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Abstract

Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We
hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that
increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve
stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell
firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also
induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an
NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce
NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of
training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated
3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory
stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-
training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results
support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

Citation: Lethbridge R, Hou Q, Harley CW, Yuan Q (2012) Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference
Learning in the Neonate Rat. PLoS ONE 7(4): e35024. doi:10.1371/journal.pone.0035024

Editor: Thomas Boraud, Centre national de la recherche scientifique, France

Received October 23, 2011; Accepted March 12, 2012; Published April 4, 2012

Copyright: � 2012 Lethbridge et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by a Canadian Institutes of Health Research operating grant to QY (MOP-102624). http://www.cihr-irsc.gc.ca/e/193.html. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: qi.yuan@med.mun.ca

. These authors contributed equally to this work.

Introduction

Odor preference learning in the neonate rat is a robust cAMP/

PKA/pCREB-dependent mammalian appetitive learning model

[1–4] in which the mechanisms for learning have been localized to

the olfactory bulb [2,5–10]. Rat pups are dependent on proximity

to the dam for survival in the first week and use odor, as do human

neonates, to guide maternally-reinforced approach behavior [11].

In rodent experiments, an odor (e.g. peppermint) is paired with

reward to induce an odor preference [12,13]. An odor preference

is readily induced when odor is paired with natural reinforcing

stimuli such as repeated gentle stroking [12,13] or intraoral milk

infusion [14,15]. At a more mechanistic level, odor preference

learning can also be produced by pairing odor with injections of

the beta-agonist isoproterenol [7]. Natural reinforcing stimuli and

isoproterenol interact additively [16]. Importantly for the present

investigation, activation of b-adrenoceptors solely in the olfactory

bulb paired with odor presentation is necessary and sufficient for

odor preference learning [7]. The circuitry for this intrabulbar

learning model is relatively simple. The olfactory nerve, carrying

odor information, contacts mitral cell (MC) dendrites in glomeruli

at the outer edge of the olfactory bulb. MCs (together with deep

tufted cells) are the transducers for odor information to the brain.

They receive odor input as a function of the strength of glomerular

connections, their responses are shaped and modulated by local

inhibitory interneurons, and their axonal output constitutes the

bulbar odor representation projected through the lateral olfactory

tract to the cortical area.

Our model of the cellular substrates of odor preference learning

assigns an important role to N-methyl-D-aspartate receptors

(NMDARs) as mediators of the pairing between odor and reward

in MCs [4]. Calcium entering MCs via NMDAR activation is

hypothesized to interact with calcium-sensitive adenylate cyclase

in MCs to critically shape the intracellular cAMP signal as first

suggested by Yovell and Abrams [17], and shown in the work of

Cui et al [1]. cAMP-mediated phosphorylation of MC NMDARs

may provide a positive feedback loop for these effects. The role of

NMDARs in odor preference learning has, however, not been well

understood.

Previous work established that pairing the b-adrenoceptor

activator, isoproterenol, with olfactory nerve (ON) stimulation in

anesthetized rat pups produces an enduring enhancement of the

ON-evoked glomerular field potential [18]. Odor preference

training also produces an increase in MC pCREB activation [2].

Increasing MC pCREB levels using viral CREB lowers the

learning threshold and attenuating MC pCREB increases prevents
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learning [3]. Recently, in an in vitro model of odor learning, it was

shown that theta burst stimulation (TBS) of the ON, approximat-

ing sniffing frequency, paired with b-adrenergic receptor activa-

tion using isoproterenol produces increased MC calcium signaling

[19], consistent with our model. The present experiments, first test

the role of NMDARs in this novel in vitro model, and then explore

their role in vivo in early odor preference learning.

In the in vivo experiments, PKA modulation of the GluN1

subunit was imaged following training and new intrabulbar

experiments, using MC pCREB activation to index selective

peppermint odor MC recruitment, were carried out to establish

cannulae placements for localized glomerular infusion of the

NMDAR antagonist, D-APV. Behavioral experiments with

localized infusions assessed the hypotheses that glomerular

NMDARs and glomerular GABAA receptors are modulated by

isoproterenol to induce odor preference learning. Since down-

regulation of NMDAR subunits has been reported in in vitro

plasticity models [20] and during development [21], the down-

regulation of olfactory bulb NMDAR subunits with odor

preference learning was probed. Finally, ex vivo experiments,

directly measuring AMPA/NMDA currents in MCs from trained

rat pups, assessed the cellular locus of learning. Taken together the

results strongly support a role for glomerular NMDA receptors in

the acquisition of odor preference learning and suggest a

subsequent downregulation of NMDA-mediated plasticity follow-

ing learning.

Results

MC Spike Potentiation by Pairing Isoproterenol and TBS
is NMDAR-dependent

Previous research supports an enhanced MC excitation model

for early odor preference learning [4,19]. Our recent report [19]

established an in vitro slice preparation that mimics the in vivo

learning conditions. Using acute olfactory bulb slices from young

rats, odor input was mimicked in vitro by TBS of the ON, and the

modulation of MC responses to TBS alone and in conjunction

with bath application of the b-adrenoceptor agonist, isoproterenol,

was assessed. Previously, pairing 10 mM isoproterenol with TBS

led to a potentiation of MC somatic calcium transients, which was

not seen with TBS alone, or isoproterenol alone [19], although

TBS alone produced long-term potentiation (LTP) of the

glomerular field EPSP. Somatic calcium transients reflect spikes

in various principle neurons including MCs [22–25] and are of

particular interest as they suggested increased MC throughput.

Since the evoked calcium response was normalized to the baseline

level, the result implied two scenarios: first, only the TBS+ISO

induction enhanced MC evoked responses; second, the TBS+ISO

induction enhanced the ratio of evoked/spontaneous responses.

Here we directly measure MC spikes using loose-patch recording

of MCs and show that throughput is increased as indexed by

evoked spiking. Figure 1 shows that bath application of

isoproterenol during TBS (isoproterenol was washed in 5–

10 min before the TBS induction and washed out immediately

after), induced MC spike potentiation to ON input consistent with

the previous report [19]. As shown in Figure 1A, MCs show

spontaneous spiking at an average frequency of less than 5 Hz

(Figure 1A1–3). As a side note, we observed some cells with little

spontaneous spiking that appeared healthy under DIC and

responded well to ON stimulation. MCs recorded in vivo can also

show a lack of spontaneous spiking using similar extracellular

recording methods [26]. Stimulation of the ON produces a long

evoked response of increased MC spiking activity, which can last

for seconds, but the increased spiking is most obvious in the first

250 ms (Figure 1A1–3). We measured and compared the

spontaneous (250 ms prior to stimulation) and evoked (250 ms

following stimulation) activities of MCs in the presence of

isoproterenol before TBS induction and those 20–30 min

following TBS induction. Evoked (mean baseline =

10.1560.79 Hz), but not spontaneous (mean baseline =

1.2460.37 Hz) MC spiking, was significantly increased 20–

30 min following pairing of TBS and isoproterenol (n = 10;

Figure 1A3,D). There was an average 69% increase in evoked

spiking. Among these cells, eight out of the ten cells showed

increased evoked spiking. These include two cells that showed

decreased, and one cell that showed unchanged, spontaneous

spiking. When the 250 ms interval was subdivided into a 0–

50 ms AMPA component and a 50–250 ms NMDA component

[23], both components were significantly increased (AMPA: from

18.7361.49 to 2561.68, t = 3.633, p = 0.003; NMDA: from

860.85 to 15.262.99; t = 2.359, p = 0.04). The increase in MC

spiking is specific to the pairing of TBS and isoproterenol since

TBS alone (n = 10; t = 0.264, p = 0.798; Figure 1B,D) or

isoproterenol alone (n = 10; t = 0.954, p = 0.377; Figure 1C,D)

failed to enhance MC evoked spikes.

This result suggests that the pairing of isoproterenol with TBS

specifically enhances MC excitation to ON input. We next

explored whether the pairing of isoproterenol with TBS-induced

MC potentiation is NMDAR-dependent. We tested whether D-

APV application has an effect on the MC spiking potentiation

induced by pairing TBS with isoproterenol. We first examined the

acute effect of D-APV itself on the MC spiking pattern. As

expected, D-APV bath application did not change the early 0–

50 ms component (n = 6 for control and D-APV groups, n = 4 for

D-APV wash; F2,13 = 0.490, p = 0.624). This early component is

presumably mediated by AMPA receptors [27] as NBQX

(40 mM), an AMPA receptor antagonist, fully abolished this

component in the presence of D-APV (n = 3, data not shown).

