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Pharmacological treatment facilitating locomotor expression will also have some effects
on reflex expression through the modulation of spinal circuitry. Buspirone, a partial
serotonin receptor agonist (5-HT1A), was recently shown to facilitate and even trigger
locomotor movements in mice after complete spinal lesion (Tx). Here, we studied
its effect on the H-reflex after acute Tx in adult mice. To avoid possible impacts of
anesthetics on H-reflex depression, experiments were performed after decerebration
in un-anesthetized mice (N = 20). The H-reflex in plantar muscles of the hind paw
was recorded after tibial nerve stimulation 2 h after Tx at the 8th thoracic vertebrae
and was compared before and every 10 min after buspirone (8 mg/kg, i.p.) for 60 min
(N = 8). Frequency-dependent depression (FDD) of the H-reflex was assessed before
and 60 min after buspirone. Before buspirone, a stable H-reflex could be elicited in acute
spinal mice and FDD of the H-reflex was observed at 5 and 10 Hz relative to 0.2 Hz,
FDD was still present 60 min after buspirone. Early after buspirone, the H-reflex was
significantly decreased to 69% of pre-treatment, it then increased significantly 30–60 min
after treatment, reaching 170% 60 min after injection. This effect was not observed in
a control group (saline, N = 5) and was blocked when a 5-HT1A antagonist (NAD-299)
was administered with buspirone (N = 7). Altogether results suggest that the reported
pro-locomotor effect of buspirone occurs at a time where there is a 5-HT1A receptors
mediated reflex depression followed by a second phase marked by enhancement of
reflex excitability.

Keywords: serotonin, 5-HT1A receptor agonist, spinal cord injury, locomotion, sensorimotor

INTRODUCTION

During locomotion, afferent inputs from the hind limbs serve to control the excitability of spinal
networks. They adjust motor output by direct impact on either motoneurons or interneurons,
comprising those of the central pattern generator (CPG) that is responsible for locomotion
(Rossignol, 2006). After complete spinal cord injury, sensory feedback becomes the only source
of input remaining to the spinal cord, it has the power to re-arrange spinal circuits below the lesion,
as shown by the positive outcome of treadmill training in adult cats (Lovely et al., 1986; Barbeau
and Rossignol, 1987; Belanger et al., 1996), rats (Edgerton et al., 1997; Ichiyama et al., 2008; Otoshi
et al., 2009), and mice (Leblond et al., 2003). The plasticity involved in this recovery of locomotion
necessarily entails changes in several reflex pathways (Côté et al., 2003; Côté and Gossard, 2004).
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In spinal animals, pharmacological treatments that mimic
neurotransmitters from severed, descending fibers also have
neuromodulator effects on locomotor networks and can improve
recovery of locomotion (Chau et al., 1998a,b). As is the
case with locomotor training, drugs that enable functional
recovery also regulate spinal reflexes (Côté et al., 2003; Frigon
et al., 2012). For example, in cats with complete spinal
lesion, the noradrenergic agonist clonidine, which is known
to trigger hind limb locomotion (Barbeau and Rossignol,
1987), was also found to modify spinal neuron responses to
peripheral inputs (Barbeau and Rossignol, 1987; Chau et al.,
1998a; Côté et al., 2003; Frigon et al., 2012). In rodents,
serotoninergic (5-HT) drugs are effective in triggering and
facilitating locomotion after complete spinal lesion (Schmidt
and Jordan, 2000; Slawinska et al., 2014). Recent work in
our laboratory has established that treatment with the US
Food and Drug Administration-approved 5-HT1A receptor
partial agonist buspirone (Loane and Politis, 2012) can initiate
locomotion in the hind limbs of adult mice immediately
after complete spinal lesion (Jeffrey-Gauthier et al., 2018).
As drugs with pro-locomotor properties also modify reflex
pathways, buspirone may alter reflex excitability in mice after
complete spinal lesion.

The effects of 5-HT1A agonists on spinal reflexes have been
tested earlier in different animal models, but there is still no
consensus today as to whether the outcome is excitatory or
inhibitory. On the one hand, in vitro results on isolated brainstem
and spinal cord in neonatal rats indicate that buspirone decreases
monosynaptic reflex excitability (Yomono et al., 1992). This
observation concurs with other studies that have demonstrated 5-
HT1A receptor inhibition in reflex pathways (Nagano et al., 1988;
Crick et al., 1994; Hasegawa and Ono, 1996a,b; Honda and Ono,
1999). On the other hand, some have reported excitatory effects
of 5-HT1A (Clarke et al., 1996), mainly by showing facilitatory
effects on motoneuron depolarization (Takahashi and Berger,
1990; Zhang, 1991; Perrier et al., 2003; Grunnet et al., 2004) or
monosynaptic reflex enhancement (Honda and Ono, 1999). Is
it possible that substances with excitatory effects on locomotion
also have inhibitory effects on spinal cord excitability?

