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PURPOSE. x-3 and x-6 polyunsaturated fatty acids modulate inflammatory processes
throughout the body through distinct classes of lipid mediators that possess both
proinflammatory and proresolving properties. The purpose of this cross-sectional study
was to explore the relationship between lipid profiles in human tears and dry eye (DE)
symptoms and signs.

METHODS. Forty-one patients with normal eyelid and corneal anatomy were prospectively
recruited from a Veterans Administration Hospital over 18 months. Symptoms and signs of DE
were assessed, and tear samples was analyzed by mass spectrometry–based lipidomics.
Statistical analyses comparing the relationship between tear film lipids and DE included
Pearson/Spearman correlations and t-tests.

RESULTS. Arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid
(EPA) were present in more than 90% of tear film samples. The ratio of x-6 (AA) to x-3
(DHAþEPA) fatty acids was correlated with multiple measures of tear film dysfunction (tear
breakup time, Schirmer 2 scores, and corneal staining; all P < 0.05). Arachidonic acid–derived
prostaglandin E2 was detected in the majority of samples and correlated with low tear
osmolarity, meibomian gland plugging, and corneal staining.

CONCLUSIONS. Both x-3 and x-6 lipid circuits are activated in the human tear film. The ratio of
x-6:x-3 tear lipids is elevated in DE patients in proportion to the degree of tear film
dysfunction and corneal staining. Metabolic deficiency of x-3 tear film lipids may be a driver
of chronic ocular surface inflammation in DE.
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Dry eye (DE) is a multifactorial disorder characterized by
symptoms of ocular pain and visual disturbance and a

myriad of signs including decreased tear production, increased
evaporation, hyperosmolarity, and damage to the ocular
surface.1 Dry eye symptoms range in quality, severity, and
chronicity and affect tens of millions of Americans.2,3 Inflam-
mation is a well-described component of DE,4,5 and various
proinflammatory mediators, including innate and adaptive
immune cells (infiltrating macrophages and monocytes, cd,
and regulatory T cells, intraepithelial lymphocytes, and natural
killer cells5), cytokines (IL-1b and �6, IFN-c, TNF-a6), chemo-
kines (CCL3-5, CXCL9-11, CXCR37), and prostaglandins (PGE2

and PGD2
8) have been found at elevated levels in the tears of

DE patients compared with controls. Prostaglandins belong to a
diverse class of inflammatory lipid mediators called eicosa-
noids, which are derived from the oxygenation of arachidonic
acid (AA), an x-6 polyunsaturated fatty acid (PUFA), that is
enzymatically released from cell membranes of activated cells in

response to environmental stress. The release of AA and
subsequent generation of eicosanoid lipid mediators is respon-
sible for triggering the acute inflammatory response to corneal
injury.9

A less well-described aspect of the inflammatory process
is its active resolution, mediated by proresolving lipids, such
as resolvins, protectins, and maresins. In experimental
models of acute, self-resolving inflammation, the early
metabolism of AA into proinflammatory eicosanoids is
superseded by a resolving phase, in which proresolving lipid
mediators predominate.10 Resolution of inflammation is thus
an active process, and chronic nonresolving inflammation
may result from underactivation of the resolving phase
mediators.11 The interplay between proinflammatory and
proresolving lipid mediators is an emerging framework for
understanding the pathogenesis of chronic inflammatory
diseases,12,13 including DE.14–20 Most proresolving lipid
mediators are derived from x-3 PUFA precursors, such as
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docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA). These proresolving lipid mediators have essential
roles in controlling epithelial wound healing, inflammatory
cell migration, and nerve regeneration.21–23 Thus, the
bioavailability of x-3 and x-6 PUFAs may influence the
initiation, duration, and resolution of the inflammatory
response to injury on the ocular surface (Fig. 1).