Furthermore, D-APV application did not change the spontaneous

firing rate of MCs (1.0660.4 before D-APV and 0.7660.56 in the

presence of D-APV, n = 6, t = 0.85, p = 0.43). However, D-APV

dramatically reduced MC-evoked late spikes (50–500 ms) and the

effect was reversed after D-APV washout (control: 10.3861.79Hz;

in the presence of D-APV: 2.4160.92Hz; D-APV wash:

7.562.29 Hz; F2,13 = 6.87, p = 0.009; Figure 2A1–4), suggesting

that NMDARs mediate a late component of the synaptic

potentials that lead to MC spikes. Addition of D-APV to the bath

at the same period with isoproterenol abolished the increase in

MC evoked spikes associated with isoproterenol+TBS (pre-

induction: 10.8762.04 Hz; post-induction: 9.7561.42 Hz; n = 6;

t = 0.820, p = 0.450; Figure 2B1–3,C). D-APV prevented the

potentations of both the AMPA and NMDA components.

b-adrenoceptors May Act Through Disinhibition of MCs
from Glomerular Interneurons to Induce NMDAR-
dependent Plasticity of MCs

D-APV blocking of MC spike potentiation in this in vitro model

suggests b-adrenoceptor activation paired with odor input triggers

a NMDAR-dependent potentiation of odor-encoding MCs. One

route for the b-adrenoceptor-mediated activation of NMDARs on

MCs to promote the LTP of MC responses could be disinhibition.

The previous in vitro study [19] suggested that b-adrenoceptor

activation by isoproterenol suppressed evoked EPSCs in periglo-

merular cells in the olfactory bulb slice. If disinhibition is

important in the opening of NMDARs on mitral cells, we

expected increasing glomerular inhibition would counteract the

isoproterenol effect in potentiating MCs when paired with TBS,

Glomerular NMDA Receptors Mediate Odor Learning
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and local glomerular disinhibition could, by itself, lead to

NMDAR-dependent potentiation of MC spikes.

We first analyzed the acute effect of isoproterenol on MC

spiking. A previous study by the Ennis group reported that 10 mM

isoproterenol or 10 mM norepinephrine, can cause a reversible

inward current (,50 pA) in MC membrane potentials [28].

Consistent with this inward current effect, our data showed an

acute 5 min application of 10 mM isoproterenol resulted in a

modest but significant increase in MC spontaneous spikes (pooling

the 17 cells exposed to ISO for 5 min in Fig. 1; control:

1.2960.27 Hz; in the presence of isoproterenol: 2.4160.64 Hz;

t = 2.034, p = 0.029, Figure 3A1–4). Twenty to thirty minutes after

washout there was no difference in spontaneous activity compared

to control baseline however (n = 7; t = 0.323, p = 0.757; see

Figure 1C,D); arguing against a sustained inward current effect.

ON-evoked activity was not altered by acute isoproterenol

(control: 17.6961.39 Hz; in the presence of isoproterenol:

20.3162.00 Hz; t = 1.639, p = 0.121, Figure 3A1–4). We then

found that local application of the GABAA receptor agonist

muscimol to the glomerular layer surrounding the stimulation

pipette counteracted the long-lasting potentiation of MC spikes

induced by TBS and isoproterenol pairing. When various

concentrations of muscimol (0.2–10 mM) were locally puffed to

the glomerular layer, they significantly reduced MC spiking

(Figure 3B1), in most cases abolishing spiking, suggesting

glomerular inhibition powerfully ‘‘gates’’ MC activation, possibly

through feed-forward inhibitory interneurons [19,29]. Local puffs

of muscimol to the glomerular layer also abolished potentiation of

MC evoked spikes induced by TBS and isoproterenol pairing (pre-

induction: 14.4463.52 Hz; post-induction: 13.0263.24 Hz; n = 6;

t = 0.909, p = 0.405; Figure 3B1–3,C).

We next asked whether disinhibition of MCs from the local

glomerular inhibitory network would by itself lead to MC

potentiation when paired with TBS of the ON. Gabazine, a

GABAA receptor antagonist, was locally puffed to the

glomerular layer at two concentrations. A low concentration

(2 mM) of gabazine resulted in a change in the MC firing

pattern, including a slight to moderate increase in evoked spikes

in a burst-like firing pattern (Figure 4A1). A higher concentra-

tion (10 mM) of gabazine exhibited a similar pattern of action

but in some cells, especially during prolonged application,

resulted in the silencing of MC spikes (data not shown).

Extensive disinhibition of MCs by high dose gabazine may lead

to a ‘‘seizure’’ effect on MC firing with cells showing a

depolarization block. Interestingly, only the low concentration of

gabazine led to a potentiation of MC evoked spikes (Figure 4A1–

3, D) and that potentiation was only significant in the 0–50 ms

AMPA period (pre-induction: 18.6763.71 Hz; post-induction:

2564.63 Hz; n = 6; t = 3.08, p = 0.027), whereas the higher

concentration of gabazine did not affect the MC spiking pattern

30 min following TBS induction (n = 6; t = 0.450, P = 0.672;

Figure 4B,D). We next showed that the 2 mM gabazine induced

MC spike potentiation was NMDAR-dependent. Co-application

of D-APV (500 mM) in the same puff pipette during TBS fully

Figure 1. Isoproterenol (ISO) pairing with olfactory nerve theta burst stimulation (TBS) induced mitral cell (MC) spike potentiation.
A1. Single MC spiking patterns before and 30 min following TBS induction in the presence of the b-adrenoceptor agonist isoproterenol (10 mM).
Arrow indicates the time of the single olfactory nerve test stimulus. A2&A3. Peristimulus spike frequency histograms (binning 50 ms) under the
control condition (red) and 20–30 min after TBS induction of the example cell in A1 (A2); and of the average of n = 10 cells in the same condition (A3).
B. Peristimulus spike frequency histograms under the control condition and 20–30 min after TBS induction in the absence of ISO (n = 10). C.
Peristimulus spike frequency histogram under the control condition and 20–30 min following a brief (5 min) application of ISO. D. Histogram
comparing mean spike frequencies during the 250 ms intervals before (spontaneous) and after the olfactory nerve stimulation (evoked) under
control conditions (red) and 20–30 min post-inductions (black). **p,0.01 *p,0.05. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g001

Glomerular NMDA Receptors Mediate Odor Learning

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e35024



abolished the potentiating effect of 2 mM gabazine (pre-

induction: 21.2365.86 Hz; post-induction: 17.9566.92 Hz;

n = 5; t = 1.00; p = 0.372; Figure 4C1–3,D). This suggests that

MC potentiation induced by pairing TBS and local glomerular

disinhibition is also NMDAR mediated. Thus, disinhibition

promoted by isoproterenol could contribute to an NMDA role

in odor preference learning.

Early Odor Preference Learning Activates Glomerular
NMDA GluN1 Subunits During Learning Induction

To test the role of the NMDAR in our in vivo learning model, we

first examined whether the NMDAR is activated following early

odor preference learning and the localization of its activation in

the olfactory bulb. It has been shown that phosphorylation of

GluN1 affects the kinetics of the NMDAR, resulting in a larger

current and greater calcium influx [30]. We used immunohisto-

chemical staining with an antibody recognizing the PKA

phosphorylation site (Ser897) of the obligatory GluN1 subunit of

the NMDAR (pGluN1). We discovered that pairing the b-

adrenoceptor agonist isoproterenol (2 mg/kg s.c.) with peppermint

odor significantly increased pGluN1 expression in the mid-lateral

portion of the glomerular layer of olfactory bulbs from pups

sacrificed 5 min following odor training (n = 5 for ISO+odor

group, 0.08060.010; n = 4 for the control groups, 0.04460.007

and 0.04460.003 for saline+odor and ISO only groups;

F2,10 = 6.79: p = 0.014; Figure 5B). In contrast, there was no

difference in pGluN1 staining when the medial regions of the

glomerular layer were compared (F2,10 = 1.54: p = 0.261). The

location of pGluN1 activation is consistent with previous reports

using a 2-DG tracing technique showing that peppermint odor

activates glomerular ‘‘hot spots’’ in the mid-lateral portion of

Figure 2. NMDA receptor antagonist D-APV blocked ISO+TBS induced MC spike potentiation. A1-A4. D-APV effect on MC spiking. A1.
Single MC spiking patterns before, in the presence of, and 30 min following D-APV (50 mM) bath application. Arrow indicates the time of the single
olfactory nerve test stimulus. A2&A3. Peristimulus spike frequency histograms (binning 50 ms) under the control condition (red), in the presence of
D-APV (green) and 20–30 min following D-APV washout of the example cell in A1 (A2); and of the average of n = 4 cells in the same condition (A3). A4.
Histogram comparing mean spike frequencies during the 250 ms intervals before (spontaneous) and at two time intervals after the olfactory nerve
stimulation (evoked) under control conditions (red), during D-APV application (green) and 20–30 min following D-APV washout (black). B1-B3. D-APV
bath application blocked MC spike potentiation induced by paring ISO with TBS. B1. Single MC spiking patterns before and 30 min following TBS
induction in the presence of ISO and D-APV. B2&B3. Peristimulus spike frequency histograms under the control condition and 20–30 min after TBS
induction in the presence of ISO and D-APV of the example cell in B1 (B2); and of the average of n = 6 cells (B3). C. Histogram comparing mean spike
frequencies during the 250 ms intervals before (spontaneous) and after the olfactory nerve stimulation (evoked) under control conditions (red) and
20–30 min post-induction (black). **p,0.01. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g002
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olfactory bulb glomeruli [6,31,32] and that these peppermint ‘‘hot

spots’’ were enlarged in rat pups who underwent odor learning [9].

