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ARTICLE

S-Nitrosohemoglobin Levels and Patient Outcome After
Transfusion During Pediatric Bypass Surgery

Faisal Matto1,2, Peter C. Kouretas3, Richard Smith3, Jacob Ostrowsky3, Anthony J. Cina1,2, Douglas T. Hess1,2,
Jonathan S. Stamler1,2,5 and James D. Reynolds1,4,∗

Banked blood exhibits impairments in nitric oxide (NO)-based oxygen delivery capability, reflected in rapid depletion of
S-nitrosohemoglobin (SNO-Hb). We hypothesized that transfusion of even freshly-stored blood used in pediatric heart surgery
would reduce SNO-Hb levels and worsen outcome. In a retrospective review (n = 29), the percent of estimated blood volume
(% eBV) replaced by transfusion directly correlated with ventilator time and inversely correlated with kidney function; simi-
lar results were obtained in a prospective arm (n = 20). In addition, an inverse association was identified between SNO-Hb
and postoperative increase in Hb (�Hb), reflecting the amount of blood retained by the patient. Both SNO-Hb and �Hb corre-
lated with the probability of kidney dysfunction and oxygenation-related complications. Further, regression analysis identified
SNO-Hb as an inverse predictor of outcome. The findings suggest that SNO-Hb and �Hb are prognostic biomarkers follow-
ing pediatric cardiopulmonary bypass, and that maintenance of red blood cell-derived NO bioactivity might confer therapeutic
benefit.
Clin Transl Sci (2018) 11, 237–243; doi:10.1111/cts.12530; published online on 12 December 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ Pediatric patients who undergo cardiopulmonary
bypass can receive large volumes of allogenic red blood
cells. Transfusion of banked blood may enhance rather
than correct deficits in tissue oxygenation, which may
lead to organ dysfunction and worse postoperative out-
come. This is because banked blood is depleted of
S-nitrosohemoglobin (SNO-Hb), the main regulator of
microvascular blood flow.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔ Would transfusion of even freshly-stored blood used in
pediatric heart surgery reduce SNO-Hb levels and worsen
outcome?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
✔ We linked declines in SNO-Hb caused by intraopera-
tive transfusion to reductions in tissue oxygenation, organ
dysfunction, and worse outcomes in young cardiac surgery
patients.
HOW THIS MIGHT CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE
✔ SNO-Hb was prognostic for outcome, suggesting that
it may be used as a biomarker of transfusion efficacy. S-
Nitrosylating agents that raise SNO-Hb levels are currently
undergoing human testing.

Congenital heart defects are themost frequent birth anomaly,
with an occurrence rate close to 1% of all live deliveries.1

Within this group, at least one-quarter of afflicted individ-
uals will require surgical intervention early in life to correct
the lesion. Neonatal and pediatric cardiopulmonary bypass
(CPB) equipment and surgical techniques improved in con-
cert with the adult technology during the mid-part of the 20th

century. As a result, the current prognosis for children with
even the severest congenital defects is greatly improved,
with 3–5 year survival rates of >70%.2
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Advances in surgical methodology notwithstanding, CPB
remains a significant stressor to the young patient and
the need to administer banked blood is commonplace.
Allogenic red blood cells (RBCs) are utilized to prime the
bypass circuit, replace intraoperative blood loss, and main-
tain hemodynamic stability. As in other anemic settings,
the administration of RBCs during CPB is premised on a
direct correlation between the oxygen-carrying capacity
of blood and the delivery of oxygen to tissues, i.e., it is
assumed that transfusion will improve tissue oxygenation.



S-Nitrosohemoglobin and Pediatric Bypass
Matto et al.

238

However, similar to adult cardiac populations, infants
and neonates who receive RBCs have longer recovery
periods and higher rates of adverse events than non-
transfused cohorts.3,4 A possible explanation is that the
administration of stored blood may exacerbate rather
than correct anemia-induced deficits in tissue oxy-
genation.5

Tissue oxygen delivery is regulated by hypoxic vasodi-
lation, a physiologic mechanism that couples local oxy-
gen requirements to blood flow.6 RBCs serve as a princi-
pal transducer of this response by mediating the export of
S-nitrosothiol (SNO)-based nitric oxide (NO) bioactivity. More
specifically, NO is transported in RBCs by the conserved Cys
residue at position 93 of the β chain (βCys93) in hemoglobin
in the form of a SNO, i.e., S-nitrosohemoglobin (SNO-Hb).7