The present study was performed with a newly developed
model of decerebrated mice and was designed to investigate the
modulation of reflex pathways in the absence of pharmacological
anesthesia. This was required, since locomotion involves wide re-
organization of reflex pathways, as shown mainly in decerebrated
cat preparations in which new relays were described in the
absence of anesthesia (McCrea, 2001). Some reflex pathways are
thus state-dependent, meaning that they occur only when the
CPG is driving locomotion or when drugs known to trigger
locomotion are given (Gossard et al., 1994; Perreault et al., 1995;
Leblond et al., 2000, 2001).

Here, the main objective is to assess the effect of buspirone, at
a dose level that is known to trigger locomotion (Jeffrey-Gauthier
et al., 2018), on H-reflex amplitude in adult decerebrated mice
after acute spinal cord lesion. This reflex, the electrical analog
of the tendon tap reflex, is primarily mediated by monosynaptic
pathways (Misiaszek, 2003) and regroup both sensori- and
motor systems. A second objective was to evaluate if the

observed buspirone effect was mediated by 5-HT1A by blocking
these receptors with the specific 5-HT1A antagonist NAD-299
(Johansson et al., 1997). The results show a biphasic effect
of buspirone on the H-reflex: a significant decrease was first
observed followed by an increase of the reflex 30 min later. Since
buspirone had no effect if preceded by NAD-299, it is suggested
that reflex modulation by buspirone is mediated by 5-HT1A
receptors. Some of these results have been presented in abstract
form Develle and Leblond (2016).

MATERIALS AND METHODS

Animal Care and Ethics
Experiments were performed on 20 C57 mice, of either sex
(Charles River Laboratories, Saint-Constant, QC, Canada),
weighing 20–30 g. Their living conditions were strictly controlled
by laboratory and facility staff. They were housed in cages
with food and water available ad libitum. All manipulations
and procedures were in accordance with Canadian Council on
Animal Care guidelines and were approved by the Université
du Québec à Trois-Rivières Animal Care Committee. The mice
were randomly assigned to 1 of 3 groups in acute, terminal
experiments to evaluate the effect of buspirone on the H-reflex: a
group (N = 8) exposed to buspirone, a group (N = 7) exposed to 5-
HT1A antagonist NAD-299 and buspirone, and controls (N = 5)
treated with saline.

Anesthesia
All surgeries were performed under isoflurane anesthesia (2%
mixed with O2 95% and CO2 5%, 200 ml/min). General
anesthesia was first induced through a mask: then, the animals
were tracheotomized to maintain anesthesia and allow artificial
ventilation (SAR-830/P Ventilator, CWE, Inc., Ardmore, PA,
United States) adjusted to preserve expired CO2 level between
3 and 4% (CapStar-100 CO2 monitor, CWE, Inc.). Body
temperature was monitored by rectal probe and maintained at
37± 0.5◦C with heating pad.

Spinalization
The objective was to measure the H-reflex after complete spinal
cord section. It was performed early in the surgery to minimize
the impact of the decerebration on the spinal circuitry. The
paravertebral muscles were cleared from both vertebral laminae
after skin incision targeting the 8th thoracic vertebra. Then,
double laminectomy exposed the spinal cord at this level.
After perforation of the dura mater with a needle, a small
piece of lidocaine-soaked cotton (xylocaine 2%) was applied
for 1 min to prevent uncontrolled secondary neural damage
or lumbar spinal cord excitotoxicity. Then, the spinal cord
was transected with micro-scissors and confirmed by visual
observation of the gap between the rostral and caudal stumps.
Finally, Surgicel R© absorbable hemostat (Ethicon, Johnson &
Johnson, United States) was inserted between the two parts of the
spinal cord before the skin was sutured.
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Decerebration
Spinal network activities are traditionally assessed in decerebrate
preparations, especially from cats, rats and rabbits, with recent
adaptation to mice (Dobson and Harris, 2012; Meehan et al.,
2012, 2017). Data were, therefore, acquired in decerebrated,
unanesthetized mice to avoid the unwanted effects of anesthesia.
The carotid arteries were first ligated to minimize cerebral
perfusion while the animals were secured in a stereotaxic
frame (Model 980 Small Animal Spinal Unit, Kopf Instruments,
Sunland-Tujunga, CA, United States) equipped with a small
mouse and neonatal rat adaptor (Stoelting Company, Wood Dale,
IL, United States). They were then craniotomized, taking care
to leave the superior sagittal sinus intact. Bone wax (Ethicon,
Johnson & Johnson, United States) was applied to the skull when
necessary to prevent bleeding. The dura mater was removed
gently to expose the cortex for transection with a razor blade
1 mm rostral to the lambda. The rostral part of neural tissue
and the occipital cortex were removed, by gentle suctioning
with an adapted micro-vacuum, corresponding to pre-collicular-
pre-mamillar decerebration. The cavity was finally filled with
Gelfoam R© thin soak hemostat sponge (Pfizer Inc., New York, NY,
United States), and the skin was closed with suture.

