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Abstract
The growing capacity to process and store animal tracks has spurred the development of

new methods to segment animal trajectories into elementary units of movement. Key chal-

lenges for movement trajectory segmentation are to (i) minimize the need of supervision, (ii)

reduce computational costs, (iii) minimize the need of prior assumptions (e.g. simple param-

etrizations), and (iv) capture biologically meaningful semantics, useful across a broad range

of species. We introduce the Expectation-Maximization binary Clustering (EMbC), a general

purpose, unsupervised approach to multivariate data clustering. The EMbC is a variant of

the Expectation-Maximization Clustering (EMC), a clustering algorithm based on the maxi-

mum likelihood estimation of a Gaussian mixture model. This is an iterative algorithm with a

closed form step solution and hence a reasonable computational cost. The method looks

for a good compromise between statistical soundness and ease and generality of use (by

minimizing prior assumptions and favouring the semantic interpretation of the final cluster-

ing). Here we focus on the suitability of the EMbC algorithm for behavioural annotation of

movement data. We show and discuss the EMbC outputs in both simulated trajectories and

empirical movement trajectories including different species and different tracking methodol-

ogies. We use synthetic trajectories to assess the performance of EMbC compared to clas-

sic EMC and Hidden Markov Models. Empirical trajectories allow us to explore the

robustness of the EMbC to data loss and data inaccuracies, and assess the relationship

between EMbC output and expert label assignments. Additionally, we suggest a smoothing

procedure to account for temporal correlations among labels, and a proper visualization of

the output for movement trajectories. Our algorithm is available as an R-package with a set

of complementary functions to ease the analysis.

Introduction
Current movement research is undergoing a revolution. The growing capacity to collect high-
resolution spatio-temporal movement data and radical improvements in data management
and processing are unprecedented in this field and reminiscent of the bioinformatics revolution
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of genomics and proteomics two decades ago [1]. A key challenge now is the analysis of mas-
sive movement datasets with largely different sampling rates and accuracies (e.g. high resolu-
tion GPS, standard GPS, Argos satellite, geolocation). In particular, it is critical to identify, in
an unsupervised manner, movement trajectories’ functional units, known as behavioural
modes [1–3]. The behavioural mode is to the movement trajectory what gene is to the DNA
sequence [4].

Animal movement can be analysed as a set of measurable behavioural responses to a combi-
nation of internal states, environmental factors, and evolutionary/biological constraints. Such
behavioural responses or modes are manifestations of the organism’s decision mechanism,
providing information about the cognitive process driving the movement [5]. Identifying beha-
viourally significant movement modes is crucial to bringing research beyond mere statistical
descriptions of movement patterns and unravelling the underlying biological processes that
determine animals movement and behaviour. Establishing robust connections between pat-
terns and processes is important for the biological interpretation of the data but also for nurtur-
ing models of movement with larger predictive capacity.

Classic approaches to movement trajectory segmentation focus on the trajectory’s structure
by using local measures based on tortuosity [6], first-passage time [7], residence time [8], and
positional entropy [9, 10]. Other relatively simple procedures include the use of cumulative
sums methods [5, 11]. On the other side, more sophisticated procedures involve Bayesian esti-
mates of the space-time probability of being in a given behavioural mode or state [12, 13].
These can include location errors as well as environmental information [14–17]. Recent exam-
ples clearly show the suitability of state-space models for estimation and inference of beha-
vioural modes. Especially promising have been hidden Markov models (HMMs) and some
HMM variants considering autocorrelations among variables or context-dependent transition
probabilities [18–23] as well as some multi-state models (MSM) [24, 25]. State-space
approaches provide mechanistic and statistically sound insights about movement patterns but
rely on strong a priori assumptions about the underlying distributions governing movement
states and state transitions in time, usually requiring species-specific and time-consuming
parameter estimations. Indeed, there are several frameworks for state-space modelling and the
criteria to identify the best framework for a given problem still remain unclear [26]. Beha-
vioural Change Point Analysis [27] or t-Stochastic Neighbouring Embedding (tSNE) [28, 29]
do not require as many prior assumptions as state-space modelling but may also be limited by
the fact that behaviours are described in a continuous parameter space which is not easy to
interpret or discretize into behavioural units or modes. Many of the current behavioural anno-
tation procedures require intense computational resources or heavy data-specific supervision
(e.g. [19, 20, 29]) limiting its use with massive amounts of data or in comparative ecology stud-
ies (i.e. patterns across different populations, species or tracking methodologies).

Among the future challenges for behavioural annotation of movement trajectories is to
devise scalable and minimally supervised methods capable of keeping results understandable
on the basis of a sufficiently generalized and robust statistical methodology. With this aim we
here develop a generalized, computationally efficient method to identify behavioural modes in
movement trajectories. The method is based on a minimally-supervised multi-variate cluster-
ing algorithm that takes into account both the correlations and the uncertainty of the variables
(input features), making sense of multiple time-scale behavioural events. The underlying
assumption is that behavioural modes can be described by a mixture of Gaussian distributions
over a binary partition of the input space. Other assumptions are just aimed at minimizing
biases and sensitivity to initial conditions. The method stands out in accomplishing a good
compromise between the statistical significance and the biological interpretability (semantics)
of the output.

EMbC Algorithm
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In the following we introduce the basic EMC framework and the EMbC variant for beha-
vioural annotation, both its main conceptual features and implementation. Next we compare
the EMbC with the EMC framework and basic HMM (using synthetic datasets) and with
supervised expert labelling (using empirical datasets). The aim of these comparisons is not to
rank the methods but simply to illustrate their relative strengths and weaknesses. Based on our
results, we finally discuss the main features of the EMbC and we clarify when and why the
EMbC might be most useful in the context of behavioural annotation in comparison to similar
approaches.

Models
Gaussian mixture models are not new in animal movement modelling. As an example, the
assumption of Gaussian mixtures is key in composite Brownian models currently very much
used in movement ecology [30, 31]. Also, modelling approaches that assume Gaussian mix-
tures for movement variables such as speed have already proved useful for classifying animal
tracking data into discrete movement modes [32, 33]. The novelty here is to use Gaussian mix-
tures into an EMC framework that is specifically modified to ease the interpretation of the out-
put classification. This in turn should facilitate biologically meaningful annotation of
movement trajectories.

Expectation-Maximization Clustering
The Expectation-Maximization (EM) algorithm [34, 35] is a well sounded, general, and itera-
tive procedure for the maximum likelihood estimate of a parametric distribution underlying
some given data, the latter eventually incomplete or showing missing values. A particular case
of this algorithm is the parameter estimation of a Gaussian Mixture Model (GMM) when the
generating Gaussian of each observation is unknown, commonly known as Expectation-Maxi-
mization Clustering (EMC), a well known methodology for the identification of clusters (i.e.
different classes or patterns) in a multivariate data set.

