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Abstract

Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in
microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant
nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response
regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to
promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing
functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and
adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding
protein, the asrR null mutant was found to be more resistant to b-lactam antibiotics. Deletion of asrR markedly decreased
the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci,
and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to
human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity
than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse
systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a
decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine
macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we
observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that
AsrR plays a major role in antimicrobial resistance and adaptation for survival within the host, thereby contributes
importantly to the opportunistic traits of E. faecium.
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Introduction

Enterococci are commensal Gram-positive cocci of intestinal

origin. First reported as a cause of infective endocarditis in 1899,

enterococci have also become, over the past 20 years, the 2nd–3rd

most common organisms isolated from healthcare-associated

infections [1,2]. In the USA, the emergence of enterococci as

nosocomial pathogens was associated with a gradual replacement

of Enterococcus faecalis by Enterococcus faecium and an epidemic spread

of vancomycin-resistant E. faecium [3]. Acquisition of resistance to

ampicillin and then to vancomycin, impacting the antibiotic

treatments of choice, has been assumed to be the major factor

responsible for transforming this organism from its docile,

commensal nature into a significant nosocomial pathogen [3].

Reports on the transfer of vancomycin resistance from enterococci

to methicillin-resistant Staphylococcus aureus stress the need to better

understand the molecular epidemiology, as well as the transmis-

sibility and virulence of enterococci, to control further spread and

develop treatment and eradication strategies [4,5].

Mortality associated with vancomycin-resistant E. faecium

infections is high but is more related to severe underlying diseases

in infected patients than to production of bacterial virulence
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factors [6]. One of the most remarkable features of E. faecium

isolates is their striking capacity to colonize both healthy carriers

and patients, to survive to the host defences and to spread in the

hospital environment, leading to major outbreaks [7]. The factors

underlying its colonization capacities, including host-persistence,

environmental stress response and adaptation, are only poorly

understood.

In addition to antibiotic resistance genes, several virulence genes

have been identified in E. faecium of which espEfm and acm (encoding

a surface protein and a collagen adhesin, respectively) have been

experimentally proven to be important for infection in animal

models [8,9]. In numerous organisms, virulence genes are

controlled by environmental stresses and involve alternative s
factors of RNA polymerase and specific transcriptional regulators.

Enterococci lack a sB-like general stress s factor, but approxi-

mately 10 transcriptionnal regulators have been shown to be

involved in virulence and stress response in the related bacterium

E. faecalis [10–13]. Deciphering the regulatory pathways that lead

to virulence and antibiotic resistance is crucial to understand the

mechanisms by which E. faecium can colonize and infect critically

ill patients.

MarR family transcriptional regulators play key roles in several

bacterial species, including SarA, MgrA, and their homologs in

Staphylococcus aureus [14–18]. These regulators utilize cysteine

oxidation to sense oxidative stress and regulate bacterial responses.

The MarR sub-family of OhrR (organic hydroperoxide resistance

regulator) regulators, found in Bacillus subtilis and in numerous

other Gram-positives, regulate bacterial resistance to organic

hydroperoxides using similar redox-sensing mechanisms [19–23].

Interestingly, in pathogenic bacteria such as S. aureus and

Pseudomonas aeruginosa, MarR regulators seem to play broad

regulatory roles that have profound effects on global properties

of the pathogen. MgrA (multiple gene regulator A) is the first

example of utilizing this mechanism to regulate antibiotic

resistance and expression of virulence factors in S. aureus [24,25].

In recent work, the MarR family transcriptional regulator OspR

(oxidative stress response and pigment production regulator),

homologous to MgrA, was found to play key roles in antibiotic

resistance and virulence regulation in P. aeruginosa [26]. These

discoveries raise the possibility that the opportunistic microorgan-

ism E. faecium may also harbor a MgrA/OspR homologue that

could assume global roles in pathogenesis through sensing

oxidative stress.

We report the finding of a MarR family oxidative sensing

regulator, AsrR (antibiotic and stress response regulator), in E.

faecium. A search for MgrA/OspR homologues in E. faecium

identified AsrR that shares significant sequence identities with

OspR and OhrR proteins. AsrR was found to possess the winged-

helix DNA binding motif and the two cysteine residues present in

the MarR family members and to exert a global regulatory role on

adaptive responses, antimicrobial resistance, oxidative stress

response, autolysis, and pathogenicity in E. faecium. These results

should help shed light on the understanding of the multifaceted

adaptative response in E. faecium and its remarkable colonizing

capacities.

Results

S. aureus MgrA/P. aeruginosa OspR homolog in E. faecium
The global regulators MgrA of S. aureus and OspR of P.

aeruginosa play key roles in virulence regulation [15,16,26]. Using

BLASTP analysis, we identified a MgrA/OspR homologue in the

genome sequence of the E. faecium E1162 clinical isolate [7]. A

single significant hit was obtained with the deduced protein of

EfmE1162_0374 showing 34% and 44% amino acid identity with

MgrA and OspR, respectively. After further study, we renamed

EfmE1162_0374 as asrR (for antibiotic and stress response

regulator) based on the observed phenotypes presented below.

Pfam analysis showed that the deduced AsrR protein possessed the

MarR-type helix–turn–helix motif placing it in the MarR protein

family (Figure 1A). Similarly to OspR, AsrR harbors two cysteine

residues, found at positions 11 and 61 (Figure 1A). These residues

have been shown to play a major role in oxidative stress sensing in

OspR [26]. Sequence comparison showed that asrR was conserved

among all E. faecium isolates and that asrR putative homologs were

present in Enterococcus gallinarum and Enterococcus casseliflavus but not

in E. faecalis (data not shown).

Organization of the asrR transcriptional unit
Fifty-six base pairs upstream of asrR, the EfmE1162_0373 locus,

subsequently renamed ohr, encoded a putative protein highly

similar to Ohr proteins described in numerous Gram-positive

bacteria (Figure 1B). Usually, ohr is part of a two-gene operon and

is co-transcribed with an upstream adjacent gene ohrR encoding a

transcriptional regulator [20,23,27]. This organization was not

found in E. faecium since no ohrR homologue was found upstream

of the EfmE1162_0373 locus. However, the homology of asrR with

ohrR (42% nucleotide identity) suggested that AsrR may control

the expression of ohr. RACE-PCR experiments in E. faecium

HM1070 identified one promoter upstream of both asrR and ohr

genes, and we showed that cotranscription of ohr and asrR may

occur from the ohr promoter (Figure 1B, Figure S1A, Figure S1B).

We also determined experimentally the AsrR binding site

upstream of the ohr gene (Figure 1B, Figure S1C). A putative

AT-rich inverted repeat sequence was found that overlapped the

AsrR binding box of ohr (Figure 1B), which is consistent with the

fact that proteins of the MarR family specifically bind palindromic

or pseudopalindromic sites using a conserved winged helix fold

[22,28]. The direct interaction of AsrR with the ohr and asrR

promoters was tested by electromobility shift assay (EMSA)

Author Summary

Multiple antibiotic-resistant isolates of the opportunistic
pathogen Enterococcus faecium have emerged and spread
worldwide. However, studies aimed at identifying mech-
anisms that underlie the transformation of E. faecium from
its commensal nature into a nosocomial pathogen are
scarce. We report pleiotropic roles for a novel oxidative-
sensing regulator, called AsrR (antibiotic and stress
response regulator), in E. faecium. Based on transcriptomic
analysis, phenotypic studies, and animal models, we
demonstrate that asrR deletion is responsible for i)
diminished susceptibility to penicillins, vancomycin, and
cationic antimicrobial peptides, ii) increased adhesion to
human cells and biofilm formation, iii) a mutator pheno-
type and enhanced DNA transfer frequencies, iv) de-
creased resistance to oxidative stress both in vitro and in
murine macrophages, and v) increased host-persistence in
both insect and mouse models. AsrR is a stress-sensor and
is promptly inactivated in the presence of hydrogen
peroxide. Therefore, oxidative stress, which is a main
challenge during infection, may be a significant signal
used by E. faecium to promote opportunistic traits. This
provides a significant resource combining, for the first time
in E. faecium, a global transcriptomic approach and a
thorough phenotypic study, which places AsrR as a key
regulator modulating pathogenicity, antimicrobial resis-
tance, and environmental adaptation.

AsrR in E. faecium
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(Figure 1C). Purified His6-tagged AsrR bound specifically to the

ohr and asrR promoter sequences, while failing to shift a non-

promoter DNA fragment used as a control (Figure 1C). In

addition, the binding was lost in the presence of unlabelled

competitor and restored in the presence of non-competitor DNA

(Figure 1C). Finally, 69 bp downstream of asrR, EfmE1162_0375

encoded a putative permease of unknown function conserved

among enterococci (Figure 1B).