H-Reflex Recording
After decerebration, the left hind limb was fixed in extension
and an incision was made on top of the gastrocnemius
muscles to separate and expose the tibial nerve. A pool
was formed with skin flaps and filled with mineral oil to
avoid nerve desiccation. The tibial nerve was mounted on a
home-made bipolar hook electrode for stimulation. One-ms
single-pulsed stimulations were delivered by a constant-current
stimulator (Model DS4, Digitimer Ltd., Welwyn Garden City,
United Kingdom) triggered by a computer-controlled sequencer
(Power 1401 acquisition system, Cambridge Electronic Design,
Cambridge, United Kingdom).

Paired, fine, multistrained stainless steel wires (AS631Cooner
Wire, Chatsworth, CA, United States) were inserted under
the skin, between the second and third medial toes, toward
the intrinsic foot muscles, for electromyographic (EMG)
recording. Signals were amplified 1,000×, bandpass-filtered at
30–3,000 Hz (Grass P55 AC Preamplifier, Natus Neurology, Inc.,
Pleasanton, CA, United States), and digitized for data acquisition
(Spike 2 software, Cambridge Electronic Design, Cambridge,
United Kingdom). A ground electrode was inserted in the skin
between the stimulating and recording electrodes.

Anesthesia was stopped, followed by 60-min rest, which
corresponds to approximately 120–150 min post-spinalization,
to avoid undesirable anesthesia-induced effects. Typically, mice
can spontaneously move its forelimbs at this time but it should
be noted that reflex recording was always made during a
quiescent EMG background.

Drug Administration
The H-reflex was compared between the three groups of mice:
(1) buspirone only; (2) NAD-299 and buspirone; and (3) control.
A catheter was inserted to facilitate i.p., administration without

moving the animals. Buspirone (8 mg/kg, i.p.) was given in a
volume of 0.1 cc of saline (0.9%) in the first group. This dose of
buspirone was chosen since it was shown to trigger locomotion
(Jeffrey-Gauthier et al., 2018). The second group received the 5-
HT1A antagonist NAD-299 (0.66 mg/kg) (Johansson et al., 1997)
10 min before buspirone treatment. The third group received
0.1cc of saline only (0.9%).

Data Acquisition and Analysis
Stimulus–response curves (e.g., Figure 1B) were charted by
gradually increasing tibial nerve stimulation intensity to ascertain
the maximal H-reflex (4–6 ms latency) concomitant with stable
M-wave (1–3 ms latency). At this intensity, which corresponded
to approximately 1.8 times the motor threshold, Ia muscle
spindle afferents were mainly activated. Responses to tibial nerve
stimulation intensity were recorded before and every 10 min after
the injection for a total of 60 min. Reflex amplitude was estimated
with the H/M ratio which estimate the relative amount of motor
neuron activated by the reflex loop as compared to the whole
motor pool activated by the stimulation. This standardization
allow a better inter-subject comparison of the reflex evolution in
time and treatment.

Frequency-dependent depression was tested before and
60 min after injection in the buspirone treated mice by varying
stimulation frequency between 4 blocks of 30 stimulations
(0.2, 5, 10, and 0.2 Hz; 60 s inter-block interval). The first
five responses of each block were discarded to allow H-reflex
stabilization. Analyses comprised only recordings with stable
M-wave throughout the protocol (<10% variation) to ensure
recording stability.

Data were analyzed with Spike2 software (Cambridge
Electronic Design) and Excel software (Microsoft Corporation,
Redmond, WA, United States). Peak-to-peak amplitudes of the
H-reflex and M-wave were measured to establish the H/M ratio so
that the results could be compared between animals. Mean ratio
at each time point was computed by averaging 30 stimulations
at 0.2 Hz. In the frequency-dependent depression (FDD)
protocol, mean H/M ratio was averaged from 25 successive
responses for each block.