The EMC formal statement is the following:

• given a dataset X = {x1, . . ., xn}, where each data point xi ¼ ðxð1Þi ; . . . ; xðmÞi Þ; ð1 � i � nÞ, is a
vector of values corresponding tom variables, the EMC fits a kmultivariate-Gaussian Mix-
ture Model defined by the parametric set Θ = {μ1,S1, π1, . . ., μk,Sk, πk}, where μj,Sj, πj,
(1� j� k), are respectively the vector of means, the covariance matrix and the mixing coeffi-
cient of multivariate Gaussian j.

EMC is a two step iterative optimization method to estimateΘ�, alternating between esti-
mates of the probability of a particular observation belonging to each cluster, and estimates
about the parameters Θ that maximize the likelihood of these probabilities. For a GMM, the
maximization equations have a forward analytical solution [36, 37] that greatly simplifies the
optimization procedure. In a few words, the algorithm proceeds as follows:

1. Initialization: take a guess Θg over the set of parameters;

2. Iteration loop: given the current guess Θg,

a. Expectation step: for each data point i and each cluster j, compute the likelihood weight
wij, (a posterior probability), of xi being generated by Gaussian j, given by,

wij � pðyi ¼ j j xi;Y
gÞ ¼ N ðxi j mj;SjÞpjPk

j¼1 pj N ðxi j mj;SjÞ
ð1Þ

EMbC Algorithm
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whereN ðxi j mj;SjÞ is the multivariate Gaussian density function:

N ðxi j mj;SjÞ ¼
1

ð2 pÞm=2jSjj1=2
e�

1
2ðxi�mjÞTS�1

j ðxi�mjÞ

b. Maximization step: compute a new set of parameters Θnew that maximizes the likelihood
[36] of these weights, given by the expressions,

pnew
j ¼ 1

n

Xn

i¼1

wij ð2Þ

mðlÞ;new
j ¼

Pn
i¼1 wij x

ðlÞ
iPn

i¼1 wij

ð3Þ

sðr;sÞ;new
j ¼

Pn
i¼1 wij ðxðrÞi � mðrÞ;new

j Þ ðxðsÞi � mðsÞ;new
j ÞPn

i¼1 wij

ð4Þ

where m
ðlÞ;new
j ; 1 � l � m, are the components of the mean vector mnewj , and

s
ðr;sÞ;new
j ; 1 � r � m; 1 � s � m are the variances and covariances of the covariance

matrix Snewj .

c. Use Θnew as the parametric guess for the next iteration, that is, take Θg � Θnew.

3. Output classification: at the end of the process, each data point is assigned to its most proba-
ble cluster.

This iterative procedure is theoretically guaranteed to increase the likelihood at each step
and, although the algorithm does not promise to reach a global maximum of the likelihood
function, it is indeed guaranteed to converge to a local maximum, dependent on the initial con-
ditions [36, 38, 39]. In practice, it is common to start it from multiple random initial guesses
and select the one with the largest likelihood. Usually, the process is stopped after a prefixed
number of iterations or when the increments of likelihood are less than a prefixed δ.

In a typical EMC implementation, the number of desired output clusters must be specified,

and the algorithm will return that number of clusters. A value sðr;rÞ
min > 0, (1� r�m) must be

specified to limit the minimum variance of each variable. This parameter avoids errors derived
from indefinite covariance matrices along the optimization process. In practical terms, σmin can
be directly related to measurement errors (or maximum resolution) of the variables and will
limit the minimum range of variability (i.e. minimum standard deviation) within the clusters
obtained.

EMbC Algorithm
The generalized EM algorithm is a family of variants of the EM algorithm aimed at overcoming
particular problems (e.g. difficult E-step/M-step computations, slow convergence [38]). The
general behaviour of these variants is not always clear and they may not yield monotonic
increases in the log likelihood over iterations [38]. The Expectation-Maximization binary Clus-
tering (EMbC) algorithm is a variant of the EMC algorithm [34, 35] aimed to address: (i) clus-
tering interpretability and, (ii) the variability in data reliability, two key issues in behavioural
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annotation of movement. The novelty is that the clustering is driven towards a statistically
meaningful classification that should be easier to interpret by experts and that, similarly to
other methods [40, 41] it can take into account uncertainties associated to the data points.

Clustering semantics: the delimiters. In any unsupervised clustering procedure, one
should distinguish cluster identification from cluster semantics, the intuitive interpretation of
the obtained clusters. Classical implementations of the EMC can generate statistically sound
clustering configurations that are difficult to interpret in behavioural terms, that is, at the cost
of clear semantics.

In the EMbC algorithm semantically meaningful clustering is achieved by introducing a set
of parameters, denoted as delimiters. A delimiter is a value that splits the range of a variable
into a binary discretization. The whole set of delimiters defines a partition of the variable space
into regions where each variable takes either low (L) or high (H) values. The binary nature of
this partition is what favours the link between elementary and semantically meaningful label-
ling. As an example, classical behavioural annotation is commonly based on velocity and a
turning behaviour estimate (e.g. turning angle, angular correlation, tortuosity). In this case, a
binary labelling has a direct intuitive interpretation: low velocities and low turns (LL) can be
interpreted as resting, low velocities and high turns (LH) as intensive search, high velocities and
low turns (HL) as travelling or relocation, and high velocities and high turns (HH) as extensive
search. The semantic annotation is however variable-dependent and species-specific.

In a general multivariate case, each delimiter is associated to two adjacent clusters having
the same combination of low and high values for all variables, except for the splitting variable,
which takes low values in one and high values in the other. In other words, we have one delim-
iter for each variable and each combination of highs and lows of the rest of the variables. Form
variables this makes a total ofm2m−1 delimiters. We use a multivariate notation denoting
delimiters by rZ where Z is a lengthm sub-index, based on an ordered sequence of the variables.
Each element of the sub-index is either L orH except for the splitting variable for which we use
a dot, according to the combination of values at both adjacent clusters. As an example, in a
3-variate case, rL.H denotes the delimiter for the second variable, separating the two clusters
LLH and LHH, in which the first and the third variables take low and high values respectively.

Conceptually, the delimiters are related to the frontier of equiprobability between two adja-
cent clusters, and are used to bound the computation of the Gaussian means within the regions
that they delimit. In such a way, the mean of each cluster can not drift away from its associated
binary region. To illustrate this issue, we show a comparison of two bivariate (velocity and
turning angle) clusterings of the same trajectory (Fig 1): one resulting from a classical EMC
implementation (left panel), and the other resulting from the EMbC variant, the dashed lines
depicting the final value of the delimiters computed by the EMbC algorithm (right panel).
Starting with exact initial conditions, these two algorithms yield output clusterings correspond-
ing to different local optima. In the left panel it is difficult to obtain a clear semantics based on
velocity/turn. In the right panel the clustering shows a meaningful partition of the variable
space into LL/LH/HL/HH regions, accounting for a clear cluster semantics.