Oxidative stress inactivates AsrR and modulates asrR and
ohr expression

Suspecting that asrR expression was modulated by oxidative

stress, we used quantitative real-time PCR (qRT-PCR) to analyze

the expression of asrR in E. faecium HM1070 after 10 or 20 min of

a 2 mM hydrogen peroxide (H2O2) challenge (Figure S2). In

addition, we also analyzed the expression of ohr since AsrR

interacts directly with the promoter of this gene (see above). We

observed a strong induction of expression of both genes after

10 min of H2O2 treatment. Induction was higher for the ohr gene

and decreased similarly for both genes after 20 min of H2O2

challenge (Figure S2). By contrast, no ohr upregulation was found

in response to H2O2 oxidative stress in the DasrR mutant strain

(data not shown).

As suspected, we showed that AsrR was a functionnal sensor of

the oxidative stress. Indeed, we showed by using EMSA that after

a treatment with 10 mM of H202 the oxidized His6-tagged AsrR

was no longer able to bind to the ohr promoter (Figure 2A). In

addition, this effect was reversible since the addition of a reducing

agent (i.e. DTT) restored the binding ability of the AsrR protein

(Figure 2A), and it was also dependent of the H2O2 concentration

(Figure 2B).

Identification of AsrR-regulated genes
To identify the set of AsrR-regulated genes in E. faecium, the

transcriptome of the DasrR mutant was compared to those of the

E. faecium HM1070 parental strain and of the knock-in DasrR::asrR

complemented strain. Since the E. faecium microarray was custom-

made based on the E1162 genome, an in silico comparative

genomic hybridization was performed between HM1070 (entirely

sequenced, unpublished) and E1162 E. faecium genomes. We found

that 73.5% of probes (3924 of a total of 5337) designed for E1162

had 100% identical targets in HM1070 DNA. In addition, 6.8% of

probes (364 of a total of 5337) had only one or two mismatches.

Therefore, the E1162 E. faecium microarray appeared to be

suitable for HM1070 transcriptome analysis since around 80% of

the probes were conserved in both genomes.

Figure 1. Deduced structure, genomic environment, and DNA binding of AsrR. (A) Comparison of E. faecium AsrR and P. aeruginosa OspR
(Accession number NP_251515.1) amino acid sequences. Asterisks, colons and periods indicate identical, strongly similar, and weakly similar residues,
respectively. The winged helix-turn-helix motif is boxed. Cysteine residues, found in AsrR and OspR sequences, are indicated in bold-face characters.
The region comprised between red triangles corresponds to the deletion of AsrR protein (ca. 42%) in the DasrR strain. (B) Genetic context of the asrR
locus. Broken arrows indicate the mapped promoters, start codons and transcription start sites in HM1070 are indicated in bold-face characters,
conserved 210 and 235 motifs are underlined. The AsrR binding box, identified experimentally by footprinting (Figure S1C), is boxed on the ohr
promoter sequence and putative inverted repeats are highlighted by arrows. The ORF number is indicated according to the strain E1162 annotation
(Genbank accession ABQJ00000000). (C) Gel shift experiments showing binding of His6-AsrR to the ohr and asrR promoters. Binding of AsrR was
evaluated without (2) or with (+) purified His6-tagged AsrR protein. Specificity of the interaction was evaluated using a control DNA (-cont.) amplified
from a non-promoter region and in the presence of unlabelled competitor (c) or non-competitor DNA (nc).
doi:10.1371/journal.ppat.1002834.g001

AsrR in E. faecium
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Both the parental strain and knock-in complemented derivatives

were used for comparative transcriptome analysis to minimize the

influence of unexpected random mutations that could have

occurred during the construction of the asrR null mutant. We

observed 87 genes significantly upregulated and 94 genes

downregulated in the DasrR mutant strain in comparison to both

the parental and complemented strains (Figure S3A). Nine and 33

genes showed modified transcriptionin the mutant when com-

pared to the parent only or to the derivative only, respectively, and

were not considered further (Figure S3A). To validate these results,

we compared expression ratios obtained by microarrays and by

qRT-PCR for seven selected genes and obtained an excellent

correlation (r2 = 0.99) (Figure S3B). Expression ratios of key AsrR-

regulated genes are shown in Figure 3.

Most genes shown in Figure 3 were up-regulated in the mutant

and are classified in functional groups. A first functional group was

composed of four genes homolog to those of the dlt operons

involved in the resistance to cationic antimicrobial peptides

(CAMPs) in E. faecalis, Bacillus subtilis, and S. aureus [29–31] as

well as a pbp5 gene, encoding a penicillin-binding protein

responsible for b-lactam resistance in E. faecium (Figure 3A) [32].

Noticeably, genes involved in the adhesion to extracellular matrix

(ECM) including the well-characterized acm gene [9,33] and two

ecbA paralogous genes [34] encoding microbial surface compo-

nents recognizing adhesive matrix molecules (MSCRAMM)

adhesins were also strongly up-regulated in the DasrR mutant

(Figure 3B). Several genes putatively involved in oxidative stress

response were up-regulated, including the kat and gpx genes

encoding a putative manganese-containing catalase and a putative

glutathione peroxidase, respectively, and the aforementioned ohr

gene that was the most upregulated gene in the DasrR strain

(Figure 3C). Numerous genes encoding putative transposon

conjugative transfer proteins that could enhance DNA exchange

and horizontal transfer were upregulated in the absence of AsrR

(Figure 3D). In addition, homologs of genes known in other

bacteria to be involved in the adaptation to environmental

changes, uvrA and mutS2 encoding an UV resistance determinant

and a putative anti-recombination endonuclease, respectively,

were downregulated in the DasrR strain (Figure 3E).

EfmE1162_0375 encoding a putative permease and located

directly downstream of asrR was upregulated in the mutant as

well as the gspA paralogous genes encoding general stress proteins

(Figure 3E). Two glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) homologues of GapA and GapB, reported as S. aureus

virulence factors [35], were upregulated in the DasrR strain

(Figure 3E). The gls24 and glsB genes, involved in bile salts stress

response and virulence of E. faecium, were repressed by AsrR

(Figure 3E) [36]. Finally, as previously described for several

transcriptional regulators, asrR deletion also modulate expression

of other transcriptional regulators, in particular that of SigV that

was previously characterized in E. faecalis (Figure 3E) [30,37].

Taken together, these results indicated that AsrR acts as a global

regulator in E. faecium, functioning mainly as a repressor of

numerous genes involved in antibiotic and CAMP resistance,

adhesion to ECM, oxidative stress response and adaptative

response. Using upstream regions of several of those genes

upregulated in the asrR deleted mutant, we computationally

identified a 15-bp putative DNA binding box (Figure S1D). In the

following experiments, we tested the phenotypic effects of the

modulation of expression of the various functional groups of genes.

AsrR is involved in the oxidative stress response
E. faecium can survive a wide range of stresses during its life

cycle. The role of AsrR in the response to H2O2 and organic

oxidative stresses was tested by survival analysis and growth on

plates containing oxidants (Figure 4A, Figure 4B). We performed

survival experiments with a 2 mM H2O2 challenge for 30 min on

cells in exponential or stationnary growth phases, and the DasrR

strain was found to be around one order of magnitude more

susceptible to hydrogen peroxide stress than the parental and

complemented strains in both conditions (Figure 4A). Note that

resistance to H2O2 dramatically decreased on growing cells

(Figure 4A). We then performed a 2 mM H2O2 challenge for

30 min on cells in exponential growth phase in the presence of

deferoxamine (DFX), an iron chelator, or tiron, a superoxide

anion scavenger (Figure 4A). Interestingly, if the addition of DFX

or tiron significantly increased the survival of both strains, as

expected, the DasrR mutant was still significantly impaired as

compared to the parental strain (Figure 4A). In addition, the

growth on BHI plates of the DasrR derivative was also impaired by

the addition of 0.5 mM menadione, an organic peroxide

(Figure 4B). No significant differences were observed between

the DasrR mutant and the parental strain when grown on plates

containing other organic peroxides, such as tertiary-buthylhydro-

peroxide and cumene hydroperoxide (data not shown). Taken

together, these results confirm that AsrR plays a role in the E.

faecium oxidative stress response.

