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Immune system has evolved tomaintain homeostatic balance between effector and regulatory immunity, which is crit-
ical to both elicit an adequate protective response to fight pathogens and disease, such as cancer, and to prevent dam-
age to healthy tissues. Transient immune suppression can occur under normal physiological conditions, such as during
wound healing to enable repair of normal tissue, or formore extended periods of time during fetal development, where
the balance is shifted towards regulatory immunity to prevent fetal rejection. Interestingly, tumors can exhibit patterns
of immune suppression very similar to those observed during fetal development. Here some of the key aspects of nor-
mal patterns of immune suppression during pregnancy are reviewed, followed by a discussion of parallels that exist
with tumor-related immune suppression and consequent potential therapeutic implications.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Immune cell homeostasis is critical for maintaining protection from in-
fection and disease, as well as for preventing autoimmune disorders. There
are twomain arms of effector immunity: innate and adaptive. Innate immu-
nity is largely non-specific and refers to defense mechanisms that are acti-
vated within hours of antigen encounter in order to contain and prevent
the spread of foreign antigens. The key cell types involved in innate immu-
nity are natural killer cells (NK), macrophages, neutrophils, dendritic cells,
basophils and eosinophils, among others [1]. Adaptive, or acquired im-
mune response is the second line of defense; it is specific to particular anti-
gens and it requires several days to become activated. It is characterized by
ono Research and Development
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clonal expansion of T and B lymphocytes,which increase rapidly from a few
tomillions of cells; upon expansion, these cells express the same antigen re-
ceptor and are primed to fight the same pathogen [1]. B lymphocytes are
primarily involved in humoral (antibody-mediated) immunity, while T
lymphocytes are largely involved in cell-mediated immunity, which in-
volves increased phagocytosis and antigen-specific cytotoxic cells. Cells of
the adaptive immune response mediate pathogen clearance through either
direct cytotoxicity, or through secretion of inflammatory cytokines, which
in turn mediate additional phagocyte-dependent inflammation and cell-
mediated immunity [1].

Activated effector T lymphocytes can additionally be roughly
subdivided into Th1 and Th2 cells [2]. Th1 cells are involved in production
of pro-inflammatory cytokines, such as IFN-gamma and IL-2 and are under-
stood to be primarily involved in killing external pathogens, as well as can-
cer cells. In contrast, Th2 cells produce interleukins (IL) -4,-5,-6,-9,-10 and
− 13, increasing antibody-specific responses and eosinophil accumulation
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[2]. While excessive Th1 responses can cause damage to the body's own tis-
sues, Th2 response can act as a counterweight, and thus a balance between
Th1 and Th2-associated cells is needed to bothmaintain a suitable immune
response suitable and to prevent autoimmunity.

The risk of autoimmunity is additionally mitigated by regulatory im-
mune cells, such as Tregs, which are CD25 + CD4+ cells, characterized
by expression of nuclear transcription factor Forkhead box P3 (FoxP3)
[3]. They can suppress proliferation of cytotoxic T cells [4,5], suppress pro-
duction of cytokines, such as IL-2, by CD8+ and CD4+ cells [5], or kill re-
sponder T cells via both granzyme and perforin-dependent mechanisms
[6,7]. They can also inhibit effector immunity by promoting T cell exhaus-
tion [8].

Prevalence of immunosuppressive cells, such as Tregs, has been ob-
served under pathological situations, such as in cancer, but they serve an
additional important purpose in normal human development. Similar pat-
terns of immune suppression are observed during fetal development. In
fact, many processes that are characteristic of successful tumor establish-
ment and growth are critical for fetal implantation and survival throughout
pregnancy. These include establishment of blood supply, avoidance of de-
struction by the mother's immune system (fetal-maternal tolerance), cell
migration, as well as recruitment and modification of tissue to support
fetal development [9]. Herewe focus particularly on themechanisms of im-
mune suppression that are common in pregnancy and cancer.

Immune Suppression During Pregnancy and Cancer

A state of temporary immune suppression is normally observed during
healthy pregnancy, since from an evolutionary point of view, it is important
to balance protecting the mother from infection while simultaneously
protecting the fetus from themother's immune system. Blastocyst implanta-
tion typically occurs in Th1-dominant microenvironment, which then soon
becomes biased towards Th2 phenotype to enable immunological tolerance
that is necessary for pregnancy to continue [10–12]. Upon delivery, the
Th1/Th2 balance is typically restored within several weeks post-partum
[13]. Altered balance between Th1/Th2 cell phenotypes is also observed
in many tumors, favoring a more favoring a more permissive Th2-
polarized microenvironment; this has been observed in numerous malig-
nancies, including glioma, melanoma and leukemic cutaneous T cell lym-
phoma [14–16].