At each EM iteration the delimiters depict the current state of the binary regions, and the
subset of data points in each region is used to compute the mean of the corresponding Gauss-
ian component. As the Gaussians spread beyond the limits of the binary regions, at any step
(including the final output) data points are assigned to the most probable cluster, regardless of
the values of the delimiters. This is the reason for the few mismatches that can be observed
between the clusters and the binary regions in the right panel. Only in case of equal probabili-
ties, the delimiters constitute a further criterion to assign labels to data-points. Importantly,
there is no guarantee that either of the algorithms (EMC and EMbC) will always be better in
terms of likelihood. Both EMC and EMbC will just reach the best optimum attainable from
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any given starting point. In our example, the local optimum based on EMbC is better (Fig 1
right panel), but this must not be generalized. The concern here is not to reach higher likeli-
hood partitions but rather to reach meaningful partitions even at some cost in likelihood.

Data accuracy and reliability. Movement trajectory data is associated to different sources
of uncertainty: (i) spatial errors due to technical limitations of the systems used (e.g. GPS,
Argos) or interferences in signal transmissions of the geopositioning system; and (ii) temporal
errors due to difficulties in inferring a location at a given time, which generates irregular time
steps. Therefore, estimated variables such as velocity or turn, which depend on the sampling
rate and on the locations themselves (Section A in S1 Text), present different degrees of reli-
ability or accuracy.

Similarly to [40, 41], the reliability of the data is implemented as an additional weighting
coefficient in Eqs (3) and (4), giving less weight to the less accurate values in the estimation of
the Gaussian parameters, and favouring the more accurate ones. These coefficients should be
given by a reliability function that can not be generalized, as it will be variable-specific and
dependent on the source of error considered. For the general case we denote them as,

uðlÞ
i ¼ EðxðlÞi Þ ð5Þ

where EðxðlÞi Þ is a function that returns a normalized reliability coefficient for the data value xðlÞi
based on the source (or multiple sources) of error that might be operating upon the input vari-
able l. In S1 Text Section C we suggest an example of a reliability function that can be used to
take into account the reliability of the values of velocity and turn computed from a real trajec-
tory with heterogeneous time intervals.

Implementation. Implementing the modifications described above to account for cluster-
ing semantics and data reliability imply relevant changes in the maximization step (M-step) of
the algorithm:

Fig 1. Cluster semantics. Comparison of the EMC (left) and EMbC (right) algorithms. Bivariate (velocity/turn) scatter-plots showing the clustering reached
by each algorithm, corresponding to the same trajectory and exact initial conditions. Clusters are shown in different colours. In the right panel, the EMbC
delimiters determining the final L/H binary regions are depicted as dashed lines (r.L, rL.) and dot-dashed lines (r.H, rH.). The centroids of each cluster are
shown as black dots. Left: the EMC yields an output clustering that is difficult to link to a clear semantics. Right: the EMbC is driven by the delimiters, forcing
the centroids to lay within the associated binary regions, yielding a final clustering that can be clearly interpreted in terms of L/H values of the variables
(orange:LL, red:LH, cyan:HL and blue:HH). The matching among binary regions and clusters is not perfect because data-points are assigned to clusters
depending on their weights, not on the delimiter values. In this case, the EMbC performs better (the clustering log likelihoods are -3.3368 for the EMC and
-3.2180 for the EMbC), but this result can not be generalized.

doi:10.1371/journal.pone.0151984.g001
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1. Foremost, the delimiters have to be computed. The values of the delimiters correspond to
the point of minimum difference in likelihood weight in between two adjacent clusters. At
each iteration the delimiters are computed by projecting the data points onto the straight
line connecting the current means of the adjacent clusters. The likelihood weights of the
projected data points are computed for both clusters with the current parameters, and the
delimiter is set to the value of the data point for which the difference in those likelihoods is
minimum (Fig 2).

2. For each cluster j, we must determine the setRj of points lying in the region determined by
the corresponding delimiters. We note that in the general case, the delimiters will not con-
stitute a perfectly definite partition of the variables space, and some points may belong to
different regions at the same time, as shown in Fig 3, contributing to the computation of the
Gaussian means of all related clusters.

Fig 2. Computation of the delimiters. This is a synthetic example with data drawn from a bivariate (X1, X2) GMMwith four components, showing the state
of the clustering at the third iteration. Current delimiters are shown as dashed lines. To depict the idea, we defined a grid G over the range of the scatter-plot
and we computed the likelihood weights wLLðGÞ, wLHðGÞ, wHLðGÞ, wHHðGÞ. We show the contour lines corresponding to the differences in likelihood weight and
the lines connecting the means of the two adjacent clusters: panel a) shows the line (μLL, μLH) and the contour absðwLLðGÞ � wLHðGÞÞ; panel b) shows the line
(μLL, μHL) and the contour absðwLLðGÞ � wHLðGÞÞ; panel c) shows the line (μLH, μHH) and the contour absðwLHðGÞ � wHHðGÞÞ; and panel d) shows the line (μHL,
μHH) and the contour absðwHLðGÞ � wHHðGÞÞ. In each case, we can observe that the delimiter crosses the corresponding line between means at the point with
minimum likelihood difference; panel a) rL. (turn splitting value for low values of speed); panel b) r.L (speed splitting value for low values of turn); panel c) r.H
(speed splitting value for high values of turn); panel d) rH. (turn splitting value for high values of speed).

doi:10.1371/journal.pone.0151984.g002
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3. Finally, we recompute the Gaussian parameters, bounding Eq (3) to the setsRj and includ-
ing the reliability function in Eqs (3) and (4), that is,

mðlÞ;new
j ¼

P
i2Rj

uðlÞ
i wij x

ðlÞ
iP

i2Rj
uðlÞ
i wij

ð6Þ

sðr;sÞ;new
j ¼

Pn
i¼1 u

ðr;sÞ
i wij ðxðrÞi � mðrÞ;new

j Þ ðxðsÞi � mðsÞ;new
j ÞPn

i¼1 u
ðr;sÞ
i wij

ð7Þ

where u
ðr;sÞ
i weights the combined effect of uncertainty on variables r and s, and is com-

puted as the normalized length,

uðr;sÞ
i ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuðrÞ

i Þ2 þ ðuðsÞ
i Þ2

q

The delimiters become the essential part of the parametric set Θ, and therefore, the model is
no longer a standard GMM but a constrained variant. The optimization through the likelihood
space is driven by the new conditions imposed, which force each Gaussian to have its mean
inside meaningful regions, restricting the potential positions of the cluster centroids and the
type of clusterings allowed.