Low pO2 in tissues promotes the release of SNO-based
vasodilatory activity from RBCs to maintain tissue perfusion.
The centrality of βCys93-derived SNO in maintaining tissue
oxygenation has recently been validated by strict genetic
criteria,8 and is supported further by the demonstration of
enhanced myocardial injury and mortality in the absence of
βCys93 across differentmodels of heart disease.9 This in turn
has led to a reconceptualization of the respiratory cycle as
a three-gas system (O2/NO/CO2).10 Assessment of NO sta-
tus provides a basis for understanding why increasing blood
oxygen content (e.g., transfusion) can fail to improve tissue
oxygenation;11 blood flow, not blood oxygen content, is the
primary determinant of oxygen delivery under basal physio-
logical conditions.12

A variety of conditions characterized by impairments
in tissue oxygenation are associated with decreased
bioavailability of RBC SNO,13–15 including transfusion.16,17

Storage of blood leads to rapid losses in SNO-Hb that
are paralleled by declines in the ability of banked RBCs
to effect hypoxic vasodilation.16 Administration of these
SNO-Hb-depleted RBCs to anemic animals impairs
microvascular blood flow, tissue oxygenation, and organ
function (replicating the hypoxic pathophysiology exhibited
by βCys93Ala, i.e., SNO-deficient, mutant mice).8,9 Admin-
istration of SNO-Hb-replete blood prevents these adverse
events.17

Most practitioners strive to administer the “freshest”
blood to their young patients. Yet the pediatric outcome
data suggest that receipt of any allogenic RBCs,18 not
expressly older blood,19 is associated with increased mor-
bidity. Similarly, studies of fresh vs. aged blood in adults
have not identified improvements in outcome.20–22 The loss
of SNO-Hb begins within hours of donation and is 80%
depleted within 2 days.16,23 Accordingly, administration of
SNO-depleted RBCs provides a plausible explanation for
how transfusion may worsen outcome. With this in mind,
we aimed to first determine if RBC transfusion was asso-
ciated with adverse events in our population of neonatal
congenital heart patients. As the answer was yes, we fol-
lowed the retrospective review with a prospective study to
determine the effects of transfusion on SNO-Hb levels. We
predicted that transfusion-induced reductions in SNO-Hb
would portend worse outcome, including impaired organ
function and increased incidence of oxygenation-related
complications.

METHODS
Study overview
This investigation was a single-site observational study. The
research protocol was approved by the Institutional Review
Board (IRB) of University Hospitals Cleveland Medical Cen-
ter and written informed consent for study participation in
the prospective arm was obtained from the parent(s) or legal
guardian(s) of each patient prior to surgery (the IRB waived
the need to obtain consent for the retrospective chart review).
The target population was neonates and young children (<12
months of age) anticipated to receive packed RBCs during
open-heart surgery with CPB for repair of congenital heart
disease. Older children and patients undergoing redo proce-
dures were excluded.

The chart review retrieved demographic and periopera-
tive data (RBC transfusion volumes, clinical chemistries, ven-
tilator times, complications, length of stay, etc.) for chil-
dren operated on between November 2008 and December
2009. The prospective arm enrolled subjects between
January 2011 and April 2013.

Procedures
An established bypass procedure (including muscle relax-
ation with vecuronium and antifibrinolytic therapy with
aminocaproic acid) was used for all patients with the sur-
gical techniques dictated by the cardiac anomaly. All CPB
surgeries in the prospective study were conducted by the
same surgeon (P.C.K.) and perfusion team (J.O. and R.S.)
(see Supplemental Content for details). A dual-lead INVOS
near infrared spectroscopy (NIRS) system (Medtronic, Min-
neapolis, MN) was used to monitor cerebral and kidney
oxygenation.24,25 To determine SNO-Hb levels, blood sam-
ples (�2 mL) were drawn from the arterial port of the
oxygenator during set points of the surgery and from an
indwelling arterial line on postoperative Day 1. (Blood sam-
pling and RBC administration did not occur contemporane-
ously.) No samples were obtained from percutaneous needle
sticks, so we do not have preinduction SNO-Hb or blood gas
values. The decision to remove the arterial line was made
independently of SNO sampling needs (per hospital proto-
col, this typically occurred on postoperative Day 1), which
precluded procurement of additional arterial blood samples
for this minimally invasive study. Postoperative patient man-
agement was directed by the pediatric ICU staff who were
unaware of the study goals and all other blood samplings
were done at the direction of the clinical team. RBC SNO-Hb
levels were quantified offline and the resultant values were
not used to direct any child’s clinical care. Additional patient
details and information on postoperative course were col-
lected from the medical record.