The role of AsrR in the oxidative stress response, was further

tested in vivo. Survival of the parental, complemented and DasrR

strains was monitored by counting of viable bacteria inside murine

macrophages over a 3-day period (Figure 4C). Clearance of the

DasrR mutant was slightly faster than that of the parent and of the

complemented mutant, and correlated with its increased in vitro

oxidative stress sensitivity.

Finally, we estimated the intracellular concentration of hydroxyl

radicals by FACS (fluorescence-activated cell sorting) experiments

in both parental and DasrR mutant strains by measuring the

fluorescence intensity of a probe specific for reactive oxygen

species (ROS) (Figure 5). The basal hydroxyl radical level was

similar in both strains (Figure 5). Interestingly, exogenous H2O2

treatment (0.5 mM or 2 mM, 10 min) increased the intracellular

amount of hydroxyl radicals in both strains but no significant

difference was found between the E. faecium HM1070 and DasrR

strains (Figure 5).

Figure 2. Inhibition of AsrR binding to DNA by H2O2. (A) Gel shift
experiments showing binding of His6-tagged AsrR to the ohr promoter.
Binding of AsrR was evaluated without (2) or with (+) purified His6-
tagged AsrR protein, 10 mM of H2O2, and 50 mM of DTT. (B)
Concentration-dependent binding of purified His6-tagged AsrR protein
in the presence of different concentrations of H2O2 from 10 to 0.01 mM.
The His6-tagged AsrR purified protein was found to be inactivated by
H2O2 and then lost its capacity to bind the ohr promoter. This
concentration-dependent inactivation of H2O2 was found to be
reversible by the addition of DTT.
doi:10.1371/journal.ppat.1002834.g002

AsrR in E. faecium
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AsrR deletion promotes the resistance to antibiotics and
CAMPs and protects from autolysis

The effect of asrR deletion on the activity of various

antimicrobials against E. faecium HM1070 was tested. The DasrR

strain was more resistant to penicillin G and ampicillin (MIC of 1

and 0.5 mg/ml, respectively) than the parental (MIC of 0.125 mg/

ml for both antibiotics) and the complemented strain (MIC of 0.25

and 0.125 mg/ml, respectively) (Figure 6A). These results are

consistent with the pbp5 gene upregulation in the DasrR mutant

(Figure 3A). No differences were observed for vancomycin (MIC of

1 mg/ml for the three strains) (Figure 6A) and 24 other antibiotics

tested (data not shown).

Because glycopeptides and b-lactams are bactericidal against E.

faecium, we tested if asrR deletion could promote survival to these

drugs. Time-kill analysis was carried out in the presence of

vancomycin, penicillin G, and ampicillin (46 MIC). The bacteri-

cidal activity of penicillins and vancomycin against the DasrR strain

was markedly reduced (by approximately one order of magnitude

after 6 h and 24 h, respectively) as compared to the parental and

complemented strains (Figure 6B). Finally, in agreement with

tolerance to b-lactams [38], tests with Triton X-100 showed that

autolysis was twice more rapid for the parental and the comple-

mented strains than for the DasrR strain (Figure S4).

Bacterial cells have to cope with the CAMPs produced by other

prokaryotic microorganisms and eukaryotic cells. The DasrR mutant

exhibited noticeable growth on BHI plates supplemented with nisin

(a bacterial CAMP) as compared to the parental and complemented

strains (Figure 6C). No significant differences were observed

between the DasrR mutant and the parental strain when grown on

BHI plates containing colistin methanesulfate (data not shown).

Previous studies have identified the dlt operon as crucial for response

to CAMPs in numerous Gram-positive bacteria [29–31,39] which is

consistent with upregulation of dlt in the absence of AsrR.

Lack of AsrR promotes the E. faecium biofilm formation
and adhesion to epithelial cells

Like other Gram-positive microorganisms, enterococci are able

to produce biofilms on abiotic surfaces. The ability of DasrR,

parental and complemented strains to form a biofilm on

polystyrene microtiter plates was evaluated (Figure 7A). To

quantify biofilm production, the OD600 in wells where bacteria

have been cultured was determined after crystal-violet staining

(Figure 7B). The parental and complemented strains did not

produce biofilm after 24 h of incubation at 37uC whereas the asrR

mutant adhered to the surface and formed significant amounts of

biofilm (Figure 7B).

Figure 3. Key members of the AsrR regulon. (A) Members of the AsrR regulon involved in antibiotic and CAMP resistance, (B) adhesion to ECM,
(C) oxidative stress response, (D) DNA exchange and horizontal transfer, and (E) global regulations pathways and various functions. Expression ratios
for the mutant compared to the parental (DasrR/HM1070, black bar) or complemented (DasrR/DasrR::asrR, grey bar) strains are indicated. Gene tags
or ORFs numbers are indicated following the E1162 strain annotation (Genbank accession ABQJ00000000) [7].
doi:10.1371/journal.ppat.1002834.g003

AsrR in E. faecium
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Adhesion to host-cells is a crucial step in the infection process

and for host-colonization. Upregulation of the acm and ecbA genes,

encoding major MSCRAMM adhesins, in the absence of AsrR

prompted us to evaluate the contribution of AsrR to E. faecium

adherence to HT-29 intestinal epithelial cells (Figure 7C). A high

percentage of DasrR bacteria attached to the HT-29 cells (median

value 44%), while the parental and complemented strains showed

significantly lower levels of attachment (median values 18 and

25%, respectively) (P,0.01) (Figure 7C).

AsrR deletion promotes the E. faecium mutagenesis and
DNA transfer

Inactivation of the postreplicative DNA repair pathways has been

shown in a wide variety of microorganisms to result in a mutator

phenotype [40]. Since the uvrA gene, encoding a putative excision

repair protein, was downregulated in the absence of AsrR, we

determined the mutation frequency to spectinomycin resistance in

the parent and the constructs. The DasrR strain displayed five-fold

Figure 4. Role of AsrR in oxidative stress response. (A) Survival after a 30-min stress with 2 mM H2O2 for the parental (HM1070, black bar),
mutant (DasrR, light grey bar) and complemented (DasrR::asrR, dark grey bar) strains. Cells were collected in stationnary phase (Stat), growth exponential
phase (Expo), and exponential growth phase in the presence of deferoxamine (DFX) or tiron. Values are expressed as mean percentages (6 standard
deviation) of survival cells after oxidative stress compared to unstressed conditions from at least three independent experiments. (B) Menadione
susceptibility of HM1070, DasrR and DasrR::asrR strains. E. faecium strains were 4-times serially diluted from a standardized (MacFarland = 1) cell
suspension and spotted on BHI agar plates supplemented without or with (0.5 mM) menadione. Experiments were repeated at least three times and
similar results were obtained. (C) Time course of intracellular survival of E. faecium parental (HM1070, diamonds), mutant (DasrR, triangles) and trans-
complemented (DasrR/pOri23VasrR, squares) strains within murine peritoneal macrophages. Data are the mean numbers (6 standard deviations) of
viable intracellular bacteria per 105 macrophages from three independent experiments in triplicate. The DasrR strain found to be more susceptible in
vitro to H2O2 and menadione oxidative stress showed impaired survival in mouse macrophages compared to the parental and complemented strains.
doi:10.1371/journal.ppat.1002834.g004

AsrR in E. faecium
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increase (P = 0.024) in mutation frequencies (4.46102861.861028)

as compared to the parental and complemented strains (respectively

8.56102961.161029 and 9.16102961.361029).

Considering both the strongly upregulated expression of genes

involved in conjugation of transposons and the downregulated

expression of mutS2 in the absence of AsrR (Figure 3D and 3E), we

studied the involvement of AsrR in DNA transfer. We conjugated

the integrative conjugative transposon Tn916 (which confers

tetracycline resistance) from strain Streptococcus agalactiae UCN78

to E. faecium HM1070, DasrR, and DasrR::asrR, and subsequently

from this set of strains to E. faecalis BM4110. Note that

integration site of the Tn916 in HM1070, DasrR, and DasrR::asrR

strains did not influence the transfer frequency of three

transconjugants tested for each constructed donor strains (data

not shown). However, in three independent experiments, the

DasrR/Tn916 strains displayed a four-fold mean increase in

Tn916 transfer frequency (5.26102661.361026) as compared

to parental (1.56102662.261026) and complemented

(1.76102661.961026) strains (P = 0.039).