A major consequence is that Eqs (6) and (7) do not correspond to maximization expres-
sions. This change however, does not jeopardize the convergence of the EMbC algorithm. The
effect of our modifications in the EMC algorithm is an increasing likelihood optimization pro-
cess, interspersed with likelihood drops at sporadic iterations. Every drop in likelihood can be
considered a restart in the likelihood landscape from a new (but not so blind) guess, with the
likelihood being lower compared to the previous step but higher compared to the likelihood
value from which we started. A steady likelihood decrease at some stage of the optimization
process is an indication of some discrepancy between the binary and the optimal likelihood

Fig 3. Definition of the binary regions. At each iteration step, the most common situation is that the delimiters do not determine a perfect partition of the
variable space. We show two typical cases for the bivariate (X1, X2) case with delimiters overlapping (left panel) and non-overlapping (right panel). Delimiters
are shown as dashed lines (r.L, rL.) and as dot-dashed lines (r.H, rH.). Left: the data points in the middle red area may belong either toRLL orRHH, hence they
are considered in the computation of both μLL and μHH. Right: with non-overlapping delimiters, we can still figure out an overlapping area between regions
RLH andRHL by extending the delimiters (middle red area), hence data points in this area are considered in the computation of both μLH and μHL.

doi:10.1371/journal.pone.0151984.g003
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partitions, and that the input data might not be suited for a binary partition. In such cases, the
algorithm may get stuck in a cycle balancing between both possible solutions. This situation
(more likely to occur on the last iterations) is automatically detected and the algorithm stops
returning a corresponding warning message. The likelihood dynamics are further discussed
and illustrated with some examples in S1 Text Section E.

Unlike the EMC algorithm, the number of output clusters is given here by the number of vari-
ables used, k = 2m. However, during the process of likelihood optimization, some clusters can
vanish while being absorbed by adjacent clusters. Thus, k = 2m is only an upper bound to the
final number of clusters. This limitation in the number of clusters is not a drawback but rather a
consistency with our main motivation of favouring the semantic interpretation of the final clus-
tering. Although there is no restriction on the number of variables (we are not considering
computational limitations) the EMbC is intended to be used with not more than 5 or 6 variables,
yielding a maximum of 32 or 64 clusters, what is usually far beyond the number of potential
behaviours of interest in any biological application, and far beyond the number of behaviours
that an expert might easily handle. The key point here is to determine a few variables conveying
the right information to decode the set of behaviours of interest. In case of using feature selection
or dimensionality reduction methodologies (e.g. principal component analysis) it is important
that the selected input features can be well understood in order not to compromise the interpret-
ability of the output clustering, which is the ultimate purpose of the EMbC algorithm. Input fea-
tures should be selected based on their physical or biological meaning.

The parameter σmin is variable-specific and determines the minimal resolution of the clus-
ters. It can be set by default to orders of magnitude lower than the expected variances (e.g σmin

= 2.22e − 16 or whatever it is the double-precision of the computer) for each of the variables or
else be used to limit the minimum range of variability (i.e. minimum standard deviation)
within the clusters. Rather than a subjective question, this is usually related to the physical con-
cept expressed or measured by the variable under consideration. For instance, regarding to
movement variables like velocity and turn, σmin can be directly related to physical/biological
constraints as well as to measurement errors (or maximum resolution) of geolocation devices.
Thus, values of σmin in the order of 0.01 m/s for velocity and 0.087 rad (5 degrees) for turns,
would work for a wide range of species. For this reason, σmin should be regarded as a variable-
specific factor that sets the analysis resolution rather than a user free parameter.

Also key in the algorithm implementation is to minimize prior assumptions, biases and sen-
sitivity to initial conditions. With this aim, the EMbC starting point is automatically set as the
most uninformative condition, that is: (i) each data point is assigned a uniform probability of
belonging to each cluster, (ii) the prior marginal distribution of the clusters is also uniform
(each cluster starts with the same number of data points), (iii) the starting partition, i.e. the ini-
tial delimiters position, is selected based on a global maximum entropy criterion, thus convey-
ing the minimum information possible. The latter condition is computed by sequentially
selecting the variable such that its median value splits the related set of data into high and low
subsets with maximum entropy. This is a simple algorithm for the 2D case but slightly more
complex for the general case of d dimensions.

Analysis
We use simulated and empirical trajectories to asses the EMbC algorithm and illustrate its
main features. Our examples are mostly based on local measures of velocity and turn but we
also show an example with other movement variables (Sections A and B in S1 Text).

Synthetically generated and annotated movement trajectories allow us to measure the per-
formance of the algorithm and compare it with closely related methods such as EMC [34, 35]
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and HMM, commonly used for modelling of animal movement data [19, 21, 42]. We use the
implementations of EMC and HMM included in the R-packages EMCluster [43, 44] and Dep-
mixS4 [45], respectively.

Synthetic trajectories are generated by assuming four clusters (behavioural modes) with dif-
ferent degrees of mixture or overlap, γ = {0.01, 0.05, 0.1}, where the lower the value of γ the
more blurred are the clusters. The trajectories are of different lengths n =
{50, 100, 200, 400, 800, 1600} and the sequence of behavioural modes or states is constructed
either by sampling states from a 4 × 4 transition matrix (Markov-chain sampling) or else by
sampling states using the parameters of the prior distributions πj, 1� j� 4 (prior-mixture
sampling), (see Section F in S1 Text for more details).

Our empirical tracks (see Table 1) cover different ecological contexts and a variety of track-
ing technologies including high-resolution GPS (shearwater), standard GPS (bat), Argos
(osprey) and video recorded (nematode) datasets. The data sets are further described in S2
Text and are included in S1 Data.

EMbC outputs are shown in different ways (i.e. scatter-plots, labelling profiles) including a
bursted visualization of annotated trajectories based on the conversion into segments of all
consecutive locations sharing the same label (S1 Text Section D). In the case of supervised data-
sets (i.e. synthetic datasets and also the bat dataset, which included an expert annotation), we
use confusion matrices to yield a numerical assessment of the performance of the algorithm
with respect to the supervised labelling. Commonly used performance measures based on the
confusion matrix are recall, precision and F-measure (S1 Text Section G). Beyond a pure
numerical assessment of performance, a confusion matrix offers a clear depiction of how
EMbC annotation is redistributed into expert label assignments, reflecting any departure of the
information conveyed by the input features from the information used by experts (e.g. velocity
and turn versus visual information). Thus, from the analysis of the confusion matrix one can
gain much knowledge about the suitability of the selected features and on the behaviour of the
algorithm itself.

Other aspects analysed are: (i) the coarse-graining of EMbC behavioural annotation, and
(ii) the robustness of the EMbC with respect to potential sources of error like data loss and data
inaccuracy.

The results that we show are mostly direct outputs of the EMbC R-package. In the S2 Text
file we spell out the code used to generate them and we work through them further to give a
brief overview of the use of the package. The empirical data sets used in the examples are
included in S1 Data.

Table 1. Empirical datasets.