Statistical analysis was conducted with Statistica software
(version 13, StatSoft Inc., Tulsa, OK, United States), and
the significance threshold was set at p ≤ 0.05. Distribution’s
normality was confirmed by the Kolmogorov–Smirnov test for
each group separately. To be able to perform a balanced ANOVA,
one missing sample at T60 in the group injected with saline,
one in the group which receive both NAD-299 and buspirone
and two in the buspirone treated group were replaced by the
mean of the group for this timepoint. Then, Greenhouse-Geisser-
corrected mixed ANOVA ascertained the effects of the intra-
subject factor time and the inter-subject factor treatment on
reflex amplitude. Fisher post hoc was used to observed periods
presenting significant variations in comparison to pre-injection
values. In the buspirone group, we further examined the impact
of the frequency of stimulation (0.2, 5, and 10 Hz) on H/M ratio
before (T = 0 min) and 60 min after (T = 60 min) buspirone
injection. A repeated-measure ANOVA was used to verify the
effects of frequency and buspirone and possible interaction
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FIGURE 1 | Raw traces of H-reflex and representative recruitment curve.
(A) Averaged traces of electromyographic (EMG) recording showing typical
examples of H-reflexes in decerebrated spinal mice. The M-wave is the
depolarization of the whole motoneuron pool activated by stimulation,
whereas the H-wave is the motor response induced by primary afferent

(Continued)

FIGURE 1 | Continued
depolarization. (B) Peak-to-peak amplitude of EMG responses recorded in
intrinsic foot muscles by progressively increasing tibial nerve stimulation
intensity. This stimulus–response curve is tested to find the stimulation
intensity that will allow a stable reflex amplitude evaluation. It should be
around Hmax, which specifically activates Ia primary afferents, concomitant
with a stable M-wave response at the beginning of the M-wave plateau. In this
particular example, stimulation around 1.4 times the motor threshold would be
chosen. (C) Comparison of EMG traces of the H-reflex recorded before (gray
trace) and after a complete dorsal rhizotomy (black trace). Sectioning all the
dorsal roots at the lumbar enlargement abolished the H-reflex.

(frequency × buspirone) on H/M ratio. When appropriate,
effects were adjusted using the Greenhouse–Geisser correction.

RESULTS

H-Reflex in Acute Spinal Decerebrated
Mice
Stimulus–response curves were recorded for each mouse to
establish at which intensity the H-reflex should be evoked to
test the effect of buspirone. Typical examples of the H-reflex
and stimulus–response curves are depicted in Figures 1A,B,
respectively. Stimulation intensity was increased progressively
until the whole pool of fibers in the tibial nerve was recruited, as
indicated by a plateau being reached in the M-wave in Figure 1B.
The H-reflex was usually evoked close to the motor threshold,
and after an initial rise, it too plateaued and did not manifest a
classical decrease in amplitude as it is observed in humans after
reaching maximum (Knikou, 2008). This pattern was observed
in all animals. Stimulation intensity was selected so that stable
M-wave could be evoked as near as possible to beginning of the
plateau (1.4T in the example depicted in Figure 1B).

As illustrated in Figure 1A (bottom trace), some responses
included a third deflection with longer latency beginning
about 7–8 ms post-stimulation. This late response was poorly
depressed, if not depressed at all by stimulation frequency, in
contrast to the response localized between 4 and 6 ms. For
this reason this third deflection was not taken into account in
the measurement of H-reflex. In one mouse, reflex recordings
were made after a laminectomy and a complete lumbar dorsal
rhizotomy to make sure that the first deflection was indeed
the result of the activation of monosynaptic sensory inputs. By
comparing the gray trace (pre-rhizotomy) and the black trace
(post-rhizotomy) in Figure 1C, it is clear that the rhizotomy
abolished the early components of the response and not the later
responses. This indicates that this later response is not the result
of segmental afferent inputs activation, since the dorsal roots are
cut, and might be associated with antidromic muscle responses
[namely F-wave (Meinck, 1976; Gozariu et al., 1998)].