Deletion of asrR promotes the host colonization by E.
faecium

Increased mammalian cell adhesion and biofilm formation of

the DasrR mutant lead us to test the impact of AsrR on

colonization of the host. To assay pathogenicity, we used larvae

of the moth Galleria mellonella of which the innate immune system

shares a high degree of structural and functional homology with

that of mammals [41]. As described previously, only weak lethality

for the larvae was observed with the parental strain [42] and no

significant differences were found with the mutant (data not

shown). Then, Galleria larvae were infected with DasrR, parental, or

complemented strains, sacrificed at 0 h, 24 h, 48 h, and 72 h and

bacterial counts were monitored in host homogenates (Figure 8).

The parental and complemented loads markedly decreased

following infection (from 16106 to 36104 and 56104 CFU/larva

72 h post-infection, respectively) whereas the DasrR load decreased

only slightly, after stabilizing (2.86105 CFU/larva 72 h post-

infection).

Influence of AsrR on the E. faecium pathogenicity in a
mouse systemic infection model

In correlation with the insect model, the DasrR mutant strain

showed statistically significant increase of bacterial burdens in

kidney and liver tissues 168 h post-infection (Figure 9). The DasrR

mutant exhibited an increase of 1.17 log unit in the kidneys

(P = 0.002) (Figure 9A) and 0.70 log unit in the livers (P = 0.011)

(Figure 9B) compared to the burdens of the HM1070 parent

strain. The DasrR::asr complemented strain loads were restored to

the wild-type level in both tissues confirming the involvement of

AsrR in the E. faecium pathogenicity.

Discussion

Reactive oxygen species were originally considered to be

exclusively detrimental to bacterial cells. However, redox regula-

tion involving ROS is now recognized as a vital component to

bacterial signaling and regulation [43–45]. Some members of the

MarR family modulate the transcription of virulence and/or stress

genes using an oxidative sensing mechanism. In particular, studies

on OspR of P. aeruginosa and MgrA of S. aureus have shown that the

activity of these regulators that sense oxidative stress is not limited

to oxidative stress response but has pleiotropic effects [15,26]. The

sensing mechanism of OspR has been recently described [26]. A

cysteine residue, Cys-24, is used by OspR to sense a potential

oxidative stress and to regulate bacterial response. Cys-24 is first

likely oxidized and the resulting sulphenic intermediate is trapped

by a second cysteine, Cys-134, to form an intermonomer

Figure 5. Measurement of intracellular hydroxyl radical
concentration. The HM1070 (green) and DasrR (yellow) intracellular
hydroxyl radical concentration was quantified by measuring the
fluorescence intensity of a ROS-specific probe on cells under unstressed
conditions or following a 10-min treatment with 0.5 mM or 2 mM of
H2O2. Noticeably, if the intracellular hydroxyl radical concentration
increases when exogenous H2O2 is added, no significant differences are
found in intracellular ROS concentrations for the HM1070 and DasrR
strains.
doi:10.1371/journal.ppat.1002834.g005

AsrR in E. faecium

PLoS Pathogens | www.plospathogens.org 7 August 2012 | Volume 8 | Issue 8 | e1002834



disulphide bond. The inactive form of OspR dissociates from

promoter DNA resulting in modulation of gene expression [26].

We identified a gene, asrR, which encodes a functional

homologue of the OspR/MgrA proteins and is present in all

sequenced E. faecium strains and absent in E. faecalis. Two cysteine

residues are present in the protein sequence encoded by asrR

indicating that AsrR belongs to the 2-Cys protein family, which

senses peroxides [26,46,47]. Similarly to OspR, our data show that

oxidative stress leads to inactivation of AsrR, resulting in loss of

binding to promoter DNA, which leads to prompt modulation of

gene expression.

Investigation of the AsrR regulon identified numerous targets

consistent with the pleiotropic phenotype resulting from its

inactivation. Oxidative stress acts as a signal modulating AsrR

activity, but it remains a challenge to which bacteria have to cope

with during infection. Indeed, our results show that ArsR played a

role in the survival against H2O2 challenge as well as into

phagocytic cells since three important genes from the oxidative

stress regulon (i.e. kat, gpx, and ohr) are overexpressed in the

absence of AsrR. However, this appears a priori in contradiction

with the higher susceptiblity of the null-mutant strain to both in

vitro oxidative stress and oxidative burst in mouse macrophages.

Despite the fact that enterococci possess a kat gene, catalase

enzyme can only be formed when heme or manganese is present

and these organisms are considered as catalase-negative bacteria

[48,49]. While little is known about mechanisms of oxidative stress

response in E. faecium, it has been shown in E. faecalis that

peroxidases important for the survival under oxidative stress and

into macrophages are Tpx (thiol peroxidase), Npr (NADH

peroxidase), and Ahp (alkyl hydroperoxide reductase) [50], so

that E. faecium homologs are not upregulated in the DasrR mutant.

In E. faecalis, gpx encodes a glutathione peroxidase of which activity

is regenerated by a glutathione reductase [51]. Since the gene

encoding this reductase does not appear to be a member of the

AsrR regulon, the impact of gpx overproduction alone on the

oxidative damages restoration should be reduced in the mutant

strain. Also, the data obtained with fluorescent ROS-specific probe

confirmed that DasrR mutant strain did not better detoxify

hydroxyl radicals than the wild-type strain. Interestingly, addition

of ROS scavengers during the H2O2 challenge reduced the

sensitivity of both wild-type and DasrR mutant strains, the mutant

being still more sensitive. Under our conditions, it seems that

hydrogen peroxide is capable of damaging the bacterial cell

independently of the formation of hydroxyl radicals formed via the

Fenton’s reaction [52]. Therefore, although oxidative stress leads,

through AsrR derepression, to overproduction of detoxification

proteins, the absence of difference in intracellular ROS accumu-

lation suggests that asrR deletion may lead to an increased

Figure 6. AsrR is associated with antibiotic and CAMP resistance. (A) MICs of penicillin G, ampicillin, and vancomycin for the parental
(HM1070), mutant (DasrR) and complemented (DasrR::asrR) strains. Deletion of AsrR lead to decreased susceptibility of the mutant strain to b-lactams
antibiotics. (B) Bactericidal activity of penicillin G, ampicillin, and vancomycin against HM1070 (black diamonds), DasrR (open squares), and DasrR::asrR
(closed triangles) strains. For every strain, the antibiotic concentration was fixed at 4-fold of the MIC. Results are expressed as the percentage relative
to the initial bacterial count. The DasrR strain was more resistant to the bactericidal activity of b-lactams and vancomycin compared to the parental
and complemented strains. (C) Susceptibility to nisin of the parental (HM1070), mutant (DasrR), and complemented (DasrR::asrR) strains. E faecium
strains were twice serially diluted from a standardized (MacFarland = 1) suspension and spotted on BHI agar plates without or with (2 mg/ml) nisin.
Note that the DasrR strain was more resistant to nisin antimicrobial activity compared to parental and complemented strains. Experiments were
repeated at least three times and similar results were obtained.
doi:10.1371/journal.ppat.1002834.g006
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oxidative susceptibility, independently of ROS detoxification

pathways. One hypothesis is that a modification of the bacterial

cell wall, for which evidence is also provided by our transcriptomic

analysis and autolysis assay, may lead to increased oxidative

susceptiblity [53].

AsrR regulation was not restricted to oxidative stress response

but extended to modulation of expression of multiple targets. First,

AsrR modulated resistance and tolerance to cell-wall active

antimicrobial agents. In E. faecium, resistance to penicillins is due

to production of the low-affinity penicillin-binding protein PBP5

[54] and overproduction of PBP5 increases the level of ampicillin

resistance [32,55]. Accordingly, the increase in MICs of penicillins

after deletion of asrR in E. faecium HM1070 may be explained by

upregulation of the pbp5 gene. Interestingly, recent reports on the

role of MgrA and OspR in antibiotic resistance reinforce the

implication of these MarR regulators in b-lactam resistance

[26,56,57]. In addition, the activity of the CAMP nisin, which

damage the bacterial membrane, was reduced against the asrR null

mutant. The dlt operon encodes proteins that alanylate teichoic

acids, the major components of the cell wall of Gram-positive

bacteria. This generates a net positive charge on bacterial cell

walls, that repulses positively charged molecules and confers

resistance to CAMPs [29,31,39]. Therefore, AsrR could contrib-

ute to modulate resistance to nisin in E. faecium through regulation

of the dlt operon. These data suggest that the E. faecium Dlt

resistance system is effective against CAMPs, as previously shown

for E. faecalis [30].

Besides resistance, tolerance to antibiotics is an efficient

pathway for bacteria to escape antimicrobial-induced killing.