Common name Scientific name Type Tracks Fixes t̂ secs. Context

Osprey Pandion haliateus Argos 1 594 3600 migration

Straw-coloured fruit bat Eidolon helvum GPS 1 434 299 roosting/foraging

Cory’s shearwater Calonectris diomedea HR-GPS 1 2543 155 foraging

Nematode Caenorhabditis elegans HR-video 6 10203 3 search

Empirical datasets. Fixes indicate the total number of locations (data points) in each data set. t̂ refers to the mean time interval (in seconds) between

fixes.

doi:10.1371/journal.pone.0151984.t001
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Smoothing of annotated trajectories
The EMbC algorithm generates local behavioural annotations without considering their tem-
poral context. Based on EMbC, labels are given for each observed location and reveal any small
change in behaviour irrespective of how this change is framed in a broader temporal context (e.
g. a long-term predominant behavioural mode). If coarse-grained patterns are desired, the
EMbC provides two means for smoothing the output:

1. Pre-processing of the trajectory using running windows to compute averaged local mea-
sures, with the length of the running window representing a behavioural scale of interest.

2. Post-processing of the output based on the temporal behavioural correlations, a feature
explicitly implemented in state-space segmentation algorithms [12, 13, 19, 20].

In the latter case, the EMbC smoothing function makes use of the likelihood weights wij of
location i belonging to cluster j, information provided by the EMbC algorithm. In its most
basic implementation, the function looks for singles, that is, locations with labels that differ
from equally labelled neighbouring locations, and checks the condition (wic − win)� δw, where
i is the single location index, wic and win are the likelihood weights with respect to its current
and its neighbouring assignments (clusters c and n, respectively), and δw is a threshold parame-
ter expressing the user’s will to accept the change. The subjectiveness of this parameter is our
reason for keeping this smoothing function apart from the overall clustering procedure.

Robustness to data loss and data inaccuracy
We studied the robustness of EMbC annotation to data loss by removing data points from the
set of velocity/turn pairs (Fig 4a). Note that we cannot study data loss by eliminating locations
from the trajectory because this would simply change the values of velocity and turn (which
depend on actual sampling intervals), leading to a totally new dataset. In the sub-sampling pro-
cess it is important to preserve the underlying behavioural distribution. Thus, sub-sampled
datasets were generated by assigning a uniform random value 0� pi � 1 to each data point
and removing all those points with pi < kdl, with 0< kdl � 1 being kdl the data loss factor. For

Fig 4. Procedures for robustness tests. Procedures used in the robustness tests. a) Data-loss: sub-sampled datasets are generated by assigning a
uniform random value 0� pi � 1 to each data-point and removing all those points with pi < kdl, with 0� kdl� 1 being the data loss factor, (in this example kdl =
0.2, removed points are marked as black dots). b) Data-inaccuracy: jittered datasets are generated by jittering the data-points using a noise function based
on the associated uncertainties Eqs (8) and (9); we show some example data points connected with several jittered versions of themselves with kdi = 0.05,
using different colours to identify the correspondences, and also to relate each one with its associated reliability ui indicated in the legend; note that the more
unreliable is a data point the more different could have been its observed value.

doi:10.1371/journal.pone.0151984.g004
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each empirical trajectory, we generated datasets with different values of kdl. After running the
EMbC on the subsampled datasets we compared the output labels with the corresponding
labels in the original (full) dataset, the latter considered the ground truth for comparative
purposes.

We also explored the effect of including the reliability of the data Eq (5) in Eqs (6) and (7).
In particular, we considered the effect of sampling rate heterogeneity (i.e. the larger the time
gap between two successive locations, the larger the probability of inaccurate velocity and turn
estimates), and to what extent our approach decreased the sensitivity of the final clustering to
this source of inaccuracy (see Eq 10 in S1 Text Section C as an instance of Eq (5) devised for
this particular case). We did so by jittering the data points in the scatter plot (Fig 4b) using a
noise function based on a uniform distribution over an area around the data point proportional
to the associated time gap,

maxðminðXÞ; xi � ΔiÞ < x̂ i < minðmaxðXÞ; xi þ ΔiÞ ; ð8Þ
where X is the (multivariate) dataset, xi and x̂ i (vectors) are the original and jittered data
points, and Δi (vector) is computed as,

Δi ¼ kdi maxðXÞ ðti � ~tÞ=~t ; ð9Þ
where 0< kdi � 1 is a data inaccuracy factor determining a jittering range kdi max(X). Thus,
Δi is a fraction of the jittering range proportional to the relative length of the time interval τi =
ti + 1 − ti with respect to the most frequent time interval ~t (the mode of the τ distribution). For
each empirical trajectory, and for different kdi values, we compared the labellings obtained in
jittered datasets with the corresponding non-jittered labellings, with and without implementing
a reliability function in Eqs (6) and (7). This is only a particular example focused on inaccura-
cies derived from sampling heterogeneity but the same could apply to other sources of uncer-
tainty, such as geopositioning errors. The effects would be similar, since the higher the
uncertainty of the values, the less their influence in determining the final clustering.

Results
We used synthetic trajectories and empirical datasets to evaluate the performance and illustrate
the outputs of the EMbC algorithm. The sequences of movement states generated in the syn-
thetic trajectories come from two sampling schemes: Markov-chain and mixture-prior. The
empirical datasets covered different tracking technologies (e.g. GPS, Argos) and a wide range
of sampling heterogeneity.

Simulated trajectories
The EMbC algorithm recovered the modelled clusters but with some expected sensitivity to
both the level of mixture of the clusters γ, and the size of the data set n. In general (Fig 5), the
performance was above 90% for n� 200 decreasing around 80% for the shortest trajectories, i.
e. n� 100.

With synthetic trajectories derived from the Markov-chain sampling scheme, where the
sequence of states comes from a transition probability matrix, (Fig 5 upper panels), the three
algorithms (EMC, EMbC and HMM) showed a similar behaviour. For γ = {0.01, 0.05} (well-
mixed clusters) the performance of the EMbC was in between the one of the HMM (the best)
and the EMC. However, for γ = 0.1 (well-defined clusters) and n� 200 the EMbC outper-
formed the HMM. Compared to EMC and EMbC, HMMworks best when the binary parti-
tions are blurred but the temporal sequence of states is well-defined, according to a transition
matrix, and it can adequately exploit this information to improve state assignment.
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With synthetic trajectories derived from the mixture-prior sampling scheme, where the
sequence of states comes from the set of prior cluster distributions (Fig 5 lower panels), the
EMbC and the EMC presented similar results. Expectation-Maximization clustering proce-
dures do not take into account the temporal correlation of states but take the best out of the
synthetically generated binary partitions, even if the clusters are well-mixed or blurred. The
EMbC performed slightly better than EMC for low values of γ and n. In contrast, the perfor-
mance of the HMMwas clearly much lower, both compared to EMC and EMbC, and also com-
pared to the results obtained when HMMs are applied to trajectories based on Markov-chain
sampling schemes.