Regulatory T cells (Tregs) are another important actor in maintenance
of immune permissive environment in pregnancy [17]. CD4 + CD25+
cells are elevated during various stages of pregnancy, particularly during
the first and second trimesters [18], and CD25 + T cell depletion can
lead to gestation failure [19]; a more detailed discussion of the importance
of Tregs in fetal-maternal tolerance will be given below. Similarly to preg-
nancy, in many cancers the ratio of effector to regulatory T cells is altered
in favor of Tregs, such as in ovarian cancer [20], muscle invasive urothelial
carcinoma of the bladder [21], squamous cell carcinoma of the cervix [22],
colorectal cancer [23] and breast cancer [24].

To further elucidate similarities between immunological tolerance dur-
ing pregnancy vs tumor development, Enninga et al. [25] compared the
levels in the blood of women during and after pregnancy of soluble pro-
grammed cell death ligand-1 (sPD-L1), a checkpoint molecule that has be-
come the target of successful immunotherapeutic interventions [25,26],
and that of galectin-9, a β-galactoside binding protein that can act as a neg-
ative regulator of Th1 immune responses. The authors observed that the
levels of these molecules were elevated during pregnancy compared to
non-pregnant controls; they returned to normal after delivery. The authors
separately showed that galectin-9 was elevated in plasma of patients with
advanced melanoma compared to healthy controls, which was associated
with increased Th1 cell apoptosis and promotion of Th2-biased cell pheno-
type [27]. Finally, the authors compared the levels of sPD-L1 and galectin-9
in pregnant women to those of patients with stage IVmelanoma [28]. They
found that galectin-9 was significantly increased in pregnant women's
plasma (2524 pg/ml) and in plasma of cancer patients (3969 pg/ml) com-
pared to controls (997 pg/ml). Furthermore, The levels of PD-L1 increased
2

throughout gestation but dropped dramatically within 6weeks postpartum,
further highlighting the transient nature of immune suppression during
pregnancy.

In summary, as with Th1/Th2 balance, while in pregnancy numerous
immune suppressivemechanisms, such as PD-L1 expression and Treg abun-
dance decrease within several weeks after delivery [17,28], they remain el-
evated during tumor development, suggesting that similarly to
angiogenesis, which commences in the sameway as normal wound healing
that does not terminate [29], immune suppression in tumors may com-
mence in a way that is similar to fetal development that does not end.

Notably, the extent of immune suppression is not constant during preg-
nancy but in fact follows an “immune clock of human pregnancy” [13]. In
an extensive study, Aghaeepour and colleagues [13] used mass cytometry
tomap the timing of specific pregnancy-induced changes to immune system
composition and function. The authors quantified abundance and function-
ality of all major immune cell subsets in serial blood samples that were col-
lected during pregnancy to both confirm many known mechanisms and to
identify several novel ones. Specifically, the authors confirmed overall en-
richment of innate immune responses during pregnancy, as well as increase
in abundance of neutrophils and increased responsiveness to a variety of cy-
tokines, such as IFN-alpha, IL-2, and IL-6. The authors confirmed higher ex-
pression of tolerogenic surface proteins, such as PD-L1, particularly in early
pregnancy, and showed that pregnancy induced progressive increase in
STAT5ab signaling across multiple T cell subsets, including Tregs and
CD8 + T cells. Specifically, they showed that IL-2 dependent STAT5ab ac-
tivity is critical to development of CD4+CD25+FoxP3+T cells; increase
in IL-2 throughout pregnancy was suggested to highlight increasing impor-
tance of Tregs in human pregnancy and until delivery.

Tregs and Mechanistic Insights from Animal Models

While studies in humans allow demonstration of largely correlative re-
lationships between immune cell activity and maternal-fetal tolerance
(and subsequent parallels with mechanisms of immune evasion used by tu-
mors), animalmodels allow deeper exploration of themechanisms underly-
ing the impact of immune system on both these processes. While the
importance of regulatory immunity in fetal-maternal tolerance has been
highlighted in several placental species [30,31], the most extensive work
has been done in mouse models with both syngeneic and allogeneic preg-
nancies. In order to mechanistically assess the impact of Tregs on
maternal-fetal tolerance, the following aspects needed to be evaluated:
1) whether there is a difference in Treg counts in normal vs abortion-
prone mice, 2) whether Treg transfer from normal to abortion-prone mice
can decrease fetal rejection, and 3) whether Treg ablation in normal mice
would lead to increased fetal rejection.