We hypothesize that DE is a metabolic disorder character-
ized by an imbalance of x-3 and x-6 PUFAs, leading to
underproduction of proresolving lipid mediators, which
promotes nonresolving inflammation on the ocular surface.
Our hypothesis is informed by several lines of epidemiologic,
clinical, and experimental evidence. Epidemiologic studies
suggest that individuals with higher dietary intake of DHA and
EPA are protected against DE.24 Several randomized clinical
trials have also shown that dietary x-3 supplementation
(DHAþEPA) has favorable effects on DE signs and symp-
toms.25,26 The ocular surface highly expresses lipoxygenase
(LOX) and cyclooxygenase (COX) enzymes that metabolize
PUFAs into lipid mediators, which regulate inflammatory,
immune, and wound-healing responses.17,23,27–31 Experimental
evidence from cell culture and animal models of DE suggests
that DHA-derived neuroprotectin D1 (NPD1), resolvin D1

(RvD1), and EPA-derived resolvin E1 (RvE1) are proresolving
lipid mediators that are particularly relevant in maintaining
ocular surface health and tear film function.14,15,17,18,32 Here,
for the first time, we evaluate whether x-3 and x-6 lipid
profiles can be detected in human tears and whether these
measures correlate with DE disease severity in human subjects.

METHODS

Study Population

The Miami Veterans Administration eye clinic serves veterans
in South Florida and evaluates patients with a variety of
ophthalmic conditions including refractive issues, cataracts,
glaucoma, and retinal pathologies in addition to performing
screening for eye pathology in patients with systemic
conditions (diabetes, hypertension). Patients were prospec-
tively recruited from the eye clinic between November 2013
and April 2015. Informed consent was obtained from each
patient, and protected health information was accessed by the
study team in a Health Insurance Portability and Accountability
Act (HIPPA)-compliant manner. Patients underwent a complete
ocular surface examination, and those without notable
abnormalities of their eyelids or ocular surface were included.
As we wished to study ‘‘idiopathic’’ DE, that is DE symptoms
not associated with well-established ocular or systemic
conditions, patients were excluded from the study if they
had concomitant ocular or systemic processes that could
confound their clinical presentation, such as anatomic
abnormalities of their eyelids (e.g., ectropion), conjunctiva
(e.g., pterygium), and/or cornea (e.g., edema); history of
glaucoma, refractive, or retinal surgery; an active external
ocular process; cataract surgery within the last 6 months; use
of contact lenses or ocular medications with the exception of
artificial tears; HIV; sarcoidosis; graft-versus host disease;
multiple sclerosis; stroke; or collagen vascular disease. Patients
were asked not to use any artificial tears within 2 hours of

FIGURE 1. Hypothesized model of chronic ocular surface inflammation in dry eye. x-3 and x-6 polyunsaturated fatty acids are released into the tear
film as part of meibum and/or from the ocular surface epithelium in response to injury from dessicating stress. Cyclooxygenases and lipoxygenases
are expressed on the ocular surface by corneal epithelial cells and resident polymorphonuclear leukocytes. The x-6 species, AA, is a substrate for
cyclooxygenases and lipoxygenases and is converted to several classes of proinflammatory eicosanoids. In contrast, the x-3 species, DHA and EPA,
are also substrates for 15-lipoxygenase and 5-lipoxygenase, but are converted to several classes of proresolving, anti-inflammatory, and
neuroprotective mediators. The formation of proinflammatory and proresolving lipid mediators regulates activation of effector cells on the ocular
surface. In healthy eyes, proresolving lipid mediators counteract the eicosanoids and promote speedy resolution of inflammation. In dry eye,
metabolic deficiency of x-3 species leads to underproduction of proresolving lipid mediators and a state of chronic nonresolving inflammation on
the ocular surface.
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testing. This study was conducted with adherence to the tenets
of the Declaration of Helsinki and with approval from the
Miami Veterans Administration Institutional Review Board.

Data Collection

Demographic information was collected for each patient,
including age, sex, race, ethnicity, smoking status, medications,
and medical history.

Dry Eye Symptoms and Ocular Pain

Dry eye symptoms were assessed via the ocular surface disease
index (OSDI), which assesses the impact of DE on visual
function, and the Dry Eye Questionnaire Score 5 (DEQ5),
which assesses specific discomforts (tearing, dryness, etc.)
independent of visual function.33,34 A numerical rating scale
(NRS; score 0–10) was used to assess the ‘‘average intensity of
eye pain during the past week.’’