RBC SNO-Hb measurement protocol
Photolysis-chemiluminescence was used to quantify
SNO-Hb levels.16,23,26,27 The method has been well vali-
dated for selective determination of RBC HbNO without
artificial contamination from other nitrosative species,
including nitrite and nitrate.28,29 Within 1 h of procurement,
the arterial blood samples were spun at low speed, then,
after decanting, the pelleted RBCs were washed twice
with 0.1 mM diethylene-triaminepentaacetic acid (DTPA)
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in phosphate-buffered saline (PBS) at pH 7.4 and then
lysed in excess deionized water (1:4 volume ratio x 10
min) containing 0.1 mM DTPA. Lysates were centrifuged
(20,000g for 10 min) to separate membranes and cytosol.
Membranes were dissolved in Triton X-100 (2%) in PBS, and
Hb was desalted by centrifugation (3,000g for 1 min) through
Sephadex G-25 spin columns (Pharmacia, Uppsala, Swe-
den). The Hb samples were then stored at –80°C for batch
analysis. The amount of Hb in the eluents was determined
spectrophotometrically, adjusted to a final concentration of
400 μM, and then incubated with either PBS alone or with
sixfold molar excess of mercuric chloride (which selectively
cleaves thiol-bound NO groups). Standard curves were
generated daily with S-nitrosoglutathione. Concentrations
of SNO-Hb and Hb[FeNO] were calculated based on the
difference between the amount of NO liberated by UV light
in the absence (SNO-Hb plus Hb[FeNO]) vs. presence of
mercuric chloride (Hb[FeNO]).13,30

Statistics
Interval and ratio data are expressed as mean ± standard
deviation (SD) and ordinal data are expressed as median
± interquartile range. To assess kidney function, estimated
glomerular filtration rate (eGFR) was calculated from serum
chemistries using the formula eGFR = 0.45 x [height/Scr]
with height in centimeters and serum creatinine (Scr) in
mg/dl.31 Estimated blood volume (eBV) for each patient was
determined by body weight and age.32 Where appropriate,
log-transformation was used to satisfy conditions of data
normality. Standard parametric methods were used to check
for differences over time (e.g., repeated-measures anaylsis
of variance (ANOVA) with Dunnett’s post-hoc testing), while
linear regression was used to test for associations. A logis-
tic stepwise regression model was employed to construct a
predictive model for major morbidity (described in detail in
the Supplement).

RESULTS
Demographic data and general patient outcomes
Data from 29 clinical records were collated in the retrospec-
tive study while 20 pediatric heart patients were enrolled in
the prospective arm; their demographic and operative data
are presented in Supplemental Table S1. The two patient
populations and the procedural aspects of the surgeries were
similar. Importantly, both groups demonstrated negative
responses to the intraoperative receipt of RBCs. The amount
of blood received (% of eBV replaced) directly correlated
with increased postoperative ventilator time (Supplemental
Figure S1A and S1B; r = 0.676, P = 0.0008 for the retro-
spective group and r = 0.595, P = 0.005 for the prospec-
tive cohort) and increased intensive care unit (ICU) stay in the
prospective cohort (Figure S1C; r= 0.542, P= 0.012). (Note:
information on ICU duration was not recorded in the files of
the retrospective group.) Organ function was also impacted
negatively by transfusion in the retrospective group, where
receipt of more blood was associated with worse kidney
function, i.e., declines in eGFR (Figure S1D; r = –0.392,
P = 0.04). This functional consequence was explored further
in the prospective study.
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Figure 1 Transfusion, tissue oxygenation, and organ function. (a)
The % eBV replaced by intraoperative transfusion was inversely
correlated with kidney StO2 at the end of surgery (n = 20; r =
–0.722, P = 0.0003). (b) There was no correlation between kidney
StO2 and arterial blood oxygen content (r = –0.122, P = 0.651). (c)
Scatterplot depicts the inverse correlation between eGFR and %
eBV replaced (r = –0.533, P = 0.015).