In the current study, immunohistochemistry revealed that pGluN1

staining in the glomerular layer was seen in processes (Figure 5A,

arrow heads in the enlarged inset) and may correspond to

dendritic structures in the glomeruli such as MC [33] and tufted

cell dendrites. We also observed staining in small glial-like cells

(Figure 5A, hollow arrows in the inset). We did not further pursue

the identity of those cells but glial cells in the olfactory bulb express

GluN1 [33] and glial activity (e.g. astrocytes) in the glomerulus

mirrors that of MCs [34]. We also analyzed pGluN1 expression in

the adjacent granule cell layer and found no significant changes in

either the lateral (F2,10 = 1.60: p = 0.249; Figure 5B) or the medial

region (F2,10 = 1.17: p = 0.35) among different experimental

groups.

b-adrenoceptor Mediated Early Odor Preference Learning
is NMDAR-dependent

We next explored a potential causal role of NMDAR activation

in mediating odor preference learning. We directly infused

isoproterenol (50 mM) into the olfactory bulbs of rat pups during

odor training [7] to induce odor preference learning and tested

whether co-application of D-APV (500 mM), a NMDAR antag-

onist, would block learning. We established a method that allowed

Figure 3. Glomerular application of muscimol blocked ISO+TBS induced MC spike potentiation. A1-A4. Acute effect of isoproterenol on
MC spiking. A1. Single MC spiking patterns in the control condition and in the presence of ISO bath application. Arrow indicates the time of the single
olfactory nerve test stimulus. A2&A3. Peristimulus spike frequency histograms (binning 50 ms) under the control condition (red), in the presence of
ISO (black) of the example cell in A1 (A2); and of the average of n = 7 cells in the same condition (A3). A4. Histogram comparing mean spike
frequencies during the 250 ms intervals before (spontaneous) and after the olfactory nerve stimulation (evoked) under control conditions (red) and
during ISO application (black). B1-B3. Local puff of the GABAA receptor agonist muscimol (0.2–10 mM) to the glomerular layer adjacent to the
stimulation pipette during TBS blocked ISO+TBS induced MC spike potentiation. B1. Single MC spiking patterns before, and 30 min following, TBS
induction in the presence of ISO and local muscimol application. B2&B3. Peristimulus spike frequency histograms under the control condition and
20–30 min after TBS induction in the presence of ISO and muscimol of the example cell in B1 (B2); and of the average of n = 6 cells (B3). C. Histogram
comparing mean spike frequencies during the 250 ms intervals before (spontaneous) and after olfactory nerve stimulation (evoked) under control
conditions (red) and 20–30 min post-inductions (black). *p,0.05. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g003
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us to infuse the drug mainly into the superficial layer of the

olfactory bulb on the lateral surface, where enhanced pGluN1

expression was observed following odor preference learning

(Figure 6A1). NMDAR is one of the excitatory synaptic

transmission receptors at ON-MC synapses [35,36], as well as

mediating synaptic transmission from MCs to granule cells [37–

39]. Depending on the synaptic site, NMDAR blockade would

have differential effects on MC excitation. Previous research

suggests that the NMDAR augments a long-lasting depolarization

of MCs to ON stimulation [36,40,41]. If D-APV acts at ON-MC

synapses to block NMDARs on MCs, we expected reduced MC

excitation. This hypothesis is supported by our electrophysiology

data (Figure 2A1–4) showing that D-APV application reduced ON

stimulation-evoked MC spikes in the olfactory bulb slice

preparation. In contrast, if D-APV acts more ventrally to block

NMDARs on granule cells, this would lead to reduced activity of

granule cells and subsequent disinhibition of MCs [37–39]. We

developed a lateral infusion protocol targeting the area of

peppermint representation. By infusing D-APV into one olfactory

bulb and aCSF into the other, we confirmed that our lateral

infusion protocol mainly affected NMDARs at ON-MC synapses

because pCREB, an acute neuronal activity marker, showed

reduced expression on MCs in the mid-lateral portion of the

olfactory bulb with D-APV infusion compared to that with aCSF

infusion (see results in Figure 6A2, 0.8560.05 (ratio of D-APV to

aCSF); n = 6; t = 2.852; p = 0.036). This is in contrast with a

significantly enhanced pCREB expression pattern observed after

we infused D-APV into the center of the olfactory bulb (as shown

in Figure 6B1), which most likely affected NMDARs on granule

cells (Figure 6B2, 2.0760.29 (ratio of D-APV to aCSF); n = 4,

Figure 4. Glomerular disinhibition induced MC spike potentiation and was dose- and D-APV dependent. A1-A3. 2 mM gabazine
(GABAA antagonist) induced MC spike potentiation following TBS. A1. Single MC spiking patterns in the control condition and in the presence of
2 mM gabazine locally puffed to the glomerular layer. Arrow indicates the time of the single olfactory nerve test stimulus. A2&A3. Peristimulus spike
frequency histograms (binning 50 ms) under the control condition (red) and in the presence of 2 mM gabazine (black) of the example cell in A1 (A2),
and of the average of n = 6 cells in the same condition (A3). B. Peristimulus spike frequency histograms showing that a higher dose (10 mM) of
gabazine local application failed to induce MC spike potentiation. C1-C3. D-APV application blocked MC spike potentiation induced by 2 mM
gabazine. C1. Single MC spiking patterns before and 30 min following TBS induction in the presence of a 2 mM gabazine and 500 mM D-APV local
puff. C2&C3. Peristimulus spike frequency histograms under the control condition and 20–30 min after TBS induction in the presence of gabazine
and D-APV of the example cell in C1 (C2); and of the average of n = 7 cells (C3). D. Histogram comparing mean spike frequencies during the 250 ms
intervals before (spontaneous), and after, olfactory nerve stimulation (evoked) under control conditions (red) and 20–30 min post-induction (black).
*p,0.05. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g004
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t = 3.731, p = 0.034). Using the lateral infusion method, we

discovered that D-APV blocked the learning effect caused by

isoproterenol infusion during odor training (Figure 6C). Figure 6C

shows that infusion of isoproterenol into the olfactory bulb during

peppermint odor exposure successfully induced odor preference in

young pups (63.567.3%), whereas control vehicle infusion

(32.966.4%) or isoproterenol infusion without odor exposure

(27.266.8%) failed to produce an odor preference (n = 6;

F3,20 = 6.136; p = 0.004). Co-application of D-APV with isopro-

terenol completely blocked the isoproterenol effect in inducing

odor preference (39.465.1%, n = 6; t = 2.703; p = 0.024). Further-

more, infusion of D-APV 10 min before testing the next day did

not affect the odor preference memory formed by pairing odor

with isoproterenol infusion (Figure 6D; Sham+Odor: 43.365.3%,

n = 7; ISO+Odor: 65.865.7%, n = 10; ISO+Odor+D-APV:

63.665.1%, n = 8; F2,24 = 4.647, p = 0.021). This suggests NMDA

receptors are critical in initiating learning at the glomerular level.

It also argues that AMPA receptors, but not NMDA receptors,

play a critical role in odor perception since rat pups with NMDA

blockade during testing, but not training, behaved identically to

those tested under ACSF infusion. Thus the preference established

with drug-free training was unaltered by the NMDA blocker D-

APV.

We also tested the effect of D-APV central infusions on learning.