Bactericidal activity of both penicillins and vancomycin was

significantly decreased in the asrR null mutant. Importantly, these

antibiotics remain primary therapeutic choices for the treatment of

enterococcal infections [58]. The molecular basis for tolerance

remains poorly understood, and processes involved are much more

complex than previously thought [59]. As suggested by transcrip-

tomic data as well as biofilm and autolysis phenotypes, the higher

tolerance to b-lactams and glycopeptides of the asrR mutant might

Figure 7. AsrR is involved in biofilm formation and adhesion to eukaryotic cells. (A) Direct observation of biofilm formation on polystyrene
by the parental (HM1070), mutant (DasrR), and complemented (DasrR::asrR) strains, after a crystal-violet staining. (B) Ability of the strains to form
biofilm on a polystyrene surface is shown after 24 h of incubation at 37uC. Values, measured with a microplate reader, are from three independent
experiments performed in triplicate. Median and interquartile range values are shown. Note that the DasrR strain produced biofilm whereas parental
and complemented strains did not produce biofilms under the tested conditions. (C) Adhesion of the strains to HT-29 cells. Adherence level is
expressed as the percentage of adherent enterococci relative to the inoculum count. Values are from three independent experiments performed in
triplicate. Median and interquartile range values are shown. The DasrR strain was found to be more adherent to epithelial HT-29 cells compared to
parental and complemented strains.
doi:10.1371/journal.ppat.1002834.g007

Figure 8. AsrR is associated with colonization of G. mellonella
larvae. Loads of enterococci from Galleria larvae homogenates.
Caterpillars were inoculated with 1.86106 (60.56106) CFU of parental
(HM1070, diamonds), mutant (DasrR, squares), and complemented
(DasrR::asrR, triangles) strains. For each time point, homogenates of 10
alive larvae were plated for CFU count on selective agar plates. The
DasrR strain was found to better colonize and persist in Galleria larvae
compared to parental and complemented strains. Results represent
means and standard deviations from at least three independent
experiments.
doi:10.1371/journal.ppat.1002834.g008
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be due to a modification of cell wall composition (peptidoglycan,

lipoteichoic acids) and/or of intrinsic control of lysis (murein

hydrolase activity) [59].

Similarly to other pathogens, adherence of E. faecium to

exposed host ECM is likely the first step in the infection process.

MSCRAMMs are proteins that adhere to components of the

ECM [34]. To date, three MSCRAMMs, Acm, Scm and EcbA,

have been characterized in E. faecium adhesion [34,60]. Acm has

been previously shown to interact with collagen type I and to a

lesser extent with collagen type IV [33,61], whereas Scm and

EcbA bind to collagen type V and fibrinogen [60,62]. The in vivo

function of Acm has been thoroughly investigated highlighting its

role in the pathogenesis of experimental E. faecium endocarditis

[9]. Consistent with the literature, marked up-regulation of both

acm and ecbA genes expression promotes ability of the null-mutant

strain to adhere to epithelial cells. In addition, as previously

described for MgrA in S. aureus [63], we report that AsrR

represses biofilm formation in E. faecium. Following primary

adhesion, biofilm establishes a protected environment for growth

that enables bacteria to proliferate by restricting antibiotic access

and shielding the bacterial pathogen from host immune defences

[64].

Modulation by AsrR of biofilm formation and expression of

MSCRAMM proteins indicates that this regulator may contribute

to the host-colonization by E. faecium, a hypothesis confirmed in a

Galleria persistence model and in a murine systemic infection

model. Galleria insect model has been widely used to evaluate

virulence of numerous pathogens [65–67] but has also recently

been shown to be suitable for the study of E. faecium host-

persistence [42]. Interestingly, the increased persistence of the

null-mutant E. faecium strain inside larvae is correlated with its

persistence following infection in mouse kidneys and liver. Good

correlation between mouse and insect models has already been

reported in the literature [68].

Figure 9. AsrR is associated with pathogenesis in a mouse intravenous infection model. Enterococcal tissue burdens in kidneys (A) and
livers (B) of BALB/c mice infected intravenously with 16109 cells of the E. faecium HM1070 (circle), DasrR (square), and DasrR::asrR (triangle) strains.
Groups of 10 mice were killed and necropsied 24 h, 72 h, and 168 h postinfection. The DasrR strain showed statistically significant increase of
bacterial burdens in kidney and liver tissues at 168 h following injection, as compared to the parental and complemented strains. The results,
expressed as log10 CFU per gram of tissue, represent the values recorded separately for each mouse. Horizontal bars represent the geometric means
and significant differences are indicated (**).
doi:10.1371/journal.ppat.1002834.g009
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Beyond immediate cellular adaptation to stress, E. faecium

organisms adapt their genome to hostile environmental conditions

through acquisition of beneficial genes from external sources or by

de novo mutations. The UV resistance genes (uvr) that are part of the

SOS systems, have been analyzed in detail in E. coli and E. faecalis

[40,69,70], and UvrA is the initial DNA damage-sensing protein

in nucleotide excision repair [71]. AsrR deletion in E. faecium

causes the downregulation of uvrA and, interestingly, the null mutant

strain showed a mutator phenotype. We thus speculate that, under

oxidative stress, E. faecium cells will promote mutations through

AsrR-mediated deregulation of uvrA which would be globally

profitable in hostile environments even though some may be

deleterious to individual cells. Long-term adaptation may also

benefit from genetic changes due to acquisition of pre-evolved

functions via horizontal transfer [72]. Interestingly, we found that,

in the absence of AsrR, E. faecium increases the transfer frequency of

conjugative transposon Tn916, which might be linked to both the

strong up-regulation of conjugative transposon protein and the

down-regulation of the mutS2 gene. Also, the DNA damage response

role in the regulation of transfer of mobile genetic elements was

previously described in Bacillus subtilis [73]. Considering the

adaptive role of uvr and mutS2 genes and DNA exchange, AsrR

may contribute to the E. faecium long-term adaptation by

modulating its mutability and DNA transfer capacities.

Lastly, the locus encoding the transcriptional regulator SigV,

previously described as involved in E. faecalis virulence and CAMP

response [30], was overexpressed in the mutant strain. It is likely

that some members of the AsrR regulon are under several

transcriptional controls. Currently, except for ohr, the possibility

that AsrR modulates gene expression in E. faecium through

interactions with other regulators cannot be excluded. Such a

regulatory cascade has been shown for E. faecalis, S. aureus, and

Salmonella enterica [13,74,75].

The present investigation provides evidence that AsrR plays a

key role in E. faecium adaptation, antimicrobial resistance and

pathogenicity, which is summarized in a model (Figure 10). AsrR,

which is inactivated in the presence of oxidative stress, is a global

repressor (direct or indirect) of expression of the genes involved in

all the important steps during the early infection process and

allows host-colonization (Figure 10). It has been shown that nitric

Figure 10. Proposed model for the role of AsrR in E. faecium. AsrR mediated up-regulations (green arrows) and down-regulations (red lines)
and H2O2 inactivation of AsrR (yellow line) are indicated. Direct regulations demonstrated experimentally are represented as solid lines, whereas other
regulations (direct or indirect) are represented as dashed lines. AsrR appears as a global repressor, inactivated by oxidative stress, of genes involved in
important steps during the infection process.
doi:10.1371/journal.ppat.1002834.g010
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oxide-mediated activation of bacterial defence is important for the

in vivo virulence of Bacillus anthracis [76]. Similarly, it can be

speculated that the oxidative stress acts as a signal to promote the

transition from the commensal to the opportunistic state thus

rendering E. faecium more pathogenic.

Materials and Methods

Bacterial strains, plasmids and growth conditions
The strains and plasmids used in this study are listed (Table S1)

[7,77–80]. E. faecium was grown at 37uC in Brain Heart Infusion

(BHI), Mueller-Hinton (MH) or Trypticase-Soy (TS) broth, or on

BHI agar (Difco Laboratories). Escherichia coli were grown in Luria-

Bertani (LB) broth or on LB agar (Difco Laboratories). When

appropriate, antibiotics were added at the following concentrations:

ampicillin 100 mg/ml; erythromycin 150 mg/ml for E. coli and

50 mg/ml for E. faecium; fusidic acid 40 mg/ml; kanamycin 30 mg/

ml; lincomycin 30 mg/ml; rifampin 50 mg/ml; spectinomycin

150 mg/ml; streptomycin 150 mg/ml and tetracycline 100 mg/ml.

DNA, RNA techniques and cloning
Plasmid pG(+)host9 is a temperature-sensitive E. coli–Gram-

positive shuttle vector used for allelic replacement in Gram-

positive bacteria [77]; pORI23 is an E. coli-Gram-positive shuttle

vector used for complementation studies in Lactococcus lactis [78].