Intraoperative transfusion and tissue oxygenation
We predicted that receipt of SNO-Hb-depleted RBCs would
adversely impact tissue oxygenation and support for this
hypothesis was demonstrated in the prospective arm. First,
the % of eBV replaced was inversely correlated with kidney
tissue oxygenation (StO2) at the end of surgery (Figure 1a;
r = –0.722, P = 0.0003); a similar albeit weaker inverse
association with brain StO2 was also observed (r = –0.317,
P = 0.172). Second, transfusion increased RBC mass but no
correlation was found between kidney StO2 and arterial oxy-
gen content (Figure 1b; r= –0.122, P= 0.651). Third, as with
the retrospective analysis, the amount of blood transfused
(% of eBV replaced) was inversely correlated with eGFR
(Figure 1c; r = –0.533, P = 0.015), reflecting the importance
of microvascular flow on tissue oxygenation. Taken together,
these data demonstrate the negative effect of transfusion on
postoperative renal function as a consequence of decreased
intraoperative kidney StO2.
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Figure 2 SNO-Hb, CPB, and transfusion. (a) Circulating RBC
SNO-Hb concentrations in pediatric patients (n= 20; groupmeans
are designated by the bars) at various procedural points before,
during, and after CPB. SNO-Hb levels increased after going on
bypass and continued to rise into the postoperative period. *Sig-
nificant difference compared with baseline, P < 0.05, as deter-
mined by repeated-measures ANOVA followed by Dunnet’s test.
(b) There was no relationship between SNO-Hb levels and % eBV
replaced. (c) The increase in SNO-Hb correlated inversely with the
magnitude of the pre-to-posttransfusion increase in Hb (�Hb) (r =
–0.573, P = 0.010). Retention of more blood (i.e., greater increase
in postop Hb) was thus associated with lower SNO-Hb.

SNO-Hb, transfusion, and outcome
The negative association between intraoperative transfusion
and StO2 suggested a role for SNO-Hb, which we tracked
prospectively. Initiating bypass alone resulted in a rise in
arterial SNO-Hb levels (Figure 2a). Specifically, SNO-Hb

increased by more than 20% (from 1.45 ± 0.95 to 1.74 ±
1.09 moles SNO-Hb per moles Hb x 10−3) after patients
were put on pump, then continued to rise over the ensuing
24 h, peaking at 2.43 ± 1.08 per Hb x 10−3 (before removal of
arterial access). However, this trend showed significant inter-
patient variability. To assess whether the variation in SNO-Hb
was related to transfusion volume we first sought a correla-
tion between SNO-Hb and % eBV replaced, but none was
found (Figure 2b; r = –0.006, P = 0.979). Rather, postop
SNO-Hb concentrations were in fact strongly correlated with
amounts of transfused RBCs retained by the subject asmea-
sured by the increase between pre- and posttransfusion Hb
(�Hb) (Figure 2c; r = –0.573, P = 0.010). Thus, individuals
whose blood was diluted the least by allogenic RBCs had
the highest levels of postoperative SNO-Hb and vice versa. In
addition, there was no correlation between the RACHS score
(Risk Adjustment for Congenital Heart Surgery)33 and transfu-
sion volume, implying that the impact of RBC administration
on outcome was independent of the neonates’ preoperative
condition or surgical complexity.

Next we sought a relationship between SNO-Hb and
patient outcomes. Notably, a positive linear relationship
was found between eGFR and SNO-Hb levels (r = 0.464,
P = 0.039), consistent with the idea that SNO-Hb main-
tains kidney oxygenation and with the finding that transfu-
sion, which lowered SNO-Hb concentration, was associated
with a decline in kidney StO2 (Figure 1a). We compiled a list
of postoperative adverse events that may be linked directly
to disruptions in oxygen delivery (Figure 3a) and found a
strong positive correlation with �Hb (Figure 3c; r = 0.587,
P = 0.008) and a strong inverse correlation with SNO-Hb
(Figure 3D; r = –0.695, P = 0.0007). In contrast, we found
only weak correlations between complication risk and %
of eBV replaced (Figure 3b; r = 0.392, P = 0.08). Further-
more, a logistic regression model (defined in Supplemental
Tables S2 and S3) identified an inverse correlation between
SNO-Hb levels and postoperative complications, including
all-cause morbidity (Table 1). Thus, postoperative SNO-Hb
was a strong prognostic biomarker following intraoperative
transfusion.

DISCUSSION

Donated RBCs undergo progressive time-dependent
changes in RBC integrity and function, including loss of
SNO-Hb, which impairs the ability of RBCs to oxygenate
tissues.8,17 The loss of SNO-Hb begins within hours of
donation,16,23 which is consistent with reports that even
freshly-processed blood may negatively impact tissue
oxygenation34 and patient outcomes.20–22 Deficiency in
SNO-Hb is causally linked to renal injury,17,35 a major
adverse consequence of intraoperative blood transfusion.36

The current findings add to this perspective by suggesting a
mechanistic basis for transfusion-related tissue injury: lower
SNO-Hb levels reduce kidney StO2 and portend adverse
patient outcomes, including reductions in eGFR.