The first two aspects were demonstrated experimentally by Zenclussen
et al. [32], who analyzed syngeneic and allogeneic mouse pregnancy
models of both normal and abortion-prone animals. The authors showed
that indeed, mice with normal pregnancies showed elevated levels of CD4
+ CD25+ cells in the thymus, while significantly lower Treg cell frequen-
cies were observed in abortion-prone animals.

Next, in order to evaluate whether Tregs can rescue pregnancies in
abortion-prone mice, the authors performed adoptive transfer of Tregs
from both normal pregnant and normal non-pregnant mice into abortion-
prone animals. They were able to show that while Tregs from both cases
were able to infiltrate feto-maternal interface, only Tregs from normal preg-
nant mice were able to achieve fetal rescue in vivo, suggesting importance
of previous exposure to paternal genetic material, and perhaps more
broadly, the importance of Treg priming. Moreover, Treg transfer was suc-
cessful only when done sufficiently early in the pregnancy and was not ef-
fective after 4–5 days, highlighting the importance of this particular
mechanism in establishing maternal-fetal tolerance very early on.

Finally, the question of whether Treg ablation can rescue fetal rejection
was evaluated by Aluvihare et al. [33], where the authors showed that de-
pletion of CD25+ T cells indeed led to gestation failure; Darasse-Jeze et al.
[34] also showed that Treg depletion leads to fetal rejection, confirming
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that this mechanism is indeed critical for prevention of fetal rejection, and
potentially tumor rejection as well.

Immune suppression during pregnancy also predictably correlates with
increased susceptibility to infection. For instance, Engels et al. [35] demon-
strated that anti-viral immune responses were diminished in pregnant allo-
genic mice compared to non-pregnant ones, which mechanistically was
reflected in reduced type I IFN response and diminished CD8 + T cell
migration.

More broadly, it is interesting to evaluate whether changes in maternal
immune system precede or supersede successful fetal and potentially tumor
implantation. In cancer, several mechanisms, such as decreased oxygen
flow or low pH may trigger immune suppression [36] as a consequence of
normal physiological adaptations to, for instance, wound healing. How-
ever, according to Zenclussen et al. [32], the presence of Tregs is critical
at early but not late stages of fetal development in order to mediate mater-
nal tolerance to allogeneic fetus, a result also confirmed by Shima et al.
[37]. It would be of interest to evaluatewhether a state of transient immune
suppression is in fact a necessary precursor to tumor establishment, and not
only a consequence of other adaptations, perhaps through a series of exper-
iments similar to those used to evaluate the impact of Tregs on fetal-
maternal tolerance.

Another interesting question is whether mechanisms of immunosup-
pression during pregnancy to maintain maternal-fetal tolerance are differ-
ent or similar across other placental animals. Bainbridge [31] suggests
that despite placentation likely having a single evolutionary origin, it
most likely evolved multiple times in other vertebrates, with different
mechanisms for maternal-fetal tolerance having evolved for different spe-
cies. The author hypothesizes that it is duration of gestation in different an-
imals that may affect immunological challenges affecting the fetus,
selecting for different mechanisms of tolerance.

From the point of view of life-history strategies, a connection between
fertility and cancer risk has recently been proposed by Thomas et al. [38],
where the authors hypothesize that poor anti-cancer defense mechanisms
select for earlier pregnancy and emergence of post-fertile life span, and
thus a post-fertile life stage is not expected to evolve in species with ade-
quate cancer resistance mechanisms, such as multiple copies of p53 gene
in elephants [39]. The ability of tumors to harness immunosuppressive
state of the host to evade the immune system through “fetal mimicry” can
be viewed as one example of less adequate anti-cancer defenses, a hypoth-
esis that warrants further investigation and cross-species analysis.

Potential Implications

Similarities and parallels in the mechanisms of immune suppression
during fetal and tumor growth could provide insights into additional ave-
nues for immunotherapy based on what immunological events may nega-
tively affect fetal growth (i.e., pre-eclampsia or miscarriage). A Th1 bias
has been observed in women with a history of recurrent spontaneous mis-
carriage (RSM) [40], with higher ratios of inflammatory to anti-
inflammatory cytokines of RMS groups compared to normal pregnancy
[41–44]. Specifically, it has been suggested that NK cells could be releasing
cytokines that are contributing to pregnancy losses [45–47] and it is the
balance between cytotoxic and regulatory cells [48] that could be
impacting both pregnancy complications and recurrent miscarriages [49].
Decrease in CD4 + CD25 + FoxP3+ cells in pregnancy is associated
with both pre-eclampsia [51] and spontaneousmiscarriage [19]. In applica-
tion to cancer, this may suggest focusing not only on increasing adaptive cy-
totoxic immunity and dampening regulatory immunity but also developing
treatment strategies that focus on innate immunity, such as NK cells [50] to
increase tumor rejection.