Vector pCR2.1-TOPO (Invitrogen) was used as recommended by

the manufacturer for TA sub-cloning and cloning steps. Chromo-

somal DNA isolation, restriction endonuclease digestion, DNA

ligation, and transformation of electrocompetent cells were

performed using standard protocols or manufacturers instructions.

For RACE-PCR and qRT-PCR, total E. faecium RNA was isolated

using the RNeasy midi kit (Qiagen) as recommended by the

manufacturer. For microarray experiments, total RNA was

isolated as follows. Strains were cultured overnight in 3 ml of

BHI broth within 10 ml tubes at 37uC with aeration by rotary

shaking at 150 rpm and pre-warmed BHI broth (25 ml in 50-ml

Falcon tube) was inoculated in duplicate with the overnight culture

to a starting absorbance at 600 nm (OD600) of 0.025 and then

incubated at 37uC as described above. One culture was used to

monitor growth by measuring OD600. When OD600 reached 0.5

(mid-exponential growth phase), RNA was isolated from the second

culture and the OD600 was measured to confirm equal growth in the

duplicate cultures. For RNA isolation, 2 ml of each culture were

transferred into an Eppendorf tube and spun down at 13,0006g for

20 s and the cell pellets were snap-frozen in liquid nitrogen. The

time between removal from the incubator and freezing of the cell

pellets was approximately 60 s. Within 20 min after freezing, 1 ml

of TRI reagent (Ambion) was added to the frozen pellets and the

suspension was transferred into a 2-ml tube filled with 0.5 g of

0.1 mm zirconia/silica beads (Biospec). Cells were disrupted by

beadbeating three times for 1 min with intermittent cooling on ice.

RNA was then extracted following Ambion’s TRI reagent protocol.

Residual chromosomal DNA was removed by treating samples with

the TURBO DNA-free kit (Ambion). Extracted RNA samples were

quantified using a Nanodrop 1000 spectrophotometer (Isogen Life

Science) and stored in 70% ethanol-83 mM sodium acetate buffer

(pH 5.2) at 280uC.

PCR, Rapid Amplification of cDNA Ends (RACE-PCR),
reverse transcriptase PCR (RT-PCR), and quantitative real-
time PCR (qRT-PCR)

PCR amplification was carried out in a final volume of 50 ml

containing 40 pmol of each oligonucleotide primer, ca. 100 ng of

template DNA, using the GoTaq Flexi DNA polymerase kit

(Promega) as recommended by the manufacturer. Primers used

were designed based on the E. faecium HM1070 asrR cluster

sequence (Accession number JQ390466) (Table S2) [81]. The

transcriptional start sites of asrR and ohr were determined using the

59 RACE system kit (Invitrogen) according to the manufacturer’s

instructions. The specific RACE-PCR primers were designed using

the Primer3 software (http://frodo.wi.mit.edu/primer3) (Table S2).

For RT-PCR, cDNA was synthesized from total RNA (,1.5 mg)

by using the Superscript III First-Strand Synthesis System

(Invitrogen, Breda, The Netherlands) according to the manufac-

turer’s instructions. Using synthesized cDNAs, qRT-PCR was

performed using Maxima SYBR Green/ROX qPCR Master Mix

(Fermentas, St. Leon-Rot, Germany) and a StepOnePlus instru-

ment (Applied Biosystems, Nieuwekerk a/d IJssel, The Netherlands)

with the following program: 95uC for 10 min, and subsequently 40

cycles of 95uC for 15 sec, 55uC for 1 min. Relative transcript levels

were calculated using REST 2009 Software (Qiagen). Expression of

tufA was used as a housekeeping control gene.

Construction of an HM1070 asrR deletion mutant and its
complementation

The asrR deletion mutant (DasrR) was derived from E. faecium

HM1070 by allelic exchange with a truncated copy of asrR as

described [77]. Approximately 500 bp fragments upstream and

downstream of asrR were amplified by PCR using HM1070

chromosome as template and primer pairs asrR-DC1-F/asrR-

DC2-R and asrR-DC3-F/asrR-DC4-R (Table S2) [81]. The

forward primer binding to the 39-end of asrR (asrR-DC3-F) and

the reverse primer to the 59-end (asrR-DC2-R) were modified to

carry the same restriction site (Table S2) [81]. Following

restriction, ligation and amplification using asrR-DC1-F/asrR-

DC4-R, the resulting fragment carrying the truncated asrR copy

was cloned in the temperature-sensitive shuttle vector pG(+)host9

to create plasmid pG(+)host9VasrR-KO (Table S1) [7,77–80].

The hybrid plasmid was introduced in the chromosome of

HM1070 by electrotransformation and homologous recombina-

tion followed by excision of the wild-type copy as described [77].

In-frame deletion of the asrR gene was confirmed by PCR and

sequencing. As described in Figure 1, around 42% of the

sequence containing the helix-turn-helix DNA binding domain

and the second Cys residue were deleted in the DasrR strain. No

significant difference was found when comparing the growth

kinetics of the parental and mutant strains (Figure S5). An in trans

complemented DasrR/pOri23VasrR strain was constructed (Table

S1) [7,77–80], and complementation was confirmed in the in vitro

physiological tests used in this study as well as in the murine

macrophages experiments. Since only partial complementation

was found with this construct (data not shown), we decided to

construct the knock-in complemented strain, DasrR::asrR (Table

S1) [7,77–80]. Subsequently, all the experiments were conducted

using the DasrR::asrR strain except for those with the mouse

macrophages. For asrR in trans complementation, the asrR coding

sequence from E. faecium HM1070 including the predicted

ribosomal binding site was amplified with the primer pair asrR-

pOri23-F/asrR-pOri23-R (Table S2) [81] and cloned in pOri23

(Table S1) [7,77–80]. The resulting plasmid pOri23VasrR was

introduced into the DasrR mutant strain by electrotransformation

(Table S1) [7,77–80]. For asrR knock-in complementation, the

entire asrR sequence of HM1070 was amplified with the asrR-

DC1-F/asrR-DC4-R primers (Table S2) [81] and cloned in

pG(+)host9 to create plasmid pG(+)host9VasrR-KI which was

introduced into the DasrR strain (Table S1) [7,77–80], excised

and allele replacement was obtained and verified as described

above.
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Production of purified AsrR
A 460-bp fragment encoding AsrR was amplified by PCR from

E. faecium HM1070 chromosome using primers AsrR-F and AsrR-

R (Table S2) [81]. The product was cloned in pQE30 (Qiagen)

downstream of the RGS-His6 tag sequence (Table S1) [7,77–80].

The pQE30VasrR plasmid was electroporated in E. coli

M15[pREP4] (Table S1) [7,77–80], and expression of the his-

tagged recombinant peptide was performed using IPTG induction

(1 mM final concentration) as described [82]. Briefly, purification

from E. coli M15[pREP4]/pQE30VasrR lysates was achieved by

Ni2+-affinity chromatography using Ni-NTA resin (Qiagen) under

native conditions. Samples were desalted on PD-10 columns

(Amersham Biosciences) and protein concentrations were deter-

mined using the Bio-Rad protein assay.

Electrophoretic mobility shift assays (EMSA) and
footprinting experiments

DNA fragment from the ohr and asrR promoter regions was

amplified, labelled by PCR with [c-32P]dATP and incubated with

purified His6-tagged AsrR (10 to 200 ng) in interaction buffer

[40 mM Tris HCl [pH 7.5], bovine serum albumin 200 mg/ml,

2 mM CaCl2, 2 mM dithiothreitol and poly(dI-dC) mg/ml] at

room temperature for 30 min. Designated amounts of H2O2 and

or DTT were used as previously described [26]. The DNA-AsrR

mixtures were electrophoresed in 12.5% polyacrylamide gels in

0.56 Tris-borate-EDTA (TBE) at 180 V that were dried and

analyzed by autoradiography.

DNase I footprinting assays were performed as previously

described [82] using a D-4 labelled DNA fragment of the ohr

promoter. The capillary electrophoresis was performed using a

CEQ8000 sequencing apparatus (Beckman Coulter). The determi-

nation of the DNA sequence of the protected region was performed

after co-migration of the footprinting assay and the corresponding

sequence reaction. The MEME suite (http://meme.sdsc.edu/

meme/intro.html) was used to generate a putative AsrR binding

box logo on several DNA sequences of regulon members.