Dry Eye Signs

Further ocular surface examination for DE signs included, in the
order performed, measurement of tear osmolarity, corneal
sensitivity, tear breakup time (TBUT), corneal staining, Schirmer
score with anesthesia, and eyelid assessment. Tear osmolarity
was measured once in each eye (TearLAB, San Diego, CA, USA).
Fluorescein dye was instilled, and TBUT was measured three
times in each eye and averaged. Corneal staining was assessed in
five areas of the cornea and scored 0–3 in each area (National
Eye Institute [NEI] scale). A Schirmer 2 score was recorded as
millimeters of wetting at 5 minutes. Eyelid vascularity and
meibomian gland plugging were graded on a scale of 0–3 (0 ¼
none; 1 ¼ mild; 2 ¼ moderate; 3 ¼ severe).35 Meibomian gland
drop out was measured via noncontact meibography (a
technique that uses transillumation to evaluate degree of area
loss of glands according to the Meiboscale). Finally, meibum
quality was graded on a scale of 0–4 (0¼ clear consistency; 1¼
cloudy consistency; 2¼ granular consistency; 3¼ toothpaste; 4
¼ no meibum expressed16 using digital pressure).

Determination of Corneal Sensitivity

Mechanical detection and pain thresholds of the central cornea
were assessed with a modified Belmonte noncontact aesthesi-
ometer, which was developed based on the original Belmonte
instrument.36 The tip of the aesthesiometer (0.5 mm in
diameter) was placed perpendicular to and 4 mm from the
surface of the cornea of the right eye. Stimulation consisted of
pulses of air at room temperature (approximately 238C–
268C)37 applied to the corneal surface. The method of limits,
using ascending series only, was used to measure threshold.

For corneal detection threshold measurements, subjects
were presented with a stimulus immediately following a blink
and asked to indicate whether they felt the stimulus by
pressing a button. The initial flow rate was set at a level below
threshold (50 mL/min for most individuals) and increased by
10 mL/min (with 15-second intervals between stimuli) until
the subject stated that they felt the stimulus or the maximum
allowable flow rate (400 mL/min) was reached. Two ascending
series were conducted, and detection threshold was defined as
the arithmetic mean of the value at which the subject pressed
the button across the two series. To estimate ocular pain
threshold, the flow rate was further increased beyond the
detection threshold in 10 mL/min increments until the subject
reported the stimulus as painful or the maximum allowable
flow rate (400 mL/min) was reached. Two ascending series
were conducted in this way, and pain threshold was defined as

a mean of the two series. All threshold measures were
performed during the morning hours by the same operator
(ALM). Corneal sensitivity was evaluated after tear osmolarity
followed by a 2-hour break, after which time the remaining dry
eye testing was performed.

Tear Collection

Fifty microliters of sterile saline was instilled by a pipette to the
inferior cul-de-sac of each eye prior to assessment of meibum
quality. Tears were immediately collected by capillary action
using a 1-lL microcaps pipette (Drummond Scientific Compa-
ny, Broomall, PA, USA) applied gently to the temporal margin of
the lower eyelid. Each study eye was sampled once. A
minimum of 50 lL tears (approximately six disposable
micropipettes) was collected and released by bulb dispenser
into 1.5-mL Nalgene polypropylene cryogenic vials (Sigma-
Aldrich Corp., St Louis, MO, USA). These vials were labeled
with de-identified subject codes and immediately placed in a
�808C freezer.