Buspirone Effect on the H-Reflex
Since buspirone can produce locomotion in chronic spinal
mice (Jeffrey-Gauthier et al., 2018), we examined whether this
behavioral effect could be related to changes in monosynaptic
reflex excitability. Figure 2A displays H-reflex raw traces
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FIGURE 2 | Effect of buspirone on the H-reflex. (A) Averaged EMG traces obtained at three critical time points after buspirone administration. The H-reflex amplitude
shows an initial decrease 10 min after buspirone administration (blue trace) and an increase 40 min after buspirone (red trace). (B) Mean H/M ratios for mice from the
three groups. For the buspirone group (gray line), the mean H-reflex is significantly lower than baseline at 10 and 20 min after buspirone whereas it is significantly
higher than baseline at 30–40–50 and 60 min (∗p < 0.01). The amplitude of the mean H-reflex over time is no different than baseline in the saline group (black line) or
the NAD-299 + buspirone group (dotted line).

averaged from 30 stimulations recorded from intrinsic foot
muscles before (black trace), 10 (blue trace) and 40 min (red
trace) after buspirone administration in 1 mouse. Average
H-reflex decreased dramatically in this mouse 10 min after
buspirone, then increased considerably 40 min later.

TABLE 1 | H/M ratio for each mouse.

Time (min) 0 10 20 30 40 50 60

Buspirone (N = 8)

B1 0.350 0.287 0.302 0.463 0.494 0.460 0.510

B2 0.290 0.091 0.111 0.164 0.245 0.215 0.390

B3 0.272 0.131 0.128 0.365 0.398 0.303 0.365

B4 0.256 0.084 0.129 0.372 0.389 0.306 0.360

B5 0.205 0.281 0.186 0.391 0.257 0.554 0.312

B6 0.206 0.148 0.226 0.232 0.261 0.197 0.142

B7 0.140 0.116 0.142 0.272 0.409 0.216 0.216

B8 0.076 0.050 0.054 0.067 0.091 0.094 0.121

NAD-299 + buspirone (N = 7)

BN1 0.058 0.042 0.064 0.058 0.065 0.079 0.077

BN2 0.037 0.016 0.034 0.026 0.040 0.034 0.038

BN3 0.076 0.050 0.078 0.029 0.103 0.114 0.116

BN4 0.055 0.008 0.009 0.033 0.040 0.041 0.035

BN5 0.039 0.036 0.039 0.050 0.041 0.029 0.039

BN6 0.163 0.120 0.151 0.160 0.169 0.171 0.167

BN7 0.093 0.053 0.046 0.055 0.060 0.063 0.074

Saline (N = 5)

S1 0.124 0.143 0.077 0.104 0.068 0.090 0.110

S2 0.189 0.266 0.229 0.292 0.293 0.294 0.301

S3 0.124 0.127 0.133 0.111 0.120 0.124 0.116

S4 0.081 0.142 0.135 0.162 0.167 0.123 0.135

S5 0.069 0.054 0.071 0.034 0.050 0.077 0.069

Peak to peak amplitude of H- and M-responses are compared using the H/M ratio
which are given in this table for each mouse in all groups each 10 min for 60 min.

The H/M ratio was measured for each mouse every 10 min for
60 min in each group (see Table 1). It was compared between
the three groups using a mixed ANOVA to examine whether
buspirone could change monosynaptic reflex excitability and
whether this effect could be blocked by NAD-299, an antagonist
of 5-HT1A receptors. Results indicate that reflex excitability
was different between groups across time points (interaction:
F12,102 = 4.4, p < 0.001; η2

p = 0.34: see Figure 2B). Indeed,
the buspirone group showed a biphasic change in monosynaptic
reflex excitability with an early inhibition followed by facilitation.
This effect was not observed for the saline group and was blocked
when buspirone was administered after a treatment with the 5-
HT1A antagonist NAD-299. Fisher post hoc test revealed that
changes in reflex excitability were significant for each time point
compared with T0 in the buspirone group (all p < 0.01). In
contrast, no significant change was observed for any time point
compared with baseline for the saline group (all p > 0.3) or for
the NAD-299+ buspirone group (all p > 0.2).

Frequency-Dependent Depression of the
H-Reflex
The H-reflex is characterized by frequency-dependent behavior:
as stimulation frequency increases from 0.2 to 10 Hz, the reflex
amplitude is depressed. Figure 3A shows a typical example of
FDD of the H-reflex in a mouse before buspirone treatment. In
this example, frequency of stimulation at 5 Hz (green trace) or
10 Hz (purple trace) almost completely abolished the H-reflex
that was observed at 0.2 Hz (black trace). In order to investigate
if the observed late effect of buspirone on the H-reflex could be
the result of a disinhibitory mechanism, FDD was thus compared
at T0 (Figure 3B, black line) and 60 min after treatment
(Figure 3B, gray line) in the buspirone group. Overall, H/M
ratio was altered by the frequency of stimulation (principal
effect of frequency: F2,12 = 17.6, p = 0.006, ηp