Genome sequence analysis
The E. faecium E1162 sequence was used as a reference and gene

tags or ORFs numbers are indicated according to its annotation

(Genbank accession ABQJ00000000) [7].

cDNA synthesis, microarray design, and hybridization
Transcriptome comparisons were performed between the DasrR

mutant, the parental HM1070 and the DasrR::asrR complemented

strains grown to mid-exponential (OD600 = 0.5) phase. For each

strain, bacterial RNA was extracted from four independent

cultures as described above, and used for cDNA synthesis and

labelling as detailed below. RNA samples were prepared and

labelled with Cy3 or Cy5 as previsouly described [83]. Dyes were

switched between samples to mimimize the effect of dye bias.

E. faecium microarrays (Agilent, Palo Alto, CA) were hybridized

with 300 ng labelled cDNA. The experiments for comparison of

the transcriptomes of the DasrR mutant, parental HM1070 or

complemented DasrR::asrR strains were performed with four inde-

pendent biological replicates. Slides were then scanned using an

Agilent Technologies Scanner G2505B. Data were extracted from

the scanned microarrays with Agilent Feature Extraction software

(version 10.7.1), which includes a Lowess normalization step for the

raw data. The microarrays used in this study were custom-made E.

faecium E1162 arrays using Agilent’s 8615K platform (containing 8

microarrays/slide), as described previously [83].

Analysis of microarray data
After removal of the data for the different controls printed on

the microarray slides, the normalized data for each spot were

analyzed for statistical significance using the Web-based VAM-

PIRE microarray suite (http://sasquatch.ucsd.edu/vampire/)

[84,85]. A spot was found to be differentially expressed between

two samples using the threshold of a false discovery rate smaller

than 0.05. An open reading frame was found to be differentially

expressed when all four spots representing the open reading frame

were significantly differentially expressed (False Discovery Rate for

each spot ,0.05) between samples. The average expression ratio

of each significantly regulated open reading frame was determined

by calculating the log-averages of the expression ratios of each

individual probe. Finally, changes of 2-fold for upregulated and

0.5-fold for downregulated genes in the mutant strain were also

introduced as biological significance limits.

Microarray data and Genbank accession numbers
Microarray data were submitted to the MIAMExpress database

and are accessible under accession number no. E-MEXP-3528.

The nucleotide sequence of the ohr-asrR region in E. faecium

HM1070 has been deposited in the GenBank database under

accession no. JQ390466.

Antibiotic susceptibility testing, determination of
mutation frequencies and antibiotic time-kill analysis

Minimum inhibitory concentrations (MIC) were determined by

the broth microdilution technique as recommended by the Comité

de l’Antibiogramme de la Société Française de Microbiologie

(http://www.sfm-microbiologie.org) [86]. For the determination of

mutation frequencies, ca. 1010 cells from an overnight broth culture

were plated onto BHI agar plates supplemented with spectinomycin

and the mutation frequency was determined relative to the count of

viable organisms plated in four independent experiments. Time–kill

curves were determined for exponentially growing enterococcal

cultures and an antibiotic concentration equal to 46 the MIC as

described [87]. Briefly, bacteria were inoculated 1:20 in 10 ml of

fresh MH broth containing antibiotic and incubated at 37uC.

Bacterial survival was monitored by CFU counts after 0, 3, 6, 24, and

48 h of incubation in three independent experiments by plating the

cultures on BHI agar plates.

Conjugation experiments
Transfer of Tn916 carrying tetracycline resistance from strains S.

agalactiae UCN78 (Table S1) [7,77–80] to E. faecium HM1070, DasrR

and DasrR::asrR was attempted by filter mating. Transconjugants

were selected on BHI agar plates containing tetracycline, rifampicin

and fusidic acid. For each strain, three transconjugants were selected

and used in the following experiment to quantify the influence of the

integration site on the transfer frequency. Transfer of Tn916 from

strains HM1070/Tn916, DasrR/Tn916 and DasrR::asrR/Tn916 to

E. faecalis BM4110 was attempted as described above. Transconju-

gants were selected on BHI agar plates containing tetracycline,

streptomycin and lincomycin whereas parental donor cells were

selected on BHI agar plates containing rifampicin, fusidic acid and

tetracycline. Transfer frequency data are of three independent

experiments and statistical analysis was performed with the two-

tailed Student’s t test.

Autolysis test
E. faecium DasrR, parental HM1070, and complemented strains

grown in exponential growth phase in BHI were harvested,

washed twice with cold phosphate-buffered saline (PBS; Gibco),
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resuspended in the same buffer supplemented with 0.1% Triton

X-100 (Sigma), incubated at 37uC without shaking and autolysis

was monitored by measuring the decrease in OD600 on a

microplate reader system (Multiskan Ascent, Thermo Electron

Corporation). The initial OD600 value was fixed at 100%, and the

results are the means (6 standard deviation) from three

independent experiments.

Susceptibility to CAMPs
E faecium HM1070, DasrR mutant and complemented strains

suspensions were standardized to an OD600 of 1 in 0.9% NaCl and

10 ml aliquots of 10-fold dilutions were spotted on BHI agar plates

supplemented with various amounts of colistin methanesulfate

(Sigma) and nisin (Sigma). Experiments were repeated at least

three times and representative data are shown.

Oxidative stress
E faecium HM1070, DasrR mutant, and complemented strains

suspensions were standardized to an OD600 of 1 in 0.9% NaCl and

10 ml aliquots of 10-fold dilutions were spotted on BHI agar plates

supplemented with various amounts of menadione, tertiary-

buthylhydroperoxide, and cumene hydroperoxide. Experiments

were repeated at least three times and representative data are

shown.

H2O2 killing assays
Resistance of E. faecium to oxidative killing by H2O2 was tested

as described with slight modifications [88]. Bacteria were grown

16 h in BHI broth and sub-cultured in 10 ml broth at a starting

density of OD600 at 0.05. Cultures were grown to mid-exponential

phase (OD600 = 0.5) or to stationary phase (OD600 = 1.4), harvest-

ed by centrifugation, resuspended in 0.9% NaCl with 2 mM

H2O2, placed into a 37uC water bath, and samples were

enumerated on plates immediately and 30 min following H2O2

challenge. For H2O2 killing assays in the presence of iron or

superoxide anion scavengers, cultures (OD600 = 0.5) were resus-

pended in 2 mM H2O2-containing 0.9% NaCl supplemented with

100 mM of deferoxamine or 3.3 mM tiron, respectively, and

processed as described [88].

Measurement of hydroxyl radical concentration using
FACS

The detection of intracellular hydroxyl radical was carried out

as described [89]. All data were collected using a Epics XL

Beckman Coulter flow cytometer with a 488 nm argon laser and a

505–545 nm emission filter (FL1) at low flow rate. In all

experiments, cells were grown as described above, stressed with

0, 0.5, or 2 mM of H2O2 during 10 min and washed with PBS

buffer. At least 30,000 cells were collected for each sample. To

detect hydroxyl radical formation, we used the fluorescent reporter

dye 39-(p-hydroxyphenyl) fluorescein (HPF; Invitrogen) at a

concentration of 10 mM. Flow data were processed and analyzed

with Kaluza V1.2.

Biofilm formation
Bacteria that had been grown overnight were inoculated 1:100

in 10 ml of TS broth with 0.25% glucose and shared into 96-

microwell polystyrene plates (NUNC, Denmark). After 24 h of

static incubation at 37uC, the plates were washed three times with

PBS and stained with 1% crystal violet for 30 min. The wells were

rinsed with distilled water and ethanol-acetone (80:20, vol/vol).

After drying, OD600 was determined using a microplate reader

(Multiskan Ascent, Thermo Electron Corporation). Each assay

was performed in triplicate in at least three independent

experiments. For visualization, bacteria were grown as described

above using 12-well polystyrene plates (CytoOne, Starlab Inter-

national, Germany) and were similarly processed than above and

directly examined.

E. faecium adhesion assays. Human cell line HT-29,

derived from colon adenocarcinoma, was used to assess E. faecium

adhesion ability. Cells were cultivated in Dulbecco’s Modified

Eagle Medium (DMEM) (Lonza, Verviers, Belgium) supplemented

with 10% heat-inactivated fetal bovine serum (PAA, Pasching,

Austria), 1% L-glutamine (Gibco, Paisley, UK), and 1% penicillin-

streptomycin liquid (Gibco). Cells were seeded at 16106 cells in

10 ml DMEM in 25 cm2 culture bottles (Greiner bio-one,

Frickenhausen, Germany) and incubated at 37uC with 5% CO2.

Experiments were performed on cells after 10–15 passages. HT-29

cells were collected every 4–5 days by washing the monolayer with

PBS and trypsinizing the cells with 50 mg/ml trypsine (Gibco).