The larger the size of the data set, the more evidence about the partition of the input space,
and the better the performance of the three algorithms for both sets of trajectories (Markov-
chain and mixture-prior sampling schemes). Tables B and C in S1 Text reinforce the idea that
EMbC performs better when the information is compromised, either because the clusters are
not well-defined (small γs) or because the amount of information is small (low ns). In addition,
the EMbC leads straightforwardly to the binary partition and keeps a high stability in the
results with the lowest values of root mean square error (RMSE), (see Tables B and C in S1
Text). In contrast, the EMC and the HMM algorithms must be fed with a starting seed and can
be extremely sensitive to it, specially when data sets are sparse. A negative effect of this

Fig 5. Performance comparison among EMbC, EMC, and HMM. Average performance of EMbC, EMC and HMM on 100 synthetic trajectories drawn from
a GMM (4 components) using a Markov-chain-based sampling scheme (top panel) and a prior-based sampling scheme (bottom panel), for different trajectory
sizes (n = {50,100,200,400,800,1600}) and definition of the binary regions (γ = {0.01,0.05,0.10}). Values of performance are given in terms of F-measure.

doi:10.1371/journal.pone.0151984.g005
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sensitivity is that some seeds can lead to a final clustering that does not correspond to a binary
partition despite of the underlying binary clustered distribution forced in the input data. In
other cases, the EMC and HMM algorithms (as implemented in the packages we used) were
not able to reach a stable solution because they incurred in decreasing likelihoods and they
stopped.

As an example, Fig 6 shows the EMbC output for a Markov-chain sampled trajectory
(n = 400, γ = 0.05), where the clusters were perfectly recovered.

Fig 6. Synthetic trajectory. Simulated trajectory withN = 400 and γ = 0.05. Panels: (a) trajectory grid plot,
(b) temporal behaviour profile with output labelling (top), reference labelling (centre) and labelling differences
between them (bottom), (c) reference velocity/turn scatter plot showing the limits of the binary regions (grey
lines), (d) output velocity/turn scatter-plot showing the resulting delimiters r.L, rL. (dashed lines) and r.H, rH.
(dot-dashed lines), (e) velocity, and (f) turning angle frequency distributions (white colour). The turn
distribution for low/high values of velocity is shown separately in light/dark grey colours, respectively. Bottom:
Confusion matrix and performance measures.

doi:10.1371/journal.pone.0151984.g006
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Empirical trajectories
The Cory’s shearwater (Calonectris diomedea, Fig 7) and the Osprey (Pandion haliateus, Fig 8)
datasets show a clustering layout with similar velocity/turn partition and similar semantic
labelling, regardless of the ecological context (i.e. migration, foraging) or the sampling resolu-
tion (i.e. Argos, high-resolution-GPS), although with different proportions in the LL (resting)
and HL (relocation) modes according to the ecological context (i.e. LL = 37%, HL = 13% for
the Cory’s shearwater versus LL = 18%, HL = 30% for the Osprey, see further details in S2
Text). In both, the velocity distribution (Figs 7, 8 panel c) shows bi-modality to some extent

Fig 7. Cory’s shearwater (Calonectris diomedea) foraging trajectory.Upper panel: Burst-wise labelled
foraging trajectory. Symbolization by label (LL:orange, LH:red, HL:cyan, HH:blue) and time spent (symbol
size: 2 natural jenks). Scale bar is only approximate. Due to copyright restrictions the figure is for
representative purposes only. Source: Made with Natural Earth; Free vector and raster map data@
naturalearthdata.com. Bottom panels: (a) velocity/turn scatter plot (clustering colour code: LL:orange, LH:red,
HL:cyan, HH:blue), (b) temporal behavioural profile (from location 700 to 1000) (c) velocity (m/s) and (d)
turning angle (rad) frequency distributions (white colour). The turn distribution for low/high values of velocity is
shown separately in light/dark grey colours, respectively. The black lines in panels a, c and d depict the
delimiters r.L, rL. (dashed lines) and r.H, rH. (dot-dashed lines).

doi:10.1371/journal.pone.0151984.g007
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(although hardly apparent in Fig 8 because of the relative high frequency of low values), thus
being the binary partition assumption particularly suitable. Within these standard layouts, the
HH (dark blue) labelling is usually subject to more subtle semantic interpretation. In Fig 7a,
the distribution of HH in the scatter plot suggests the existence of two possible sub-modes, one
more closely related to foraging (low velocity and wide turn range) and the other more closely
related to relocation (high velocity and low turns). A partition with only three clusters (LL,LH,
and HL), with the HH cluster absorbed partly by the LH and partly by the HL clusters, would
probably represent a better behavioural classification. However, the likelihood pay-off of this
solution prevents the algorithm to reach it. Conversely, Fig 8a shows an homogeneous HH

Fig 8. Osprey (Pandion haliateus) migratory trajectory. Upper panel: Burst-wise labelled migration
trajectory. Symbolization by label (LL:orange, LH:red, HL:cyan, HH:blue) and time spent (symbol size: 2
natural jenks). Scale bar is only approximate. Due to copyright restrictions the figure is for representative
purposes only. Source: Made with Natural Earth; Free vector and raster map data@ naturalearthdata.com.
Bottom Panels: (a) velocity/turn scatter plot (clustering colour code: LL:orange, LH:red, HL:cyan, HH:blue),
(b) temporal behavioural profile (from location 400 to 593) (c) velocity (m/s) and (d) turning angle (rad)
frequency distributions (white colour). The turn distribution for low/high values of velocity is shown separately
in light/dark grey colours, respectively. The black lines in panels a, c and d depict the delimiters r.L, rL.
(dashed lines) and r.H, rH. (dot-dashed lines).

doi:10.1371/journal.pone.0151984.g008
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cluster. A visual check of these data points on the landscape map reveals that they correspond
to long relocations within stopover areas, thus justifying their assignment to a different
behaviour.

The Straw-coloured fruit bat roosts in the colony during the day and moves for foraging in a
very directed manner to individual fruiting trees during the night (Fig 9). The GPS was turned
off during the day and fixes occurred when the animal moved during the night. In this example
we used the post-processing smoothing procedure. The behavioural labelling profile (Fig 9,
central panel) shows a quite regular behavioural pattern. It is worth noting that after the

Fig 9. Bat (Eidolon helvum) foraging trajectory. Upper: Point-wise labelled foraging trajectory.
Symbolization by label (LL:orange, LH:red, HL:cyan, HH:blue) and time spent (symbol size: 2 natural jenks).
Scale bar is only approximate. Due to copyright restrictions the figure is for representative purposes only.
Source: Made with Natural Earth; Free vector and raster map data@ naturalearthdata.com. Centre:
smoothed temporal behavioural profile with daytime/night-time (light/dark grey) background indication.
Bottom: Confusion pie showing expert vs. EMbC labelling. Column titlesmrg., rcl., prc. and Fms stand for
marginals, recall, precision and F-measure respectively.

doi:10.1371/journal.pone.0151984.g009
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smoothing procedure, some LL labels still remain suggesting the existence of a real but short
transient state (LL) occurring between HL and LH state. A few more LL labels appear also in
between relocation periods (as shown in Fig 9 upper panel inset). These locations seem to cor-
respond to specific landmarks in the daily relocations of the animal and might have some bio-
logical relevance. Indeed, it is characteristic of the EMbC algorithm to capture behaviours
showing strong correlations among movement variables despite being short in time and hap-
pening only intermittently. The decision on whether to consider or else to smooth out these
type of behaviours relies on the expert decision.