We had anticipated that neonatal bypass would result
in a net decline in SNO-Hb because SNO-depleted RBCs
were used in the priming solution; however, the opposite
was in fact observed. As a group, the subjects exhibited an
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Figure 3 Oxygenation-related complications. (a) Table enumerating the oxygenation-related complications. (b) A scatterplot depicting
the weak correlation between % eBV replaced and probability of complications (n = 20, r = 0.392, P = 0.08). (c) �Hb demonstrates a
positive correlation with probability of complications (n = 20, r = 0.587, P = 0.008). (d) SNO-Hb has a negative correlation with probability
of complications (n = 20, r = –0.695, P = 0.0007).

Table 1 Logistical regression analysis between subject factors

Major morbiditya β SE Wald (χ2) df P eβ (odds ratio)

Postop SNO-Hbb –1.437 0.693 4.293 1 0.03 0.238

Constant 12.297 5.658 4.723 1 0.30

Goodness of fit test R2 χ2 df P

Hosmer and Lemeshow test 8.088 8 0.425

Cox and Snell 0.445

Nagelkerke 0.602
aMajor morbidity was coded as yes or no.
bPostoperative S-nitrosohemoglobin.

early increase in SNO-Hb concentration. We attribute this
rise to initial improvements in blood oxygenation as a result
of going on pump (especially in the cyanotic babies); oxy-
genated Hb favors the production of SNO-Hb.7,12 At the
same time, changes in SNO-Hb concentrations were related
to the amounts of allogenic blood received: receipt and reten-
tion of higher volumes of stored RBCs was associated with
lower SNO-Hb.
The administration and retention of RBCs deficient in SNO-

Hb (% of eBV replaced and �Hb, respectively) provide a
mechanistic explanation for posttransfusion complications.5

This can be understood by appreciating that erythrocytes
pass through the microcirculation in line.37 Banked RBCs,

unable to elicit vasodilation, will get stuck and thus impede
flow to adversely influence oxygen delivery—an interpre-
tation supported also by prior findings that administra-
tion of even small volumes of SNO-Hb-depleted RBCs can
decrease organ blood flow and tissue pO2.16,17 This concept
of microvascular “plugging” is also consistent with empiric
evidence that SNO-deficient RBCs can adhere to endothe-
lial linings to impair oxygenation.38

Subjects with lower SNO-Hb levels had higher postop-
erative Hb (i.e., administration of SNO-depleted Hb diluted
the SNO-replete Hb), and both low SNO-Hb and high Hb
predicted worse outcomes. While it is unclear if individu-
als might have tolerated a more conservative transfusion
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strategy (transfusion triggers in pediatric surgical patients
are ill-defined) there is accumulating evidence that restricting
transfusion might be beneficial in some patients. In a trial of
noncyanotic pediatric bypass subjects, dropping the trans-
fusion threshold to 8.0 g/dl (from 10.8) reduced total hos-
pital length of stay.18 Conceivably, restrictive strategies act
to preserve SNO-Hb levels. To this end, clinical13 and pre-
clinical trials35,39,40 have demonstrated therapeutic benefits
of Hb renitrosylation, which, in the setting of transfusion, act
to enhance oxygen delivery.17 As such, the current findings
support a follow-on clinical trial to determine if perioperative
renitrosylation therapy during neonatal heart surgery could
improve outcomes.
We recognize that the correlative analysis of the prospec-

tively collected data is a potential weakness of this study,
and the multivariable analysis is weakened by the event sam-
ple size. However, the matching findings from both the ret-
rospective chart review (and other bypass studies) and the
preclinical studies8,9 somewhat render moot these concerns.
In addition, we note that the amount of blood transfused
matched well with other pediatric trials,18 StO2 was tracked
in real time (NIRS has been used frequently to noninva-
sively monitor kidney StO2 and predict renal injury in young
cardiac patients),24,25 and our transfusion-related morbidi-
ties matched literature reports in this patient population.3,4,41

Moreover, the identification of SNO-Hb as the determinant
of outcome is consistent with a growing body of litera-
ture connecting deficits in RBC SNO-Hb to pathologies of
oxygenation.42

In summary, we have linked dysregulated SNO home-
ostasis caused by large-volume intraoperative transfusion
to reductions in tissue oxygenation and adverse events. We
have also shown that SNO-Hb levels are inversely correlated
with kidney function and all-cause morbidity, suggesting its
utility as both a prognostic biomarker and target for ther-
apeutic intervention. Together, our findings provide clinical
support for the postulate that defects in the oxygen-delivery
function of stored RBCs, reflected in impairments in SNO-Hb
based vasoregulation, contribute to the deleterious effects of
allogenic blood transfusion.
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