by the eml1 gene in
zebrafish. eml1 knockdown reduces the light sensitivity of
dark-adapted and light-adapted cones; the sensitivity cannot
be restored to wild-type levels [94]. These experiments dem-
onstrate a stronger Ca2+ feedback to CNG channels in cones
compared to rods.
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Outer segment: a specialized primary cilium

Photoreceptor outer segments are strongly modified special-
ized primary cilia, sharing many general structural and bio-
chemical features of cilia [77]. Outer segment stacked discs
are arranged on the side of a microtubule-based axoneme,
anchoring inside the inner segment through a connecting cil-
ium and its basal body. Therefore, the connecting cilium,
known as the transition zone in other cell types, connects outer
and inner segment, mediating bi-directional protein trafficking
[181]. Dysfunctions of primary cilia result in human disorders
referred to as ciliopathies, which were reviewed elsewhere
[11].

Outer segments are constantly bombarded by photons and
their integrity is endangered by radical oxygen species. Since
photoreceptors, like most neurons of the central nervous sys-
tem, cannot be replaced, photoreceptors constantly rejuvenate
themselves by renewing their outer segments. New discs are
synthesized by ciliary membrane evagination at the base of the
outer segment as the ciliary ectosomes, which then is elongat-
ed, flattened, and enclosed inside the outer segment [87, 173,
38, 171]. The tips of the outer segments, containing the oldest
and potentially damaged membranes, are phagocytosed and
digested by RPE cells. Although outer segment renewal/
shedding is essential for photoreceptor homeostasis and sur-
vival, molecular mechanisms underlying its regulation are still
poorly understood.

Recent works on zebrafish have contributed significantly to
our understanding of the molecular mechanisms behind pho-
toreceptor outer segment shedding and renewal. The zebrafish
lends itself ideally to transgenically label cellular structures or
cells, as Willoughby and colleagues have used elegantly for
the outer segment [205]. They devised a stable line with heat
shock–inducible fluorescent membrane protein that allowed
them to follow the renewal and shedding of the rod outer
segments as an updated experimental approach to the classic
radioactive labelingmethod [214]. This line was then used in a
high-content small-molecule screens that among others iden-
tified an involvement of cyclooxygenase in outer segment
growth, gamma secretase in outer segment shedding, and
mTOR in RPE phagocytosis [25].

Some earlier studies demonstrated that disc shedding in
frog and cat was initiated by light [15, 53]. A recent zebrafish
study using PDE6 inhibitors to block the visual transduction
cascade mimicking constant dark conditions indeed inhibited
rod outer segment shedding [24]. Interestingly, mammalian
rod outer segment shedding remains in constant darkness,
instead showing circadian clock controlling disc shedding
mechanism [108, 185, 64, 74].

Given the nature of the outer segment, it comes as no sur-
prise that many genes associated with intracellular and ciliary
trafficking are involved in outer segment generation and
maintenance.

The most abundant protein that needs to be shipped out to
the outer segment is rhodopsin. Every second, around 70 rho-
dopsin molecules are trafficked from the inner to the outer
segment [213, 204, 141]. Detailed studies of rhodopsin trans-
port in frogs showed that RAB8, a small GTPase, coats
rhodopsin-carrier vesicles and directs them to a selective bar-
rier at the base of connecting cilium [139, 36]. In live imaging
experiments in zebrafish, RAB8-directed rhodopsin traffick-
ing in rods has been directly visualized in vivo [135]. The
correct localization of RAB8 at the base of the outer segment
is regulated by components of the connecting cilium itself,
such as CC2D2A and further interaction partners, such as
Ninl and MICAL3 [10, 12].

About 10% of outer segment is renewed every day inmam-
malian photoreceptors [108]. Therefore, intraflagellar trans-
port (IFT), which contributes primarily to traffic visual trans-
duction proteins into the outer segment, is important for outer
segment development and structure [77]. IFT-B complex and
kinesin motors mediate anterograde movement towards the
distal outer segment, while IFT-A and dynein motors mediate
retrograde movement towards the cell body [154].