Cells were seeded in 12-well tissue culture plates (CytoOne,

Starlab International) at ,26105 cells/ml. HT-29 cells were used

7 to 10 days after seeding. Overnight bacterial cultures in TS

broth supplemented with 0.25% glucose were diluted (1:50) and

grown at 37uC to an OD600 of 0.5, harvested by centrifugation

and resuspended in DMEM (16107 CFU/ml). Wells with HT-29

monolayer cells were rinsed with DMEM and 1 ml of bacterial

suspension was inoculated (ratio of 100 bacteria to 1 epithelial

cell). Plates were centrifuged, incubated with bacteria for 2 h at

37uC in 5% CO2, monolayers were rinsed three times with

DMEM and cells were lysed with 1% Triton X-100 (Sigma-

Aldrich, USA). As a negative control, gentamicin (20 mg/ml) was

added and cells were incubated 1 h at 37uC in 5% CO2 prior

rinsing. Adherent bacteria were plated on BHI agar plates and

quantified by CFU counting. The assay was performed in

triplicate (3 wells per strain) and repeated three independent times.

Galleria mellonella colonization model
The in vivo colonization model was carried out as described [42].

Galleria larvae were infected (1.8610660.56106 CFU/larva) and

batches of 10 alive larvae were sacrificed at 0, 24, 48, and 72 h

post-infection and homogenized as described previously [42]. The

t0 time point was determined immediately following injection.

Homogenates were plated onto BHI agar plates containing

aztreonam (100 mg/ml) and rifampicin (60 mg/ml), and CFU

were counted after 24 h of incubation. Results represent means (6

standard deviation) of at least three independent experiments.

Assays of survival in murine peritoneal macrophages and
in a mouse systemic infection model

Mouse experiments were performed with the approval of an

institutional animal use committee (see below). Mice were housed

in filter-top cages and had free access to food and water.

The in vivo-in vitro model of survival within murine macrophages

was carried out as described [90]. Briefly, E. faecium strains were

grown in BHI for 16 h, pelleted and resuspended in an adequate

volume of PBS for injection. Male BALB/c mice (10 weeks old;

Harlan Italy S.r.l.) were infected with 107 to 108 cells by

intraperitoneal injection and after 6 h infection macrophages

were collected by peritoneal lavage, centrifuged, and suspended in

DMEM containing 10 mM HEPES, 2 mM glutamine, 10%

bovine fetal serum, and 16nonessential amino acids supplement-

ed with vancomycin (10 mg/ml) and gentamicin (150 mg/ml). The

cell suspension was dispensed into 24-well tissue culture plates and

incubated at 37uC under 5% CO2 for 2 h. After exposure to

antibiotics to kill extracellular bacteria (i.e., at 8 h postinfection),

the infected macrophages were washed, and triplicate wells of
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macrophages were lysed with 0.1% sarkosyl. Note that, nor the

HM1070 strain, neither the DasrR mutant were found to be sensitive

to the lytic treatment (data not shown). The lysates were diluted in

BHI broth and plated on BHI agar to quantify the number of viable

intracellular bacteria. The remaining wells were maintained in

DMEM with the antibiotics for the duration of the experiment. The

same procedure was performed at 24, 48, and 72 h post-infection.

All experiments were performed at least three times.

The intravenous systemic infection model was performed as

described previously [91]. Briefly, overnight cultures of the strains

grown in BHI broth supplemented with 40% heat-inactivated

horse serum were centrifuged, and the resulting pellets were

resuspended in sterile PBS to achieve final concentrations of

16109 cells/ml. Aliquots of 100 ml from each strain suspension

were used to inject the tail veins of groups of 10 mice each. The

infection experiments were repeated three times. The mice were

monitored with twice-daily inspections, and 1, 3, and 7 days after

infection they were killed using CO2 inhalation. The kidneys and

livers were then removed aseptically, weighed, and homogenized

in 5 ml of PBS for 120 s at high speed in a Stomacher 80

apparatus (Pbi International). Serial homogenate dilutions were

plated onto Enterococcus Selective Agar (ESA; Fluka Analytical) to

determinate the CFU numbers. All experiments were performed

three times.

Ethics statement
The mouse experiments were performed under a protocol

approved by the Institutional Animal Use and Care Committee at

the Università Cattolica del Sacro Cuore, Rome, Italy (Permit

number: Z21, 11/01/2010) and authorized by the Italian Ministry

of Health, according to the Legislative Decree 116/92, which

implemented the European Directive 86/609/EEC on laboratory

animal protection in Italy. Animal welfare was routinely checked

by veterinarians of the Service for Animal Welfare.

Statistical analysis
Comparisons between groups were performed with different

statistical tests (one-way analysis of variance with a Bonferroni

correction post test or non-parametric Wilocoxon signed-rank sum

test) using GraphPad Prism software (version 5.00) for Windows

(GraphPad Software, San Diego, CA). For all comparisons, a P

value of less than 0.05 was considered as significant.

Supporting Information

Figure S1 Analysis of the transcriptional unit encoding
ohr and asrR genes. (A) The cotranscription of asrR from ohr

promoter was evaluated by RT-PCR on total RNA from HM1070

using primers designed to amplify specific region of ohr (1) or asrR (3),

intergenic region (2), the long cotranscript (4) and a negative control

(c) (Table S2) [81]. (B) Agarose gel showing the corresponding PCR

products. Lanes c and c9 represent PCR amplifications on

chromosomal DNA or on cDNA, respectively, used as controls.

(C) Footprinting experiment performed on the ohr promoter in the

absence (red line) or presence (blue line) of the His6-tagged AsrR

purified protein. The corresponding ohr promoter sequence is

showed and the binding region is indicated in bold characters. (D)

Alignment of the AsrR binding site for five putative direct target

genes. The distance of the last nucleotide of the 15-bp binding sites

to the start codons is indicated (Location). The DNA sequence logo

representing the AsrR DNA binding site in E. faecium was created

using the MEME suite and represents the information content of the

alignment of AsrR DNA binding sites, showing the sequence

conservation (overall height at each position) and the relative

frequency of each nucleotide at each position (nucleotide height).

(TIF)

Figure S2 Oxidative stress modulates expression of
both ohr and asrR genes. Expression ratios of the asrR (grey

bar) and ohr (black bar) genes determined by qRT-PCR at different

times following a 2 mM H2O2 stress. Expression ratios for the

parental strain in the presence of H2O2 compared to the parental

strain without oxidative stress (HM1070+ H2O2/HM1070) are

indicated. Note that the ohr and asrR genes are rapidly and strongly

upregulated in the presence of H2O2.

(TIF)

Figure S3 qRT-PCR confirms the AsrR regulon identi-
fied by microarrays. (A) Comparison of differentially expressed

genes between DasrR mutant and wild-type (DasrR/HM1070 ratios)

or complemented (DasrR/DasrR::asrR ratios) strains. The number of

genes differentially expressed between the mutant (DasrR) and the

parental (HM1070) or complemented (DasrR::asrR) strains are

indicated in the circles. The black overlapping area indicates that

the genes differentially expressed in the mutant compared to both the

parent and the complemented derivative. (B) Correlation of micro-

arrays and qRT-PCR expression ratios for the seven gene members

of the AsrR regulon. Genes expression for uvrA (orange symbols), pbp5

(blue symbols), gpx (green symbols), kat (purple symbols), acm (red

symbols), sigV (grey symbols), and ohr (brown symbols) are indicated.

Expression ratios asrR/HM1070 (circles, blue correlation line) and

asrR/DasrR::asrR (squares, red correlation line) are indicated.

(TIF)

Figure S4 Impact of asrR deletion on the E. faecium
autolysis. Autolysis of the parental (HM1070, diamonds),

mutant (DasrR, squares), and complemented (DasrR::asrR, triangles)

strains. Autolysis was induced by addition of Triton X-100 (0.1%)

and monitored using a microplate reader. Note that autolysis rate

was higher in the parental and the complemented strains than in

the DasrR strain. Results, expressed as percentage of initial OD600,

are from three independent experiments.

(TIF)

Figure S5 Growth curves of the parental HM1070 and
the DasrR mutant strains. Growth for the parental E. faecium

HM1070 (black squares) and the DasrR mutant (grey circles) were

carried out in BHI at 37uC and monitored every 30 min. No

significant difference was observed between the two strains.

(TIF)

Table S1 Plasmids and strains used in this study.
(DOC)

Table S2 Oligonucleotide primers used in this study.
(DOC)
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