For this trajectory we compared our results with an expert’s labelling identifying beha-
vioural modes (i.e. roosting, forage, commuting) stemming from GPS and acceleration data.
From the visualization of the annotated trajectory (Fig 9, top panel) we can easily assimilate the
foragemode with the LH cluster and the commutingmode with the HL cluster and we can
therefore build the confusion matrix shown in Fig 9 bottom table. The expert classification
embeds reasonably well into the EMbC classification. However, it is clear that roosting behav-
iour is not well defined in terms of velocity and turn.

As an example of a trivariate clustering with different input features, Fig 10 shows a subset
of results obtained when applying the EMbC algorithm at the population-level on solitary nem-
atode crawling in an agar plate. Tracks are highly resolved (32Hz) and last for about 90 min-
utes. We computed three movement variables combining information about the shape of the
trajectory and the speed of the individual (i.e. average straightness, average velocity, and net
displacement) over 5 minute windows (Section B in S1 Text). With 3 variables, the number of
potential clusters is 23 = 8. Because the number of clusters is limited, the larger the pool of indi-
vidual trajectories, the more the clustering will tend to favour generic behaviours to the detri-
ment of individual specific behaviours. In addition, only a subset of the population-level
clusters are recovered in each individual, unveiling the presence of individual-level behavioural
variability (Fig 10). Accordingly to our input features, the semantic labelling of the output clus-
ters must be considered in terms of looping behaviour or intensity of local search and the will
of the individual to move to a different location. The statistics of the clustering (Table A in S1
Text Section B) reveal that on average, the C.elegans parsimoniously deploys all of its motor
repertoire resulting in a gradual increase of the straightness, the mean velocity and the net dis-
placement of its movement. The result is a complex movement behaviour evolving through
phases of decreasing degrees of local search, going from a strong intensive search phase to a
more straight-lined motion, resembling relocation behaviour (Fig 10).

Robustness to data loss and data inaccuracy
We assessed the robustness to data loss of the EMbC algorithm. In general, the larger the data-
set, the more robust is the EMbC labelling to data loss (Fig 11a). However, the absence or pres-
ence of strong heterogeneities in the marginal distribution of clusters also plays a role. For
example, although the Osprey and the Straw-coloured fruit bat datasets are both small (n = 594
and n = 434, respectively) the former is more robust to data loss. Interestingly, Osprey data
shows more uniform posterior marginal distribution of clusters (LL = 17.51%, LH = 35.02%,
HL = 29.97%, HH = 17.34%) than the bat data (LL = 10.60%, LH = 43.09%,HL = 46.08%,
HH = 0.00%). As it is a nocturnal bat, the daily resting in the roost was intentionally skipped by
a pre-fixed sampling scheme, and therefore, the LL cluster commonly associated to resting
behaviour is misrepresented (LL = 10.60%). Accordingly, neither the position of the LL cluster
nor its mean velocity of 2.26 m/s (see the scatter plot and statistics in S2 Text) suggest such
type of semantics. In general, pre-assigned GPS fixes scheduling will bias the sampling
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distribution of behaviours, thus conditioning both the labelling outcome and the robustness of
the results to data loss.

Fig 11b shows the robustness of the EMbC algorithm to data inaccuracy when weighting or
not the contribution to the clustering of each data point on the basis of a reliability function Eq
(5). In high resolution GPS datasets (e.g. Cory’s shearwater), the algorithm shows a strong
robustness because inaccuracies due to sampling heterogeneity are expected to be low, so that
the effect of accounting for data reliability is almost non-significant. However, accounting for
data reliability in datasets with large sampling heterogeneities (i.e. ARGOS Osprey dataset) or

Fig 10. C.elegans (Caenorhabditis elegans) search trajectory. Trivariate clustering of 6 solitary nematode
trajectories crawling in an agar plate (with a sampling frequency of 32 Hz and 90 minutes of trajectory time).
The clustering is performed at population level (all data points at the same time) and is afterwards visualized
on each individual trajectory. The algorithm captures different behaviours in terms of intensity of local search,
looping behaviour and relocation.

doi:10.1371/journal.pone.0151984.g010
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prefixed sampling schedules (e.g. GPS Straw-coloured fruit bat dataset) favours the robustness
of the labelling to data inaccuracy.

Discussion
Splitting a trajectory into its most basic components is essential for studying and understand-
ing mechanisms of movement [1, 46, 47]. Currently, trajectory segmentation algorithms con-
stitute an essential component of ecological spatio-temporal analyses that seek to
mechanistically understand organisms’ interactions with the environment.

Current behavioural annotation methods show gradients of complexity, supervision
requirements, and sensitivity to initial conditions, as well as to sampling rate and data accuracy
[18–24, 48]. A possible classification of methods could result from the kind of underlying
assumptions: (i) assumptions about the input feature distributions (EMC family), (ii) assump-
tions about time-dependency and context-dependency among behavioural states (HMM fam-
ily) [18, 21, 22], and (iii) assumptions about the autocorrelation structure of the movement
variable [23, 48]. We completely subscribe to the idea that for each particular problem there
will be an optimal approach to follow, or in other words, there is not an overall best methodol-
ogy. From this point of view, the EMbC do have its own room within the unsupervised cluster-
ing domain, and the researcher’s self criteria must be the only valid judgment upon its
suitability for the problem at hand. Making a thorough comparison across different methodol-
ogies would not be consequent with the former idea and can easily lead to wrong or interested
conclusions. Such comparative analysis makes no sense unless accompanied by an extensive
discussion with respect to prior assumptions, final objectives, parameterizations used and also
about how the results obtained through the different methodologies have been matched, what
constitutes a daunting task out of the scope of this paper. In this context, we are essentially con-
cerned about utility and simplicity of the models in the line of reasoning that all models are
wrong, but some are useful [49, 50]. In our case, the idea of usefulness stems from the fact that
the most elementary partition of the input space (i.e. a binary partition into High/Low values
of the variables) can be very informative, in many circumstances sufficient, to characterize
behavioural patterns. The EMbC algorithm finds a solution for this binary partition based on a
likelihood criterion under the assumption of a multivariate Gaussian mixture space. Such a key

Fig 11. Data loss and data accuracy. EMbC robustness results for a data loss range of 0� kdl� 0.8 and for a jittering range of 0� kdi � 0.1, see Eq (9). For
each trajectory the values shown correspond to the average F-measure after 10 different runs.

doi:10.1371/journal.pone.0151984.g011
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and simple concept helps reaching a compromise between interpretable behavioural annota-
tion and adequate statistical performance.