The D-APV centrally-infused pups showed odor preference

learning compared to the control aCSF infused pups (Figure S1),

suggesting granule cell disinhibition of MCs is sufficient to produce

a learning signal.

Glomerular Disinhibition Plays a Role in Early Odor
Preference Learning

From our in vitro slice physiology data, we proposed that b-

adrenoceptor activation could promote long-term potentation by

suppressing the glomerular inhibitory network. Transient disinhi-

bition of MCs by b-adrenoceptor activation would lead to

increased NMDAR activation and sufficient calcium influx for

long-term plastic changes at these synapses. We tested whether

glomerular disinhibition could be a sufficient stimulus for early

odor preference learning (Figure 7). We used the same infusion

protocol as in Figure 6. One-way ANOVA analysis showed

significant drug effects (F4,34 = 5.666, p = 0.001). We infused a high

dose of muscimol (10 mM) together with isoproterenol into the

dorsal-lateral olfactory bulbs. Co-application of muscimol blocked

the early odor preference learning that could be induced by

isoproterenol infusion (isoproterenol+muscimol: 38.3465.40% on

peppermint; n = 7; isoproterenol infusion alone: 66.8966.41%;

n = 8; post-Tukey p = 0.018). We applied two concentrations of

gabazine to the olfactory bulbs. The lower dose (0.1 mM) of

gabazine infusion led to odor preference learning almost

comparable to isoproterenol (62.2167.09%; n = 8), while the

higher dose (1 mM) had a more modest and variable effect in

promoting learning (54.4766.94%; n = 8). D-APV co-application

to the olfactory bulbs with 0.1 mM gabazine, blocked the learning

effect caused by gabazine infusion alone (35.863.89%; n = 9; post-

Tukey: p = 0.020).

Early Odor Preference Learning Down-regulates NMDAR
Subunits

Our data provide strong evidence that NMDARs critically

mediate b-adrenoceptor induced early odor preference learning in

rats. The activation of NMDARs seems critical for learning

induction. We next explored the expression levels of NMDAR

subunits at the time of memory following early odor preference

Figure 5. Early odor preference learning induced phosphory-
lation of the NMDA GluN1 (pGluN1) at 5 min following
training. A. Immunohistochemistry of pGluN1 expression in the
olfactory bulb 5 min following the end of training. Red arrows in the
low magnification images indicate the mid-lateral glomerular layers
where most significant changes were observed. Inset shows high
magnification of a portion of the active region. Arrow heads indicate
mitral cell processes. Hollow arrows indicate glial-like staining.
Schematic on the right shows the region of interest for optical imaging
analysis. GL, glomerular layer. EPL, external plexiform layer. MCL, mitral
cell layer. GCL, granule cell layer. OB, olfactory bulb. Scale bars, 100 mm
(for inset) and 500 mm. B. Analysis of relative optical density of pGluN1
staining in glomerular and granule cell layers 5 min post-training.
Values presented are the relative optical density of the lateral
glomerular and granule cell layers for pGluN1. *p,0.05. Error bars,
mean6SEM.
doi:10.1371/journal.pone.0035024.g005
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learning. Activity-dependent modifications of NMDAR subunit

composition can alter receptor function, and subsequently have a

significant impact on the properties of synaptic plasticity

[20,21,42,43].

We performed Western blot analysis of olfactory bulb

synaptoneurosome samples collected at 3 h or 24 h following

early odor preference training. Synaptoneurosomes are membrane

protein extractions enriched for synaptic proteins [21]. Previous

studies demonstrated that this method greatly enhances the ability

to detect synaptic NMDARs and other synaptic receptor proteins

[44]. Immunoblotting was performed for NMDAR GluN1 and

GluN2B subunits.

Our analysis revealed that at 3 h following training, animals in the

learning group (ISO+odor) showed significantly less expression of the

obligatory GluN1 subunit of the NMDAR at synaptic sites within the

olfactory bulb compared to control saline groups (Normalized to

control, ISO+odor: 69.468.0%; ISO only: 82.3610.1%; n = 16;

F2,45 = 4.223, p = 0.021; Figure 8A). However, there was no

significant difference in GluN1 expression 24 h following training

(ISO+odor: 88.9612.4%; ISO only: 91.4617.9%; n = 15;

F2,42 = 0.216, p = 0.807; Figure 8A), suggesting a transient and

reversiblechange inGluN1uisngourodor trainingprotocol.Overall,

the developmental pattern for the GluN1 subunit is down-regulation

(PND 21, normalized to PND 6: 0.2260.07; n = 5; t = 11.691;

p,0.001; Figure 8B) suggesting the transient change at PND 6 may

provideawindowofreducedplasticity thathelps stabilize learning.As

predicted, littermates who received isoproterenol paired with

peppermint odor exposure showed odor preference memory the

next day, spending significantly more time over peppermint bedding

than animals incontrol groups (ISO+odor:61.664.0%; saline+odor:

38.164.0%; ISO only: 35.562.7%; n = 23; F2,64 = 15.743, p,0.001;

Figure 8C).

These data strongly suggest that local glomerular disinhibition

can mimic isoproterenol in inducing early odor preference

learning and NMDA receptor activity is still required for this

learning to occur.

Figure 6. b-adrenoceptor mediated early odor preference learning was NMDAR-dependent. A1-A2. Lateral drug infusion site that
selectively affects glomerular ON-MC synapses. A1. Mid-lateral infusion sites at either coronal or horizontal views of the olfactory bulbs, infused with
methylene blue dye (4%). Black arrows indicate the sites of infusions. A2. pCREB immunohistochemistry staining shows that MC staining on the D-
APV infusion site were suppressed compared to the control ACSF site, suggesting D-APV mainly acts on the ON-MC synapses in this preparation. Red
arrows in the upper panel indicate the difference in pCREB staining in the lateral regions of the MC layers. Lower panel shows enlarged lateral regions
of MC layers. Scale bars, 500 mm (upper panel) and 200 mm (lower panel). B1. Central infusion sites at either coronal or horizontal views of the
olfactory bulbs, B2. pCREB immunohistochemistry staining shows that MC staining on the D-APV infusion sites was enhanced compared to the
control ACSF sites, suggesting D-APV mainly acts on the GC-MC synapses in this preparation. Same labeling and enlargement were used as in A2. C.
Early odor preference learning is blocked when an NMDAR antagonist D-APV is infused during training. Bars show the percentage of time spent in the
peppermint side of a two-choice test box across different experimental groups. *p,0.05. Error bars, mean6SEM. D. D-APV infusion 10 min before
testing does not prevent the odor preference formed with ISO+Odor pairing. *p,0.05. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g006
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The NMDAR consists of two obligatory GluN1 and two

regulatory GluN2 subunits – either GluN2A or GluN2B [45].

Down-regulation of the GluN1 subunit specifically reflects the

overall expression level of the NMDAR, while the composition of

GluN2 subunits can undergo activity-dependent changes that alter

receptor function [21,45,46]. For example, the GluN2B subunit

confers slower and broader kinetics to the NMDAR, with opening

characteristics that permit a bigger calcium influx [21]. Therefore,

more GluN2B expression often favors greater synaptic plasticity

[20,21,42,43]. We examined GluN2B subunit expression following

early odor preference learning at the same time points as GluN1

(Figure 9). Our analysis showed that not at 3 h (ISO+odor:

106.5613.0% normalized to Saline group; ISO only: 92.369.1%;

n = 19; F2,54 = 0.609, p = 0.547), but at 24 h following odor

training, animals in the learning group (ISO+odor) show

significantly less expression of the GluN2B subunit of the

NMDAR at synaptic sites within the olfactory bulb compared to

the saline group (ISO+odor: 79.368.5% normalized to Saline

group; n = 19; t = 2.43, p = 0.026; Figure 8D). This is another

change which would reduce plasticity and could act to stabilize

NMDAR-dependent learning.