A series of zebrafish studies contributed greatly to our un-
derstanding of the mechanism underlying IFT. Mutations af-
fecting the IFT-B complex (IFT52, IFT57, IFT88, IFT172)
lead to defects in outer segment formation and/or mainte-
nance, finally resulting in both rod and cone degeneration
[188, 41, 65]. Biochemical assays indicated that IFT20, a
IFT-A member, requires IFT57 to associate with the IFT par-
ticle [97]. In another study, TNF receptor-associated factor 3
interacting protein 1 (TRAF3IP1) was shown to bind to
IFT20. It can also interact with RAB8 via Rabaptin5, an en-
docytosis regulator. This demonstrates a connection between
the IFT particle and the GTPase pathway, known to facilitate
protein complex assembling [136].

Moreover, microtubular motors play an essential role in
transporting IFT complexes. KIF17, kinesin-2 family mem-
ber, is involved in ciliogenesis [206]. It is located all over
zebrafish cones but concentrates at the basal body and the
distal tip of the axoneme [13]. Knockdown of kif17 disrupts
outer segment structure and mislocates visual transduction
proteins [78]. Disc shedding is also promoted by KIF17 and
eliminated in its absence [110].

Ribbon synapses

Non-spiking photoreceptors respond and adapt to a wide
range of light intensities. The light-induced CNG channel clo-
sure generates the graded changes in membrane potential,
which in turn regulates tonic neurotransmitter glutamate re-
lease at the presynaptic terminals [175, 163, 187]. This graded
signaling is facilitated by specialized ribbon synapses, which
hold a dense array of synaptic vesicles near active zones along
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their surface and were firstly identified by electron microsco-
py as electron dense structures in guinea pig rod synapses
[169].

Work on zebrafish has helped to identify the key compo-
nents of ribbon synapses and their function in signal
transmission.

Ribeye is the most abundant protein in the synaptic ribbon
[163]. In the zebrafish retina, both ribeyea and ribeyeb are
present in the photoreceptors while ribeyea also shows expres-
sion in bipolar cells. Downregulation of ribeyea diminishes
OKR and reduces ribbon length and number [198, 116].

Synaptojanin (Synj1) is a polyphosphoinositide phospha-
tase regulating clathrin-mediated endocytosis in conventional
synapses [155]. A zebrafish synj1 null mutation (nrc) shows
unanchored “floating” ribbons and reduced synaptic vesicles
in cone but not rod synapses[189, 68], associated with defect
in vision [4].

Photoreceptor L-type voltage-dependent calcium channels
(Cav1.4) are located in the vicinity of synaptic ribbons and
mediate exocytosis [187]. In darkness, they are opened by
the depolarized photoreceptor membrane potential, resulting
in calcium-dependent glutamate release. Cav1.4 are
heteromultimeric protein complexes comprising of a pore-
forming α1F subunit, encoded by CACNA1F, and accessory
β and α2δ subunits, encoded by CACNB2 and CACNA2D4,
respectively. Mutations in CACNA1F gene result in X-linked
congenital stationary night blindness type 2 and cone-rod dys-
trophy in human [16, 178]. Two paralogues, cacna1fa and
cacna1fb are identified in zebrafish with cacna1fa being
expressed in photoreceptors while cacna1fb only existing in
the inner retina [80]. CACNA1Fa protein exclusively accu-
mulates at the outer plexiform layer and its null mutants (wud)
present thinner outer plexiform layer, defective ERG,
completely absent of synaptic ribbons, and mislocalized
Ribeyeb.

Mutations in human CACNA2D4 are related to autosomal
recessive cone dystrophy, while rods in different CACNA2D4
knockout mouse lines are even more severely affected, show-
ing missing or largely defective scotopic and photopic ERG
response [208, 86, 71]. More recently, another study focused
on zebrafish cacna2d4 encoding Cav1.4 α2δ subunit [116].
cacna2d4 is duplicated in zebrafish as cacna2d4a and
cacna2d4b. Double KO shows reduced pore-forming
CACNA1Fa expression andminor defects in both visual func-
tion and ribbon structure. The zebrafish KO model is associ-
ated with similar moderate phenotype in human patients, pro-
viding a comprehensive tool to study the related human eye
disorders.

Zebrafish show a peculiar phenomenon of disassembled
ribbon synapses at least in the larval retina during the night.
At light onset, the presynaptic structure is rapidly reassembled
for function [47]. This unusual mechanism may have evolved
to save energy in rapidly growing larvae.

Conclusion

The zebrafish retina serves as an important model of cone
photoreceptor and has already contributed significantly to
our understanding of photoreceptor maintenance and func-
tion. With its ever-increasing toolbox of imaging and genetic
techniques, it will continue to crucially help us further in in-
vestigating the outer retina and its diseases.
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