A number of cytokines have been associatedwith increased rates of mis-
carriage, including IL-2, IFN-gamma and TNF-alpha, which are elevated in
women with RSM compared to women with normal pregnancies [52]; in
contrast, IL-4,-5,-6 and− 10 were produced at higher levels by mitogen-
stimulated peripheral lymphocytes in women with normal pregnancies
compared to those with RSM [44,53–55]. Of these, tumor necrosis factor
3

(TNF) alpha is a particularly interesting cytokine that is involved both in
pregnancy and throughout cancer disease progression. TNF-alpha was
first isolated in 1975 by Carswell et al. [56] during investigation of hemor-
rhagic necrosis produced by this endotoxin, giving rise to the name “tumor
necrosis factor”. The authors proposed that TNF mediates tumor necrosis
and may be responsible for cancer cell suppression by macrophages. TNF
signals through two distinct receptors, TNFR1 and TNFR2. TNFR1 is
expressed in most tissues, initiating both pro-inflammatory and pro-
grammed cell death pathways [57]. TNFR2 is primarily expressed on im-
mune cells, such as macrophages; engagement of this receptor can both
induce apoptosis and promote tissue repair and angiogenesis [58]. TNF-
alpha is produced predominantly by myeloid cells, as well as NK cells, neu-
trophils, eosinophils and neuronal cells [57,59] and is an important media-
tor of various immune responses. It appears to have dual function both in
pregnancy and in cancer.

In pregnancy, TNF is typically associated with pregnancy loss [60–62];
however, analysis of human amniotic fluid samples from normal pregnan-
cies, as well as samples of full term placental and decidual tissues revealed
that TNF was detected in 91% of amniotic fluid samples [63]; furthermore,
TNF concentrations collected during second trimester were significantly
higher compared to those in third trimester, with even higher quantities de-
tected in placental and decidual tissues, suggesting a physiological role for
TNF-alpha in normal pregnancy. It is possible that the inflammatory re-
sponse mediated by TNF-alpha in early pregnancy that can lead to preg-
nancy loss serves as an evolutionary mechanism to protect the mother
even at the expense of the fetus, a hypothesis that remains to be
investigated.

In cancer, TNF-alpha has also been shown to play a dual role. It has
been shown to both promote apoptotic [64,65] and necrotic cell death
[57,66], and to promote angiogenesis [67], tumor growth [68] and
even epithelial to mesenchymal transition (EMT), contributing to meta-
static disease spread [69,70]. Elevated levels of TNF-alpha have been as-
sociated both with malignancy [71–74] and with pre-eclampsia and
spontaneous miscarriages [60–62,75,76], although several studies
have shown that TNF-alpha levels are not predictive of pre-eclampsia
[77,78], suggesting that it may be a consequence rather than a cause
of pregnancy complications.

Interestingly, TNF-alpha is the same protein as cachechtin, or cachexin
[59], a cytokine that is frequently elevated in cachexia, a wasting syndrome
that is characterized by systemic inflammation and involuntary loss of lean
body mass [79] that is common in late stage cancer patients. While TNF-
alpha can induce symptoms of cachexia, its inhibition has not been
shown to reverse or improve symptoms of cachexia [80,81]. One can hy-
pothesize that lack of efficacy of TNF-alpha inhibitors in cachexia lies in
the fact that the cytokine's effects have both pro-and anti-inflammatory
properties, and thus the effects of its inhibition may become canceled out.
It is also possible that, since TNF-alpha is a characteristic of systemic inflam-
mation, its accumulation begins from very early stages in tumor develop-
ment but remains unnoticed due to other more prominent features of
disease manifestation; similarly to wound healing and transient immune
suppression, it may be a process that starts as a normal physiological re-
sponse that does not terminate. It might be of interest to explore whether
TNF-alpha blockade in early stages of disease, combined with compensa-
tory therapy to alleviate the negative effects of such blockade can delay
or prevent the onset of cachexia.

Conclusions

Numerous similarities exist between immune suppression in normal
fetal development and in tumor growth. Immune suppression in pregnancy
is transient, aimed at protecting the fetus from themother's immune system
until delivery; in tumor growth, same mechanisms may be activated by the
tumor to gain protection from immune system, leading to disease progres-
sion. Understanding mechanisms and processes that may interfere with
fetal development may provide an avenue to explore ways to similarly in-
terfere with tumor growth.
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