Early Odor Preference Learning Significantly Alters the
AMPA/NMDA Ratio of ON-evoked MC EPSCs

A recent report demonstrated AMPA GluA1 subunit up-

regulation in the glomerular layer [47] following early odor

preference learning. AMPAR insertion into ‘‘silent’’ NMDAR

only synapses and the down-regulation of NMDAR subunits

observed in our study fits well with activity-dependent changes of

synaptic receptor trafficking. We next sought to understand the

cellular locus of these receptor changes. We carried out whole cell

recording experiments of MCs within the mid-lateral olfactory

bulb at different time points post-training. From olfactory bulb

slices of unilateral nasal occluded animals (10 min nasal occlusion

during odor training, see Methods), we measured the AMPA/

NMDA ratio of ON-evoked EPSCs from MCs of occluded

(control) and non-occluded (learning) olfactory bulbs. At 1–3 h

post-training, the AMPA/NMDA ratio of ON-evoked MC EPSCs

from non-occluded olfactory bulbs was significantly higher than

that recorded from occluded olfactory bulbs (non-occluded:

2.8160.72, n = 12; occluded: 0.7460.20, n = 10; t = 2.54,

p = 0.010; Figure 9C). The AMPA/NMDA ratio at 24 h post-

training showed a similar trend (non-occluded: 2.8160.77, n = 10;

occluded: 1.1860.30, n = 8; t = 1.80, p = 0.045; Figure 9D). We

also compared the AMPA/NMDA ratios of naı̈ve slices from

animals at the same ages with those of occluded ones and found no

difference among these groups (data not shown), suggesting no

effect of isoproterenol injection or acute nasal occlusion on the

AMPA/NMDA ratios.

In order to test whether presynaptic changes are involved

following early odor preference learning, the PPRs of peak

EPSCs measured at 270 mV were compared between the two

groups. Although not significant, the PPR of the non-occluded

group was lower than that of the occluded group at 1–3 h post-

training (non-occluded: 0.6560.1, n = 12; occluded: 0.8860.12,

n = 10; t = 1.48, p = 0.077; Figure 9C). Interestingly, when cells

recorded at 1 h post-training were examined alone, a clear

difference between occluded and non-occluded cells was evident

Figure 7. Glomerular disinhibition mimicked isoproterenol
effect in inducing early odor preference learning. Bars show
the percentages of time spent in the peppermint side in a two-choice
test box in different experimental groups. **p,0.01 *p,0.05. Error bars,
mean6SEM.
doi:10.1371/journal.pone.0035024.g007

Figure 8. Early odor preference learning significantly down-
regulated synaptic NMDAR subunits expression in the olfac-
tory bulb. A. Western blot analysis of olfactory bulb synaptoneuro-
some samples collected at 3 h and 24 h following early odor preference
training. Relative optical density values are normalized to the
saline+odor group. B. Western blot analysis of olfactory bulb
synaptoneurosome samples collected from naı̈ve PND 6 and 21 rats.
C. Two-choice odor test of the littermates. D. GluN2B expressions at 3 h
and 24 h following early odor preference training. Relative optical
density values are normalized to the saline+odor group. **p,0.01.
*p,0.05. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g008
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(non-occluded: 0.6360.13, n = 7; occluded: 1.0560.17, n = 4;

t = 1.94, p = 0.042), suggesting there may be a transient

presynaptic change involved in the early stages of odor

preference memory formation. In line with this idea, there

was no difference between the PPRs recorded from cells from

non-occluded and occluded olfactory bulbs at 24 h post-training

(non-occluded: 1.0460.18, n = 9; occluded: 0.8260.14, n = 7;

t = 0.94, p = 0.182; Figure 9D).

Discussion

An Enhanced MC Excitation Model for Early Odor
Preference Learning

McLean et al. proposed that the substrate for early odor

preference learning in the olfactory bulb is enhanced excitation of

MCs [2,4,19]. Enhanced CREB phosphorylation in MCs in odor-

encoding ‘‘hot spots’’ has been observed following odor preference

learning [2], and evidence suggests b-adrenoceptor promotion of

the cAMP/PKA/CREB cascade in MCs of the olfactory bulb

underpins memory formation [1–4]. The critical learning change

is hypothesized to be a long-term facilitation of ON-MC synaptic

transmission [4]. Increased excitation of odor-encoding MCs

results in enhanced lateral inhibition to surrounding MCs, which

sharpens the MC signals induced by the learned odor [4,48]. The

increased MC calcium responses observed 30 min after pairing

ON-TBS and isoproterenol in vitro [19], and the enhanced MC

CREB phosphorylation observed in vivo [2], support the MC

excitation model. Other studies of the MC to granule cell synapse

in the carp using antidromic activation of MCs have also shown

LTP changes in MC activation of granule cells following activation

of the cAMP cascade either directly or via 20 mM norepinephrine

[49]. In an in vivo study of the carp these LTP changes were shown

to associate with increased odor responses consistent with

enhanced ON-MC activity [50]. Schoppa’s group also showed

that during TBS-ON stimulation, norepinephrine induces a long-

term increase in gamma frequency (30–70 Hz) synchronized

oscillations recorded in the external plexiform layer [41]. This

enhancement appears to be caused by increased excitatory drive

on the mitral/granule cell network. Taken together, these results

suggest the primary effect of an unconditioned stimulus, such as

norepinephrine, is long-lasting potentiation of MC excitation.

Here, we directly tested the MC excitation hypothesis by

measuring MC spike activity in acute olfactory bulb slices. Our

results show that TBS of the ON, in conjunction with bath

application of the b-adrenoceptor agonist isoproterenol, signifi-

cantly increased MC-evoked spikes 30 min after the pairing

induction. Neither TBS nor isoproterenol alone induced the long-

term changes in evoked MC spiking activity seen with pairing.

This result provides direct evidence that in a situation mimicking

odor conditioned learning, long-lasting potentiation of MC

responses can be induced. Further, we observed an increased

ratio of AMPAR/NMDAR-mediated synaptic currents in the

MCs of olfactory bulbs that underwent natural learning. A

transient reduction in the PPR suggests an early presynaptic

change may also be involved.

Synaptic Mechanisms Underlying Enhanced MC
Excitation – Glomerular Disinhibition

We were particularly interested in what the specific effects of b-

adrenoceptor activation on MCs are that could lead to long-lasting

synaptic potentiation. Studies using immunohistochemistry and

receptor autoradiography show that b-adrenoceptors are ex-

pressed in MCs [4], juxtaglomerular cells [4,51], and granule cells

[51]. b-adrenoceptor expression on MCs raises the possibility that

b-adrenoceptor activation acts directly to increase MC excitability.

On average, we observed that acute application of isoproterenol

increased spontaneous MC spikes. However, isoproterenol ap-

pears not to have a direct effect on MC excitability [28]. Although

isoproterenol caused an inward current in MCs in voltage clamp,

this inward current was abolished by synaptic transmission

blockers, suggesting an indirect circuitry effect. Thus, isoproter-

enol may enhance MC excitation through disinhibition of either

granule or periglomerular cells. In particular, isoproterenol

Figure 9. Early odor preference learning altered the ratio of MC
AMPA/NMDA currents and the PPR in the olfactory bulb slices.
A. Pharmacological isolation of AMPA and NMDA EPSCs at 270 mV and
+40 mV in one example cell. Arrows indicate truncated stimulation
artifacts. B. An example cell showing the measurement of the AMPA
component (1, peak at 270 mV) and the NMDA component (2, average
of 50–100 ms following the stimulation at +40 mV). C. The AMPA/
NMDA ratio and PPR 1–3 h post-training. D. The AMPA/NMDA ratio and
PPR 24 h post-training. *p,0.05. Error bars, mean6SEM.
doi:10.1371/journal.pone.0035024.g009
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suppresses evoked EPSCs and calcium responses in periglomerular

cells [19]. This leads to the hypothesis that isoproterenol can

disinhibit MCs through suppression of inhibitory glomerular

neurons. Periglomerular neurons exert a powerful inhibitory

output in the glomerulus, where they receive ON input and

subsequently ‘‘gate’’ MC activities associated with the glomerulus

[29]. Periglomerular feedforward inhibition suppresses MC long-

lasting depolarization and preferentially filters MC responses to

weak odor signals [29]. Disinhibition of MCs by inhibiting

periglomerular neurons could enhance MC excitation and permit

the level of calcium entry required for synaptic plasticity. Our data

show that enhancing glomerular inhibition by muscimol puffs to

the glomerular layer prevents the potentiation of MC spikes

induced by the pairing of TBS and isoproterenol. Furthermore,

local, as indicated by phenol red, glomerular disinhibition by a low

dose of gabazine, when paired with TBS, results in MC spike

potentiation in the absence of isoproterenol. Further tests of the

effect of isoproterenol on directly connected PG and MCs using

paired electrical recording or optical imaging would provide more

direct evidence regarding the role of isoproterenol and periglo-

merular disinhibtion.

Given these effects on ON-MC plasticity, we employed an

infusion method to study the effect of glomerular disinhibition on

learning. We reasoned that if isoproterenol causes depolarization

of MCs through glomerular disinhibition, then enhancing

glomerular inhibition by muscimol infusion would prevent

isoproterenol-mediated early odor preference learning. Our results

show that co-infusion of muscimol completely blocked isoproter-

enol-induced learning; however this could have occurred due to

loss of odor signaling at encoding. We tested this possibility by

examining the effect of muscimol on normal peppermint aversions.