2 = 0.75) and by
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FIGURE 3 | Reflex inhibition at 5 and 10 Hz. (A) Averaged EMG traces at 0.2 Hz (black trace), 5 Hz (green trace) and 10 Hz (purple trace) in a mouse before the
administration of buspirone showing a typical example of depression of the H-reflex at higher frequency of stimulation (FDD). Consistency in fiber recruitment by
stimulation is assessed by stable M-wave between each trial. (B) Mean H/M ratios at different stimulation frequencies in the buspirone group before (black line) and
60 min (gray line) after buspirone administration. The frequency significantly depressed the mean H/M ratio both before and after buspirone indicating that FDD is not
abolished by the treatment.

buspirone (principal effect of buspirone: F1,12 = 6.8, p = 0.04,
ηp

2 = 0.53). The FDD of the H/M ratio differed marginally at T60
compared to T0 (frequency × buspirone interaction: F2,12 = 4.6,
p = 0.07, ηp

2 = 0.43). Post hoc analysis revealed that the H/M
ratio differences between T0 and T60 reached significance at
0.2 Hz (p = 0.002), but not at 5 and 10 Hz (p = 0.83 and
p = 0.76, respectively).

DISCUSSION

The use of the adult decerebrated mouse preparation allowed
us to study the effect of buspirone on the H-reflex after acute
spinal lesion in a system that was not altered by the presence of
anesthetic drugs. The main result of this study was that buspirone
had a depressive impact on H-reflex amplitude for the first
20 min after drug administration. This depressive outcome was
then attenuated and even reversed to an increased effect on the
H-reflex which became significant 40 min post-dose. The absence
of reflex variations when the buspirone treatment is given after 5-
HT1A receptor blocking by NAD-299 suggest a participation of
this receptor in this observed buspirone activity. Since there is
still an even stronger FDD 60 min after buspirone, the observed
reflex enhancement later after buspirone is not likely to involve a
loss of inhibitory control.

Buspirone Act as a 5-HT1A Receptor
Agonist on the Reflex
Buspirone is not a pure 5-HT1A agonist, it also shows some
affinity for dopaminergic and other serotoninergic receptors
(Loane and Politis, 2012). By using the selective antagonist NAD-
299 we show here that 5-HT1A receptors activation is essential
for buspirone induced modulation of H-reflex excitability. Even

if this reflex is mainly of monosynaptic nature, it is well known
that it remains under the control of several elements (Misiaszek,
2003). The 5-HT1A receptors can be found at numerous locations
on these elements including presynaptic, intrasynaptic and even
outside the synaptic innervation. This heterogeneity probably
explains why 5-HT have such multiple and opposite effects
on motor circuits of the spinal cord, as elegantly reviewed in
Perrier and Cotel (2015).

The short-term impact of buspirone observed in our
experiments, i.e., reflex reduction, concurs with the literature
on the effect of 5-HT1A agonists. Indeed, monosynaptic reflex
reduction has been shown with the 5-HT1A agonist 8-OH-DPAT
in rats with complete spinal lesion under α-chloralose or urethane
anesthesia (Nagano et al., 1988; Hasegawa and Ono, 1996a;
Honda and Ono, 1999). More recently, buspirone was used as a
5-HT1A agonist and it was shown that systemic administration
in awake humans reduces about 30% of F-wave amplitude,
indicating direct decrease in motoneuron excitability and output
(D’Amico et al., 2017).

Because 5-HT1A receptors are mainly present on dorsal
laminae of the spinal cord, it was proposed to be also involved
in afferent regulation (Giroux et al., 1999; Noga et al., 2009).
Such participation in afferent modulation by 5-HT1A receptors
has been confirmed by Crick et al. (1994) in rats (Hasegawa
and Ono, 1996b). They showed that monosynaptic reflexes
evoked by dorsal root stimulation are depressed by 8-OH-DPAT
administration with no change in motoneuronal excitability.
This suggests that reflex depression is induced by lowering
neurotransmitter release at the presynaptic level. Such afferent
regulation could be generated by 5-HT1A receptors on afferent
neurons and could be responsible for increased GABA-mediated
inhibition (Gharagozloo et al., 1990).
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The Absence of Anesthesia and Reversal
From Inhibitory to Excitatory Effects of
Buspirone
A reversal of the effect buspirone (or any other 5-HT1A agonist)
from inhibitory to excitatory later post-treatment has not been
reported so far. Such differences with previous experiments
could be related to the use of decerebrated preparations and
the absence of anesthesia (Meehan et al., 2017) that affect
reflex modulation (Ho and Waite, 2002) see also (Schmidt and
Jordan, 2000). Indeed, for example, experiments on decerebrated
cats disclosed reversal of group I autogenetic inhibition to
polysynaptic excitation in extensor motoneurons after exposure
to clonidine or L-DOPA, drugs that promote locomotion in spinal
cats (Conway et al., 1987; Gossard et al., 1994). Interneurons
involved in this reflex reversal are shared with CPGs and
supraspinal inputs (Leblond et al., 2000, 2001).