Laboratory Methodology

Inflammatory and proresolving lipid mediators and specific x-
6 PUFA and x-3 PUFA pathway markers were identified and
quantified by liquid chromatography (LC)-tandem mass
spectrometry (MS/MS). In brief, 400 pg class-specific deuter-
ated (-d) internal standards (AA-d8, DHA-d5, PGE2-d4, lipoxin
A4-d5, leukotriene B4-d4, 15-hydroxyeicosatetraenoic acid-d8)
were added to each tear sample prior to processing to
calculate the recovery of specific classes of PUFA, LOX, and
COX metabolites. Collected tears (30–50 lL) containing
internal standards were combined with 2 mL methanol, dried
under a gentle stream of nitrogen, immediately resuspended
in high-performance LC mobile, and placed in a refrigerated
autosampler for lipidomic analysis. Eicosanoids and docosa-
noids were identified and quantified by LC-MS/MS–based
lipidomics based on published methods.30,38 Processed tear
samples were analyzed by a triple-quadrupole linear ion trap
LC-MS/MS system (MDS SCIEX 3200 QTRAP; Applied Biosys-
tems, Foster City, CA, USA) equipped with a Kinetex C18
mini-bore column (Phenomenex, Torrance, CA, USA). The
mobile phase was a gradient of water/acetonitrile/acetic acid
(72:28:0.01, vol:vol:vol) and isopropanol/acetonitrile (60:40,
vol:vol) with a 450-lL/min flow rate. Tandem MS/MS analyses
were performed in negative ion mode, and prominent fatty
acid metabolites were quantified in multiple reaction moni-
toring mode using established and specific transitions as
previously described.30,31,38–41 Calibration curves (1–1000
pg) and specific LC retention times for each compound were
established with synthetic standards (Cayman Chemical, Ann
Arbor, MI, USA). Structures were confirmed for selected
autacoids by MS/MS analyses using enhanced product ion
mode with appropriate selection of the parent ion in
quadrupole 1.

Tear samples were analyzed by LC-MS/MS in two batches. In
the first batch (N ¼ 21 patients), tear samples from both eyes
were analyzed separately, and the results were averaged. In the
second batch (N¼ 20 distinct patients), tear samples from both
eyes were pooled and analyzed together. x-6:x-3 ratios and PGE2

levels were statistically comparable between the two batches.

Statistical Analysis

All statistical analyses were performed using SPSS Version 22
(SPSS, Inc., Chicago, IL, USA) statistical package. Analyses
included comparison of means (t-test), medians (Mann-
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Whitney U), and correlations (Pearson and Spearman); P <
0.05 was considered statistically significant.

RESULTS

Study Population

The study group (N ¼ 41) comprised a racially and ethnically
diverse population of late middle-aged and elderly, predomi-
nately male, subjects (mean age, 62 years; SD, 11; range, 27–83
years), as described in Table 1. Seventy-one percent of subjects
were actively using artificial tears, on average 3.0 6 1.4 times
daily, for an average duration of 36 6 38 months. Fifty-six
percent of patients were taking nonsteroidal anti-inflammatory
drugs (NSAIDs), and 20% were taking an x-3 supplement.
Subjects displayed a wide range of symptoms and signs of DE,

ranging from none to severe (93% with DEQ5 ‡ 6, 81% with
OSDI ‡ 20; 56% with NRS ‡ 4). The majority of subjects had
one or more eyelid abnormalities including meibomian gland
plugging (78%), a score of 2 or greater on meibum quality
(57%), meibomian gland atrophy (44%), and increased eyelid
vascularity (10%). A majority of subjects also had evidence of
tear dysfunction with TBUT � 8 seconds in 56%, Schirmer < 8
mm in 29%, and osmolarity ‡ 308 mOsm in 28%.

Mass Spectroscopy

Five principal species, AA, DHA, EPA, PGE2, and hepoxilin A3

(HxA3), were detected in the majority of samples. Arachidonic
acid, DHA, EPA, and PGE2 were detected in >90% of samples
and HxA3 in 81%.

Correlations Between Lipid Species

The five principal lipid species were positively correlated with
one another (Supplementary Table S1). Associations were
strongest between DHA and AA and less strong for the other
pairwise comparisons.