The same infusion of muscimol prevented the normal peppermint

aversion seen without training (Figure S2) and suggests that odor

signaling is altered by muscimol. More convincingly in support of

an important role for disinhibition, our data showed that a

glomerular infusion of the GABAA antagonist, gabazine, paired

with odor, produced an odor preference. We infer that local

disinhibition in the glomeruli responding to peppermint is

sufficient for odor preference learning. We cannot, of course, rule

out in the in vivo infusions that there is some contribution of

granule cell disinhibition. The work of Kaba demonstrated that

manipulation of inhibition in the olfactory bulb by whole bulbar

infusion of a GABAA receptor agonist, or antagonist, blocked or

induced odor learning in PND 12 rats [52]. In our preparation,

the use of a lateral infusion method, which did not increase MC

excitation as indicated in our pCREB test in the D-APV infusion

experiment (Fig. 6), suggests glomerular disinhibition alone may be

effective in inducing learning. This is supported by the in vitro

plasticity data using gabazine puff application to the glomeruli. We

propose that both beta-adrenergic-mediated disinhibition [19] and

phosphorylation of mitral cell GluN1 subunits [47] act in concert

to enhance NMDA calcium currents and promote local olfactory

nerve-mitral cell potentiation.

Critical Role of NMDAR in Early Odor Preference Learning
The NMDAR, common in dendritic structures of learning-type

neurons, has long been considered to be a critical mediator of

associative plasticity [53]. NMDARs are located on both the apical

and lateral MC dendrites [35,54] and mediate a component of

ON-evoked MC synaptic potentials [35,36]. NMDARs on MCs

are ideal as coincidence detectors, to associate the presynaptic

glutamate release triggered by ON input, with the postsynaptic

MC depolarization provided by isoproterenol disinhibition. We

found that D-APV co-application with isoproterenol blocked MC

spike potentiation in vitro and odor preference learning in vivo. The

causal effect of NMDAR activation in learning induction was

complimented by a correlational increase of GluN1 phosphory-

lation in the learning group (ISO+odor) shortly following odor

training. The locus of pGluN1 change appears to be in the

glomerular layer corresponding to the peppermint-responsive

region.

In our study, D-APV modulation of MC spiking was consistent

with intracellular MC recordings showing that D-APV blocks a

late component of EPSCs [35,55]. The AMPA receptor mediates

fast and short-latency spikes within 50 ms of stimulation onset

[27]. Since D-APV application suppressed MC-evoked spikes,

there is a possibility that D-APV could affect odor perception.

However, D-APV infusion before testing did not change the odor

preference formed by pairing isoproterenol with odor. This result

rules out the possibility that local NMDAR blockade affects odor

perception (in that case, animals would spend equal amounts of

time on peppermint and control bedding) or memory retrieval (in

that case, animals would spend less time on peppermint similar to

control non-learning pups). D-APV blockade of both gabazine-

induced MC spike potentiation as well as early gabazine-induced

odor preference learning, raises the possibility that b-adrenoceptor

activation and glomerular disinhibition share common mecha-

nisms in the induction of odor preference learning.

NMDAR Down-regulation Following Early Odor
Preference Learning

While the NMDAR is activated during learning acquisition, we

found a down-regulation of NMDAR responses during the

memory phase. These were of two types. Within a memory

interval that does not depend on protein synthesis [56], that is 3 h

post odor training, GluN1 obligatory subunits significantly

decreased in the synaptosomal preparation suggesting less NMDA

receptor insertion or more NMDA receptor degradation. AMPA

receptor insertion appears to increase by 3 h post training in the

same paradigm [47]. At the time of 24 h memory, which is

dependent on protein synthesis, GluN1 measurements suggest

NMDA receptor insertion and/or degradation has returned to

baseline (AMPA receptor insertion remains elevated at this time

point [47]). However, the composition of the NMDA receptor

complex is significantly altered with a reduction in the NR2B

subunit. The NR2B subunit is associated with larger NMDA

currents and greater synaptic plasticity [21]. Taken together these

two events suggest plasticity is down-regulated following condi-

tioning. Such functional down -regulation of the NMDAR may

help to prevent further synaptic change and enable the

consolidation of the newly-forming memory. Odor experience

itself has been previously shown to reduce NMDA currents in the

olfactory cortex when comparing pyramidal neurons in the

piriform cortex deprived of input for days to those non-deprived

[20]. In a single nostril odor preference training paradigm, we

have recently demonstrated physiologically at 24 h post training

that NMDA current is reduced and AMPA current is increased for

olfactory nerve input to learning synapses [57], consistent with the

molecular changes observed in Cui et al, 2011 [47] and in the

present study. This suggests the change in AMPA/NMDA EPSC

ratio seen in MCs in the present experiment is mediated by both

increases in AMPA receptors and changes in NMDA receptor

composition that reduce current flow. In contrast, initial

NMDAR-mediated MC firing appears stronger in the first

30 min in the in vitro preparations that have undergone ‘training’,

one would predict weaker NMDA responses at longer time

intervals based on the membrane subunit data. Phosphorylation of

NMDARs was reported earlier [47] to occur up to 30 min
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following training, and could underlie the increase in NMDA-

driven responses seen in the first half hour. This would be

consistent with the failure to see an increase in NMDA-driven

responses in the gabazine model in which b-adrenoceptor

mediated PKA phosphorylation of NMDARs would not be

predicted.

NMDAR-dependent synaptic activity also regulates the com-

position and function of the NMDAR itself [21,42]. With learning

in adult rats, the GluN2B has previously been shown to down-

regulate, replaced by GluN2A [44]. This is consistent with our

finding of a reduction of GluN2B expression 24 h following odor

training. However, the reduction of GluN2B at 24 h post-training

compared to controls suggests a functional change in NMDARs

with learning, in addition to the developmental critical period

down-regulation in this system. It would be interesting to

determine, whether in the 3–24 h time period after acquiring an

odor preference, pups show resistance to changing their response

to the learned odor and/or if they have an altered plasticity

response when tested with odors that overlap in glomerular

representation with the learned odor.

Materials and Methods

Animals and Ethics Statement
Sprague Dawley rat pups (Charles River) of both sexes were

used in this study. Day of birth was considered to be postnatal day

(PND) 0 and litters were culled to 12 pups on PND 1. Dams were

maintained under a 12 h reverse light/dark cycle at 22uC in

polycarbonate cages with ad libitum access to food and water. All

experimental procedures were approved by the Institutional

Animal Care Committee at Memorial University of Newfound-

land (protocol number: 11–01-QY) and follow the guidelines set by

the Canadian Council on Animal Care.

In vitro Eletrophysisology
Slice preparation and extracellular recording. PND 7–

13 rats were anesthetized with halothane inhalation and

decapitated. The brains were dissected and placed into ice-cold

artificial cerebrospinal fluid (aCSF) containing the following (in

mM): 83 NaCl, 2.5 KCl, 0.5 CaCl2, 3.3 MgSO4, 1 NaH2PO4,

26.2 NaHCO3, 22 glucose, and 72 sucrose equilibrated with 95%

O2 and 5% CO2. Horizontal olfactory bulb slices were cut at

400 mm using a vibrating slicer (Leica VT 1000P) and incubated at

34uC for 30 min in the same high glucose aCSF. Slices were then

left at room temperature until use. During recording, slices were

superfused with aCSF containing the following (in mM):

119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1 NaH2PO4,

26.2 NaHCO3, 22 glucose equilibrated with 95% O2 and 5%

CO2 and viewed with an upright microscope (Olympus BX51)

using differential interference contrast (DIC) optics. Extracellular

loose patch recordings were obtained with glass pipettes filled with

aCSF (2–3 MV) and positioned at the cell body of MCs. The

stimulation pipette was placed at the ON layer adjacent to the

glomeruli that were innervated by the primary dendrites of the

recorded MCs. The ON was stimulated by a single test stimulus

(20–100 mA) every 20 sec using a concentric bipolar stimulating

pipette (FHC). The intensity of the stimulation was adjusted to

evoke non-saturating MC spikes (approximately 50–60% of the

maximum spikes). Theta burst stimulation (TBS, 10 bursts of high

frequency stimulation at 5 Hz, each burst containing five pulses at

100 Hz, with the same stimulation intensity as the test stimuli) that

mimics the sniffing cycles in the ON [58] was given after a baseline

was taken. Electrophysiological data were recorded with a

Multiclamp 700B (Molecular Devices), filtered at 2 kHz and

digitized at 10 kHz. Data acquisition and analysis were performed

with pClamp10 (Molecular Devices) and Igor Pro 6.10A

(WaveMetrics). All experiments were conducted at 30–32uC,

and data are mean6SEM. Student’s t-test and one-way ANOVA

were used to determine statistical significance.