In terms of implementation, the EMbC algorithm implies iteratively computing the cen-
troids of the clusters within regions determined by explicit delimiters Eq (6) in order to provide
easy and interpretable semantics (i.e. LL, HL, LH, HH). Nonetheless, at each iteration, we keep
the computation of cluster covariances unbounded to incorporate information about the corre-
lation landscape provided by the whole variable space Eq (7). The choice of a binary partition
of variables into H/L clusters, restricts the maximal number of clusters to 2m, wherem is the
number of input variables used. This restriction over the number of clusters indeed avoids
aprioristic decisions on the number of clusters in the n-dimensional space, and facilitates their
interpretation.

The initial assumptions implemented in the EMbC algorithm aim at minimizing biases and
sensitivity to initial conditions: (i) each data point is assigned a uniform probability of belong-
ing to each cluster, (ii) the prior mixture distribution is uniform (each cluster starts with the
same number of data points), (iii) the starting partition, (i.e. the starting delimiters position), is
selected based on a global maximum entropy criterion, thus conveying the minimum informa-
tion possible. A single parameter σmin controls the minimal resolution at which clusters will be
accepted. In practical terms, σmin can be directly related to measurement errors (or maximum
resolution) of the variables and will limit the minimum range of variability (i.e. minimum stan-
dard deviation) within the clusters obtained. Based on intuitive physical and biological consid-
erations, we set σmin = 0.01 m/s and σmin = 0.087 rad (5 degrees), respectively for velocity and
turn.

The algorithm deals very intuitively with data reliability: the larger the uncertainty associ-
ated with the values, the smaller the leverage of those values in the clustering. We considered
two elementary sources of uncertainty: sampling heterogeneity (for those variables whose reli-
ability depends on the sampling interval), and the measurement error of the devices. In the
present work we computed velocity and turn based on the sampling intervals. Although it is
worth incorporating the measurement error of the devices, here, for the sake of simplicity we
considered that the major source of error comes from sampling interval lengths. However, the
algorithm is multivariate and can deal with any type of movement/behavioural variables and
error sources. For example, one could also use instantaneous speed [51] or tri-axial accelerom-
eter data [52, 53] and take into consideration the errors associated to them.

Without intending to be exhaustive, we have presented a comparison of the EMbC with
similar state-of-the-art algorithms like the EMC and basic HMMs, in terms of their perfor-
mance in clustering synthetically generated datasets based on GMMs. Being simpler, the
EMbC yields a similar degree of performance without the need of multiple restarts or initial
parametrization. Of note, HMMs are more complex in that behavioural states are defined
based on both the states’ definitions (the distribution of input features) and the transitions
among them (the Markov-chains). Compared to HMM and EMC, we have shown that the
EMbC proves particularly useful as long as: (i) we can expect bi-modality, to some extent, in
the distribution of the input features, (ii) we can expect that forcing a binary partition of the
input space can provide useful information, and (iii) we cannot guarantee that the temporal
state dynamics can be associated to a Markov-chain process. A basic HMM is equivalent to
assuming that, for an individual in a particular state, the probability of changing to a different
state remains constant as it keeps moving. In terms of movement data this is almost equivalent
to assuming a memoryless individual with stationary internal states. Additionally, in move-
ment trajectories the first-order dependence condition of a Markov-chain is easily violated
because of the heterogeneity in empirical time series due to large gaps, or prefixed sampling
scheduling. To overcome this problem, either we use more complex HMM approaches taking
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into account sampling heterogeneities [21] and/or introducing explicit time or spatial depen-
dencies among states [18, 23], or else, we disregard any assumption about state dependence on
time (EMbC). The main message, however, is that regardless of their complexity, HMM
approaches are always forced to make estimates on state transitions. When the assumptions
related to these transitions are not fulfilled this may impair substantially their ability to cor-
rectly identify the states. This is the reason for the low performance of HMMs in fitting trajec-
tory states generated from a mixture-prior sampling scheme rather than from well-defined
transition matrices (see Fig 5).

The results obtained for different empirical datasets suggest that the EMbC algorithm
behaves reasonably well for a wide range of tracking technologies, species, and ecological con-
texts (e.g. migration, foraging). Different layouts in the scatter plots may emerge depending on
the probability distribution of the input data, the underlying mixture prior distribution and the
specific set of behaviours performed by the animals along the trajectories. We also show the
possibility of running the algorithm at the population level (by applying the algorithm on a
pooled set of trajectories from a given population) to define average modes, that can be visual-
ized in single trajectories.

Importantly, the degree of match between the EMbC output and a particular set of behav-
iours will be highly dependent on the amount of information conveyed by the input variables
regarding these behaviours, but not so much on their relative proportions/durations. Indeed, it
is worth mentioning that the EMbC is good at identifying behaviours that are hardly repre-
sented in the dataset. Here we focus on velocity/turn as key movement variables for trajectory
behavioural annotation e.g. [11, 27] but it is certainly possible to choose other behavioural or
physiological data (e.g. accelerometry, stereotyped turns, body postures, metabolic rates) that
correlates adequately with the behavioural classification the analyst is looking for. Even though
the determination of the final semantics is variable-dependent and species-specific, the method
is general and robust enough to to be used across species and tracking methodologies.

Improvements on the current EMbC implementation could come from exploring other reli-
ability functions and their relative contribution to the final clustering. Also, one of the draw-
backs of not explicitly considering the temporal correlations in the segmentation procedure (as
in HMM) is that, at coarse-scales, behavioural labels may not appear as continuous as desired,
and some local labels may be considered neglectable or meaningless by the expert. We suggest
considering the EMbC algorithm as a fine-scale behavioural segmentation method, with
optional pre/post smoothing alternatives, the latter explicitly taking into account the weights of
the labels relative to each cluster and their temporal dependencies in order to generate an
aggregated coarse-grained behavioural annotation of the trajectory. We also suggest the possi-
bility of running the algorithm at the population level (by applying the algorithm on a pooled
set of trajectories from a given population). This approach smooths potential individual vari-
ability, which might be of non-interest for certain analyses. Certainly, all these alternatives (i.e.
coarse-graining, population-level analysis) may have implications in the estimations of the
number and durations of the behavioural states. But this kind of problem is intrinsic to any seg-
mentation method and only the expert’s criteria and the specific goals of the study can help to
justify the choices taken. All in all, behaviour should be interpreted in relative and not absolute
terms as it is a multidimensional and multi-scale phenomena, and the description of behaviour
will inevitably be biased by the scientific goals, the observational constraints, and the methodo-
logical choices.

To ease the complex analysis of movement behaviour and segmentation to interested users
we released a ready-to-use tool (the EMbC R-package) including not only the EMbC algorithm
itself but also a set of side functions for straightforward analysis (clustering statistics, clustering
scatter-plot, temporal behavioural profile, smoothing function) and visualization (burst and
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point-wise kml doc generation) of its output. The package is compatible with the Move R-pack-
age developed by the Movebank team [54].

Supporting Information
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