Clinico-Pathologic Correlation

The x-6:x-3 ratio (proinflammatory/anti-inflammatory) and
PGE2 levels were evaluated for correlations with demographic
characteristics and symptoms and signs of DE. There was no
significant correlation of either measure with age or sex in our
study population. White patients demonstrated a lower x-6:x-3
ratio compared with blacks (0.82 6 0.61 vs. 1.6 6 1.1; P ¼
0.01) and lower PGE2 levels (11.3 6 2.7 vs 13.2 6 3.2; P ¼
0.05), suggesting a less inflammatory tear lipid profile. Patients
with osteoarthritis had a higher x-6:x-3 ratio compared with
those without arthritis (1.7 6 1.2 vs. 0.95 6 0.64; P ¼ 0.02)
but similar PGE2 levels, suggesting a more proinflammatory
tear lipid profile. Differences were also seen between groups
with respect to medication use. Those taking NSAIDs had
lower levels of all lipid mediators compared with those not
taking NSAIDS, with a significant difference in PGE2 levels
between the groups (11.3 6 2.6 vs. 13.7 6 3.1; P ¼ 0.01;
Supplementary Fig. S1). Those taking x-3 supplements had
modestly higher tear film levels of all lipid mediators compared
with those not taking x-3 and a significantly lower x-6:x-3 ratio
(0.58 6 0.43 vs. 1.37 6 0.96; P ¼ 0.03; Fig. 2A), suggesting a
less inflammatory lipid profile. Means were not significantly
different by the other demographics, comorbidities, and
medications listed in Table 1.

Dry eye symptoms and ocular pain were not significantly
correlated with x-6:x-3 ratio or PGE2, nor were metrics of
corneal sensitivity (stimulus detection and pain thresholds).
However, several clinically important signs of ocular surface
disease were correlated with inflammatory tear lipids (Table 2).
Higher levels of PGE2 were correlated with lower tear
osmolarity, more meibomian gland plugging, and more corneal
staining. Less healthy tear parameters including shorter TBUT,
lower Schirmer scores, and more corneal staining correlated
with higher x-6:x-3 ratios (Figs. 2B, 2C).

DISCUSSION

This is the first study to demonstrate that the major biologically
relevant x-3 PUFAs (DHA and EPA) are detectable in the human
tear film, suggesting activation of these proresolving lipid
circuits in DE. The anti-inflammatory potential of x-3 series
proresolving lipid mediators has been established by multiple
animal and cell culture models of DE.14,16–19,32,42 Changes in

TABLE 1. Demographic and Clinical Information of Study Population

Characteristic Number Percent

Sex, male 38 93%

Race, white* 18 44%

Ethnicity, Hispanic 8 20%

Comorbidities

Hypertension 29 71%

Hypercholesterolemia 26 63%

Diabetes 10 24%

Posttraumatic stress disorder 13 32%

Depression 22 54%

Osteoarthritis 15 37%

Sleep apnea 7 17%

Benign prostatic hyperplasia 5 12%

Medications

Antidepressants 15 37%

Antianxiolytics 16 39%

Analgesics 26 63%

Antihistamine 6 15%

Oral NSAIDs† 23 56%

x-3 supplement‡ 8 20%

Artificial tears 30 73%

Characteristic Mean SD

Dry eye symptoms and ocular pain

DEQ5 13 5.1

OSDI 36 23

NRS for ocular pain 4.1 2.7

Dry eye signs

Osmolarity,§ mOsm/L 304 19

TBUT,§ s 8.9 3.9

Corneal staining§ 2.5 3.1

Schirmer score,§ mm 13 7.3

Eyelid vascularity§ 0.5 0.7

Meibomian gland plugging§ 2.0 0.7

Meibomian gland atrophy§ 1.6 1.2

Meibum quality§ 1.9 1.3

Detection thresholds, mL/min 108 60

Pain thresholds, mL/min 212 91

* Nonwhite study participants included 22 who self-identified as
black and 1 as other.

† Ibuprofen 600–800 mg, aspirin 81 mg, naproxen 250 mg; variable
dosing strategies.

‡ Fish oil 1000 mg (DHA 200 mg/EPA 300 mg) dosed between one
and four times daily.