Drug application. The b-adrenoceptor agonist isoproterenol

(10 mM, Sigma-Aldrich) was bath applied in all experiments. The

NMDAR antagonist D-APV (50 mM, Tocris) and the AMPA

receptor antagonist NBQX (40 mM, Tocris) were used in bath

application with the experiments in Figures 1 and 2. The GABAA

receptor antagonist muscimol (0.2–10 mM, Tocris), the GABAA

agonist gabazine (2 mM or 10 mM, Tocris) and D-APV (500 mM)

were locally puffed in the glomerular layer of olfactory bulb slices

(Figures 3B and 4). For local puffing of drugs on the glomerular

layer adjacent to the stimulation pipette, a glass pipette (1–2 MV)

was placed in the ON next to the glomerular layer. The glass

pipette was filled with drugs dissolved in aCSF and drugs were

puffed by pressure. The extension of the puff flow was monitored

by a red dye, phenol red (0.1–1%) dissolved in the same pipette

solution. Phenol red puff itself (in aCSF) had no effect on MC

responses. Pressure was adjusted and controlled so that the red

solution spread to 2–5 glomeruli surrounding the stimulation

pipette.

Behavioral Studies Overview
Behavioural conditioning and testing occurred in a temperature

controlled room at approximately 28uC and followed the standard

protocol previously established for early odor preference learning

[59]. An initial study assessed PKA-mediated phosphorylation of

the obligatory GluN1 subunit of the NMDAR immediately

following training. Based on the results of this pGluN1 experiment

and previous work using 2-DG [31,32], we next developed a

protocol for intrabulbar infusion that allowed us to specifically

target peppermint odor regions in the lateral olfactory bulb. We

examined MC pCREB levels in olfactory bulbs from pups

sacrificed 10 min post training. This time point was chosen as it

is associated with maximal training-induced pCREB activation.

We compared the effectiveness of lateral and central cannulae

placements for the infusion of D-APV in modifying pCREB

expression. Specific details of this analysis are given under the

pCREB immunohistochemistry analysis below. The lateral

placements shown to be effective (Fig. 6A and 6B) were used in

all subsequent intrabulbar behavioral experiments where we

investigated the role of NMDA and GABAA receptors in odor

preference learning. Finally, ex vivo experiments were carried out to

examine olfactory bulb NMDAR changes following learning.

Specifically, regulation of the GluN1 and GluN2B subunits of the

NMDAR at 3 h and 24 h following odor preference training was

examined in olfactory bulb synaptoneurosomes. Changes of the

relative strengths of AMPAR/NMDAR mediated synaptic

currents were also examined by MC recordings from olfactory

bulb slices of pups trained with unilateral naris plugs. Student’s t-

tests and one-way ANOVAs were used to determine statistical

significance throughout the experiments.

pGluN1 Immunohistochemistry
Animals underwent odor preference training where they were

individually removed from the nest briefly to receive a subcuta-

neous injection of either saline or isoproterenol (2 mg/kg, made in

saline;) [59], and then returned to the nest. Thirty min following

injection, each pup was individually placed on unscented clean

bedding for a 10 min habituation period before being transferred

to peppermint scented bedding (0.3 ml peppermint extract per

500 ml clean bedding) for a 10 min odor exposure period. A third
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group received only an isoproterenol injection with no exposure to

peppermint odor, remaining on unscented bedding for 20 min. At

5 min following the end of the training period, animals were

deeply anesthetized with chloral hydrate (Sigma-Aldrich) and

perfused transcardially with ice-cold saline solution followed by

ice-cold fixative solution (4% paraformaldehyde in 0.1 M

phosphate buffer, pH 7.4). Brains were removed from the skull

with olfactory bulbs intact and post-fixed for 1 hr in the same

solution, after which they were immersed in 20% sucrose solution

overnight at 4uC. The next day, brains were quick-frozen in dry

ice and 30 mm coronal sections were cut in a cryostat at 220uC.

Sections from animals in each treatment group within the same

experiment were mounted together on the same slide in order to

ensure uniform staining development across experimental groups.

The pGluN1 antibody (1:500, Abcam) was used to probe for

phosphorylation of the NMDAR at the Ser897 PKA-mediated

phosphorylation site. The antibody was dissolved in phosphate

buffered saline with 2% Triton-X-100, 0.002% sodium azide, and

5% normal goat serum and applied to sections overnight at 4uC in

a humidified chamber. The next day, sections were incubated in a

biotinylated secondary antibody (Vectastain Elite) followed by a

diaminobenzidine tetrahydrochloride reaction. Sections were

dehydrated and coverslipped with permount (Fisher Scientific).

Image analysis for pGluN1 immunohistochemistry. Stain-

ing for pGluN1 was analyzed using a Bioquant image analysis system

(R&M Biometrics). Images of sections were captured with a CCD

camera connected to a Leitz microscope. The light intensity of the

microscope was kept at the same level for all sections analyzed. For

each section analyzed, the optical density (OD) of the ON layer was

used as a measure of background OD. After taking a captured image

of a section, regions of interest (ROI) were selected using a hand

tracing tool. The relative OD of each ROI was obtained using the

following formula: (OD of ROI – OD of background)/OD of

background. Image analysis was conducted on every 3rd–4th section

beginning from the most rostral extent of the olfactory bulb until the

accessory olfactory bulb was reached caudally. For each section,

regions analyzed included the lateral and medial portions of the

glomerular layer, as well as the lateral and medial portions of the

granule cell layer lying directly subjacent to those areas of the

glomerular layer analyzed (outlined in Figure 5A, right panel). The

relative ODs across the rostrocaudal extent measured were compared

for the lateral and medial regions among groups. This was an attempt

at specifically targeting training odor induced changes as previous

studies have reported peppermint ‘‘hotspots’’ to be located on the

lateral surface of the olfactory bulb [6,31,32]. Values reported are

mean6SEM for each ROI measured.

Cannulae Implantation Surgery and Drug Infusion
Two guide cannulae (Vita Needle Company Inc.; 23 gauge

tubing cut to 6 mm) were anchored in dental acrylic (Lang Dental)

such that they were separated laterally by approximately 4 mm

and extended beyond the acrylic by approximately 0.5–1 mm.

Insect pins were placed inside the guide cannulae to prevent

blocking.

On PND 5 rat pups were anesthetized via hypothermia and

placed in a stereotaxic apparatus with bregma and lambda in the

same horizontal plane. The skull was exposed and the olfactory

bulbs were visualized through the thin skull. Two small holes were

drilled over the dorsal-lateral surface in the central plane of each

olfactory bulb. The cannulae were lowered into the olfactory bulb

and the assembly was fixed to the skull with dental acrylic. The

skin was sutured together and pups were allowed to recover from

anesthesia on warm bedding before being returned to the dam and

littermates.

Infusion cannulae were made from 30 gauge stainless steel

tubing (Small Parts Inc.) cut to a length of approximately 13 mm

and inserted into PE20 polypropylene tubing (Intramedic). Each

infusion cannula was inserted into a piece of tubing so that 7 mm

of cannula extended beyond the end of the tubing. For bilateral

olfactory bulb infusion, the other end of the tubing was secured

over the needle of a 10 ml microsyringe (Hamilton Company). The

two syringes attached to the infusion cannulae were placed in a

multi-syringe pump (Chemyx). At infusion, the insect pins were

removed from the guide cannulae and the infusion cannulae were

gently inserted into the olfactory bulb through the guide cannulae

assembly previously fixed to the animal’s skull.

pCREB Immunocytochemistry for Checking Infusion-
associated Changes in MC Activity

To establish the relationship between the placement of infusion

cannulae and MC activity, pCREB immunocytochemistry was

carried out. PND 6 rats were exposed to peppermint-scented

bedding for 10 min. During the odor exposure period, aCSF was

infused into one bulb and D-APV (500 mM made in aCSF) was

infused into the other bulb at a rate of 0.1 ml/min for 10 min. Five

to ten minutes following the end of odor exposure, animals were

deeply anesthetized and perfused transcardially as described

above. Section treatment was as for the pGluN1 experiment

except that a pCREB antibody (1:100, Cell Signalling) was used.