Low threshold stimulation like the one used in the present
study might also activate oligosynaptic pathways by some other
large-diameter afferent fibers, such as type Ib afferents, that are
also in contact with motoneurons. Because such depolarization
involves the polysynaptic circuitry, the motor response would
have longer delay and may be dissociated from monosynaptic
activation (e.g., Figure 1A, bottom trace). Still, long-lasting
effects on motoneurons by these pathways are not to be excluded
and could be implicated in signal amplitude recorded by EMG.

Indeed, the absence of anesthesia most likely allowed
otherwise quiescent spinal networks to be active and participate
in the modulation of membrane conductance, affecting
motoneuronal responsiveness (Harvey et al., 2006a,b; Li et al.,
2006; Murray et al., 2010; see also D’Amico et al., 2014).
However, slowly activated currents, like persistent inward
currents, required long-duration input and could not be fully
actuated by brief stimulations like the ones used in our study
(Murray et al., 2011).

It is still not fully clear why the H-reflex was enhanced
during the second phase of our experiment and this will
be discussed in a later section. Nonetheless, to evaluate if
this reversal from inhibition to excitation can be explained
by a disinhibition, we measured FDD of the H-reflex. The
FDD, also named homosynaptic depression or post-activation
depression, was used in many animal models to study spinal
reflex disinhibition (Thompson et al., 1992; Yates et al., 2008;
Cote et al., 2011; Jeffrey-Gauthier et al., 2019). It was shown that
this depression can occurs at higher rate of stimulation without
any variation of motoneuronal excitability, reflecting a decreased
probability of neurotransmitter release by the activated fibers
as a consequence of their repeated activation (Hultborn et al.,
1996). Our hypothesis was that disinhibition, in other word a
lack of FDD 60 min after buspirone, would explain why there is a
higher H-reflex at that moment. Our results showed that FDD is
still present 60 min post-buspirone, suggesting that disinhibition
would not explain the observed increase of reflex amplitude.

Opposite Effect of 5-HT1A According to
Receptor Location on the Motoneuron
As mentioned above, 5-HT1A receptors are located at various
locations that can get activated simultaneously. On the one

hand, at the synaptic level, 5-HT is responsible for modulating
fast-activated potassium channels via 5-HT1A receptors (Jackson
and White, 1990; Penington and Kelly, 1990). It was shown
that 5-HT1A receptors inhibit TASK-1 potassium channels
that would contribute to the excitatory effect of 5-HT on
spinal motoneurons (Perrier et al., 2003). By lowering outward
cation flux, 5-HT1A receptors shortened the refractory period
and facilitated motoneuronal depolarization (Grunnet et al.,
2004; Santini and Porter, 2010). This mechanism augments
motoneuronal excitability and enhances motor responses to
synaptic stimulation. On the other hand, there are extrasynaptic
5-HT1A receptors that can be activated by spill-over during high
5-HT release at the synaptic level or background concentration
of 5-HT (e.g., in systemic administration) that are known to be
inhibitory. Indeed, 5-HT1A receptor stimulation on axon hillocks
elicits inhibition of sodium channels that are responsible for
initiation of action potentials in motoneurons (Cotel et al., 2013;
Perrier et al., 2013; Perrier and Cotel, 2015; Petersen et al., 2016).
This inhibition decreases the number of spikes triggered and
consequently reduce the amplitude of the EMG.

Thus, when large dose of buspirone is given, as in our
experiments, 5-HT1A receptors inhibit motoneuron output and
decrease reflex amplitude through activity at the axon hillock
sites even if there is an excitation at the synaptic level. This
dual effect of 5-HT1A receptors on motoneuronal excitability
may be involved in the observed biphasic effect of buspirone
over time on reflex amplitude through a switch in dominance of
receptor type activity.