§ Value in more severely affected eye.
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tear volume have been shown to correlate with dietary x-3
intake in mice,42 and here we demonstrated a significant
correlation between the tear film x-6:x-3 ratio and tear volume
(Schirmer score), as well as tear stability (TBUT) and corneal
staining. Additionally, human studies have shown that x-3
(DHAþEPA) supplementation has beneficial effects on the signs
and symptoms of DE.25,26 Although our study was noninterven-
tional, we found that patients taking x-3 supplements had
higher tear film PUFA levels and a lower, less inflammatory x-
6:x-3 ratio. This suggests that oral intake of x-3 supplements
has sufficient bioavailability to directly impact inflammatory
lipid expression in the human tear film.

Previous investigations have measured AA43 and related x-6
series eicosanoids including 12-HETE44 and PGE2

8 in the tear
film of human DE subjects. Here we detected AA, PGE2, and,
for the first time in human tears, the nonclassical eicosanoid
HxA3, in the majority of subjects. Although previous investi-
gations reported differences in DE tears compared with
healthy controls, we have gone further to show that
inflammatory lipid profiles correlate with phenotypic varia-
tions in ocular surface disease severity among patients.

The role of eicosanoids in the regulation of corneal
inflammation was first recognized by Srinivasan and Kulkarni,
who showed in various models of corneal injury that
polymorphonuclear leukocytes (PMNs) were recruited from
conjunctival vessels through the tear film, ultimately attaching
to injured corneal epithelium in a AA- and PGE2-dependent
manner.9 Prostaglandin E2 is synthesized from AA by COX and
PGE synthase, and both these enzymes are up-regulated on the
ocular surface of mice placed in a DE environmental chamber.8

Chronic corneal injury results in recruitment 5-LOX expressing
PMNs and expression of COX in corneal epithelial cells,
inducing formation and release of proinflammatory and
proangiogenic mediators (PGE2 and leukotriene B4) that drive
and amplify ocular surface inflammation.31

FIGURE 2. Box-and-whisker plots comparing tear film x-6:x-3 lipid ratios in patients with and without (A) use of x-3 supplements (0.58 6 0.43 vs.
1.37 6 0.96; P ¼ 0.03), (B) evaporative deficiency defined by TBUT � 5 seconds (1.89 6 1.24 vs. 0.87 6 0.47; P ¼ 0.01), and (C) aqueous tear
deficiency defined by Schirmer 2 score �7 mm (1.70 6 1.20 vs. 1.02 6 0.74; P¼ 0.03). Gray boxes represent the interquartile range between the
25th to 75th percentile, middle line represents the median, and vertical line extends from the minimum to the maximum value, excluding outliers
(open circles represent values larger than the upper quartile plus 1.5 times the interquartile range; asterisks represent values larger than the upper
quartile plus 3 times the interquartile range).

TABLE 2. Correlations Between Lipid Species, Demographics, Comor-
bidities, and Dry Eye Metrics

Clinical Features

x-6:x-3

(Pearson/

Spearman)

PGE2

(Pearson/

Spearman)

Demographics

Age �0.22/�0.22 �0.08/�0.14

DE symptoms

DEQ5 0.14/0.19 �0.06/�0.06

OSDI 0.16/0.17 0.03/0.02

Ocular pain

Numerical rating scale

(average ocular pain

intensity in last week)

�0.03/0.05 �0.13/�0.14

Corneal sensitivity

Detection thresholds

(Belmonte)