Indeed, drug action is concentration-dependent, and
buspirone pharmacokinetics undergoes a biphasic elimination
cycle (Sethy and Francis, 1988). The first half-life of the drug is
reached after 24.8 min, a period that matches the transition phase
of reflex amplitude in treated animals. This region relies mainly
on the participation of astrocytes that have been demonstrated
to be involved in 5-HT re-uptake, especially at the extrasynaptic
level (Henn and Hamberger, 1971; Ritchie et al., 1981; Kimelberg
and Katz, 1985; De-Miguel et al., 2015). Such region-dependent
differences in the 5-HT clearance mechanisms could explain
the biphasic effect of buspirone on reflex amplitude over time.
Moreover, a desensitization of 5-HT1A receptors after their
pharmacological activation have been reported and should be
considered as well in that reversal (Seth et al., 1997).

Reflex Inhibition Concomitant With
Excitatory Effect on Locomotion
It was shown in another study from our laboratory that
buspirone exerts a considerable acute facilitation of spinally
mediated locomotion in mice after a complete mid-thoracic
section of the spinal cord (Jeffrey-Gauthier et al., 2018). Indeed,
by using the same amount of buspirone than in the present
experiments, we were able to trigger locomotion right after
the injection in previously paralyzed mice as early as 2 days
after a complete lesion. Buspirone was also shown to potentiate
locomotion when combined with other treatments (Ung et al.,
2012; Gerasimenko et al., 2015). Since we find herein that
buspirone have an early depressive effect on the H-reflex, it
suggest that locomotion can be triggered during depression
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of sensorimotor excitability induced by this treatment. This
paradox is also observed with the 5-HT1A partial agonist 8-
OH-DPAT, which is known to inhibit the monosynaptic reflex
(Nagano et al., 1988; Hasegawa and Ono, 1996a; Honda and
Ono, 1999) and can facilitate recovery of locomotor function in
spinal rats (Antri et al., 2003, 2005). Sensory inputs provided by
the treadmill seem sufficient to initiate and maintain locomotor
rhythm with buspirone. The same observation was made in
cats where clonidine, a noradrenergic agonist that can trigger
locomotion on a treadmill after a complete spinal lesion, reduce
reflexes evoked by stimulation of the dorsum of the foot (Barbeau
and Rossignol, 1987; Chau et al., 1998a).

These observations with adult animals that walk on a treadmill
seem to disagree with results obtained during fictive locomotion
in neonatal rodents where 5-HT1A was reported to have an
inhibitory effect on the spinal rhythmic activity (Beato and Nistri,
1998; Liu and Jordan, 2005; Pearlstein et al., 2005; Dunbar et al.,
2010). For example, in the brainstem-spinal cord of neonatal
mice, 5-HT release during fictive locomotion was enhanced by
citalopram, a selective 5-HT re-uptake inhibitor, and a decreased
burst duration and amplitude was observed (Dunbar et al.,
2010). Since selective 5-HT1A and 5-HT1B antagonists reversed
the inhibitory effect of citalopram, it was concluded that these
receptors may rather be involved in rhythm inhibition. A similar
conclusion has been drawn with neonatal rats where blocking 5-
HT1A/1B receptors during motor activity, produced by brainstem
stimulation, induced speed-up of the rhythm (Liu and Jordan,
2005). In both these studies, locomotor speed was impaired by
5-HT1A receptor but the alternate pattern of locomotor rhythm
was not blocked.

This discrepancy between results obtained during fictive
locomotion or locomotion over a treadmill, when there is some
exteroceptive stimulation, suggest that sensorimotor control
is fundamental to the pro-locomotor effect of buspirone.
Many studies employing different methodologies to induce
locomotion have disclosed that reflex modulation is associated
with locomotor expression (Grillner and Shik, 1973; McCrea,
2001; Frigon et al., 2012). Similarly, buspirone treatment induces
spinal reflex re-organization and promotes locomotor activity.

CONCLUSION

In summary, even if the role of 5-HT on motoneuron excitability
has been extensively studied for more than 50 years, our

knowledge is still scarce on how this neuromodulator contribute
to sensorimotor control. The heterogeneity of 5-HT receptors
locations (pre-, intra- or extra-synaptically) make it really difficult
to assess the outcome of a treatment with this neuromodulator
after a complete spinal cord injury. Reflecting this heterogeneity,
buspirone, if given at a dose that can trigger locomotion, was
shown to have biphasic consequence on the H-reflex in time after
an acute lesion of the spinal cord, starting with an early and
acute inhibition, followed by an excitation of the reflex. This effect
seems to be mediated by the activation of 5-HT1A receptors.
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