�0.10/�0.05 �0.05/�0.02

Pain thresholds (Belmonte) �0.08/�0.008 �0.02/�0.003

Ocular signs

Osmolarity 0.19/�0.04 �0.32*/�0.40*

TBUT �0.36*/�0.37* �0.18/�0.20

Corneal staining 0.18/0.31* 0.25/0.35*

Schirmer score �0.26/�0.38* �0.11/�0.10

Eyelid vascularity �0.28/�0.27 0.14/0.11

Meibomian gland plugging 0.29/0.17 0.38*/0.40*

Meibomian gland atrophy 0.11/0.15 0.20/0.13

Meibum quality 0.21/0.11 0.17/0.13

* P < 0.05.
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The role of x-3 fatty acids in down-regulating inflammation
is an emerging paradigm for understanding the pathogenesis of
chronic inflammatory diseases,12,13 including DE.14–20 DHA
and EPA are conditionally essential fatty acids, which can be
produced from a-linolenic acid, but the rate of conversion is
generally insufficient to replace metabolic consumption of
DHA and EPA.45 In a survey of dietary fat intake across 28
countries, 20 failed to meet minimum World Health Organiza-
tion recommended levels of DHA and EPA intake, including the
United States and the majority of European nations.46 DHA and
EPA are metabolic precursors to proresolving lipid mediators
such as NPD1, RvD1, and RvE1, which counteract the
proinflammatory actions of PGE2, HxA3, and other eicosa-
noids.10,12,13,18,47 Corneal epithelial cells and resident regula-
tory PMNs in the corneal limbus and lacrimal gland highly
express 15-LOX, a key enzyme for generating and releasing
specialized proresolving mediators (lipoxins, resolvins, and
neuroprotectins) that are critical for controlling ocular surface
immune and wound healing responses).17,23,27–30 Lipoxin A4

promotes corneal epithelial wound healing,30 inhibits patho-
logic angiogenesis and proinflammatory cytokine expres-
sion,28,29 and controls effector T-cell activation.27

Neuroprotectin D1 is implicated in epithelial cell survival,48

recovery from oxidative stress,48 and wound healing.14 Neuro-
protectin D1 has also been shown to promote corneal nerve
regeneration and return of corneal sensitivity.14,17 Resolvin E1

exerts proresolving effects directly through G-protein–coupled
receptors10 and indirectly through negative feedback on COX-2
expression.20 In murine models of DE, RvD1 and RvE1 play a
role in tear film homeostasis by enhancing tear production, as
well as goblet cell survival and secretion in response to
desiccating stress.16,18,20 These data underscore the biologic
significance of x-3 proresolving lipid mediators in the tear film
and lend support to the hypothesis that DE has a metabolic
basis. Nutritional or metabolic deficiency of DHA and EPA may
lead to underproduction of proresolving lipid mediators in
tears, ultimately resulting in nonresolving inflammation on the
ocular surface.

As with all studies, our findings need to be considered with
our study limitations, which include: a cross-sectional study
design, a predominantly male DE population, a small sample
size, and specific metrics used to capture DE features. Because
we studied tears, we cannot discern whether the lipid
mediators originated from meibum, the ocular surface epithe-
lium, or both. In addition, more work needs to be done to
optimize tear collection and lipid identification in human tears,
as many of the naturally occurring x-3 metabolites are unstable
and short-lived species.49 One strength of our study was the
ability to calculate a standardized x-6:x-3 ratio, which helps to
mitigate some of the variation in lipid concentrations between
individual samples. However, the x-6:x-3 ratio may be an
overly simplistic metric, as some x-6–derived eicosanoids (e.g.,
PGE1, Lipoxin A4) can be anti-inflammatory. Future investiga-
tion will be needed to characterize the active metabolites of
the proresolving lipid mediators DHA and EPA in the human
tear film (e.g., DHA-derived NPD1 and RvD1 and EPA-derived
RvE1).16–19,32

To summarize, DE has been previously described as a
chronic inflammatory disorder of the ocular surface. In
additional to known proinflammatory lipids (e.g., AA, PGE2),
we have shown for the first time that proresolving lipid
biomarkers (DHA, EPA) can be simultaneously detected in the
tear film of human subjects with DE. The ratio of proin-
flammatory to proresolving lipid pathway markers in the tear
film was clinically significant as a biomarker for tear film
dysfunction. Our findings support the hypothesis that a higher
x-6 (proinflammatory) to x-3 (proresolving) ratio of lipid
mediators supports nonresolving inflammation on the ocular

surface. This theoretical framework may help to devise new,
more targeted therapies toward lipid pathways in DE.
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