In all animals, we observed lighter or similar MC pCREB staining

when D-APV was infused laterally (compared with the aCSF

control side) and significantly darker pCREB staining when D-

APV was infused centrally, supporting the utility of selective

cannulae placement. A quantitative assessment of placement

differences was carried out by imaging analyses of the optical

density of the mid-lateral MC layer using the same method as for

the pGluN1. Six laterally infused and four centrally infused

animals with optimal bilateral cannulae positioning and intact

sections throughout the olfactory bulbs as well as optimal pCREB

staining were used for this analysis. The ratios of the optical

densities of the D-APV and the aCSF-infused olfactory bulbs from

each animal were compared.

Intrabulbar Infusion Experiments
In all subsequent experiments animals received the b-adreno-

ceptor agonist isoproterenol (50 mM), administered directly into

the olfactory bulbs via intrabulbar infusion as the unconditioned

stimulus [7]. All drugs for infusion were made in aCSF.

NMDAR antagonist experiment. During training on PND

6, animals received bilateral intrabulbar infusion of aCSF,

isoproterenol, or isoproterenol together with D-APV (500 mM).

Infusion occurred at a rate of 0.05 ml/min for 20 min over the

course of the habituation period and the odor exposure period, the

total volume infused was 1ml/bulb. The next day, pups were tested

for odor preference memory as described below. To test whether

D-APV infusion affects odor detection and memory acquisition,

we performed another set of experiments with D-APV infusion

10 min before testing while isoproterenol was infused during

training on PND6. A group of animals with sham surgery and

10 min odor exposure served as the non-learning control while

another group with only isoproterenol infusion during odor

training (no D-APV infusion before testing) served as a normal

learning control.

GABAA receptor experiment. During training on PND 6,

animals received bilateral intrabulbar infusion of either

isoproterenol, isoproterenol together with muscimol (20 mM,

Tocris), gabazine (0.1 mM, 1 mM, Tocris), or gabazine together

with D-APV (0.5 mM). In this experiment again, a total volume of
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1 ml per bulb was administered at a rate of 0.1 ml/min during the

10 min odor exposure period. The next day, pups were tested for

odor preference memory as described below.

Two-choice odor testing. On PND 7 each pup was tested

for odor preference memory. A stainless steel box (30620618 cm)

was placed on top of two training boxes separated by a 2 cm

neutral zone. One box contained peppermint scented bedding

while the other box contained clean, unscented bedding. Each pup

was removed from the nest and underwent five separate 1 min

trials during which they were placed in the neutral zone of the test

box and allowed to move freely. After each trial the pup was

removed from the test box for a 1 min intertrial interval. During

testing, when the pup’s nose moved from the neutral zone to either

the peppermint side or the unscented side, the experimenter began

recording time. The total amount of time spent over peppermint

scented bedding and unscented bedding over all 5 trials was

calculated separately. Values reported are the percentages of time

animals spent over the peppermint scented bedding divided by the

total time spent over peppermint+unscented bedding combined.

This follows the standard protocol pioneered by Sullivan et al [13].

Typically rat pups dislike peppermint odor. Naı̈ve and control

animals usually spend only 20–40% of time over peppermint

scented bedding [13,18], suggesting a natural aversion to the odor.

Odor preference is demonstrated by pups trained under normal

pairing protocols spending a significantly higher proportion of

total time over peppermint scented bedding compared to pups

from non-learning control conditions.

Cannulae placement verification. After testing, those

animals who had received intrabulbar infusions during training

received a final intrabulbar infusion of methylene blue dye (4%,

Fisher Scientific) at the same rate and volume as during training.

Following infusion, pups were sacrificed and the olfactory bulbs

were examined to ensure correct placement of cannulae in the

glomerular layer of the dorsal-lateral olfactory bulb. Pups with

incorrect cannulae placements were excluded from analysis.

Western Blots on Synaptoneurosomes
Behavioral procedure and sample collection. Animals

received a subcutaneous injection of either saline or isoproterenol

(2 mg/kg) and underwent odor preference conditioning, while a

separate group received isoproterenol alone without odor exposure

as previously described. Following training, pups were returned to

the nest. At 3 h or 24 h following training, animals were sacrificed

and olfactory bulbs were rapidly removed and flash frozen on dry

ice. All samples were stored at 280uC until use. Littermates were

tested at 24 h for odor preference learning as described earlier.

Synaptoneurosome isolation. Isolation of synaptoneurosomes

(a protein extraction enriched with synaptic protein) was performed

as described elsewhere [60,61]. Briefly, whole olfactory bulbs were

homogenized using Teflon-glass tissue homogenizers (Thomas

Scientific). Samples were homogenized in ice-cold HEPES buffer

containing (in mM): 50 HEPES, 124 NaCl, 26 NaHCO3,

1.3 MgCl2, 2.5 CaCl2, 3.2 KCl. 1.06 KH2PO4, 10 glucose, 1

EDTA, 1 PMSF, complete protease inhibitor cocktail (Roche),

complete phosphatase inhibitor cocktail (Roche), and saturated with

95% O2/5% CO2 (pH 7.4). Following a 10 min incubation period

on ice, homogenates were passed through a series of filters held in

syringe filter holders (Millipore); first through two 100 mm nylon

filters (Small Parts Inc.), then through a 5 mm filter (Millipore). Next,

the filtrate was centrifuged at 10006g for 20 min at 4uC. After

centrifugation, the synaptoneurosome pellet was resuspended in ice-

cold HEPES buffer and protein concentrations were determined

using a BCA protein assay kit (Pierce). Samples, standards and

reagents were added to a 96 well plate and incubated at 37uC for

30 min. Next, the plate was read at 540 nm on a BIO-RAD Model

3550 Microplate Reader. The concentration of protein in each

sample was calculated using a standard curve generated from values

of standards run on the same plate. The volume of lysate required to

obtain 40 mg of protein for each sample was determined according to

the calculated protein concentrations of each sample.

Western blot. Sample solutions were prepared using 4 ml of

5X sample buffer (0.3 M TRIS-HCl, 10% SDS, 50% glycerol,

0.25% bromophenol blue, 0.5 M dithiothreitol), lysate (volume

determined to contain 40 mg protein), and enough dH2O to bring

the total volume to 20 ml. Sample solutions were then boiled for

5 min before being loaded into lanes of a 7.5% SDS-PAGE gel.

Samples were separated by SDS-PAGE and then transferred to a

nitrocellulose membrane (Amersham). After transfer was

complete, membranes were cut horizontally at the 72 kDa level;

the top portion was probed with an antibody recognizing either

GluN1 (1:1000, Cell Signalling) or GluN2B (1:1000, Millipore),

while the bottom portion of the membrane was probed with an

antibody recognizing b-actin (1:2000, Cedarlane). Membranes

were immersed and agitated in primary antibody overnight at

4uC. The next day, antibodies were detected using a horseradish

peroxidase-conjugated secondary antibody (Pierce), visualized with

Super West Pico Chemiluminescent Substrate (Pierce), and

developed on X-ray film (AGFA). Samples collected from the

same litter and within the same experiment were processed

together. Using an image scanner (CanoScan LiDE 200), blots

were scanned and the optical density of each band was measured

using ImageJ software. The optical density of the band of interest

for each sample was normalized to the optical density of the b-

actin band for that sample run on the same gel. Next, for each

experiment this value was normalized to that of control animals

(saline+odor) to determine differences in expression compared to

non-learning littermates.

Ex vivo Whole Cell Electrophysiology Experiments
On PND 6–9 animals underwent odor preference training with

a subcutaneous injection of 2 mg/kg isoproterenol as described

earlier, except that unilateral nasal occlusion was performed

immediately before training by applying an odourless silicone

grease plug to one nostril. At the end of the odor exposure period,

the grease plug was removed from the occluded nostril and pups

were returned to the nest.

Slice preparation and electrophysiology. At either 1–3 h

or 24 h following odor preference training, pups were

anaesthetized via halothane inhalation and decapitated.

Horizontal olfactory bulb slices were prepared as described

earlier in in vitro electrophysiology, except that slices were

hemisected and those from occluded and non-occluded olfactory

bulbs were separated before incubation at 34uC for 30 min in the

same high glucose aCSF. Slices were then left at room temperature

until use. During recording, slices were superfused with a Mg2+

free aCSF containing the following (in mM): 122 NaCl, 2.5 KCl,

2.5 CaCl2, 1 NaH2PO4, 26.2 NaHCO3, 22 glucose and

equilibrated with 95% O2/5% CO2. Whole cell patch

recordings were obtained using glass pipettes (2–6 MV) filled

with an internal recording solution containing the following (in

mM): 123 K-gluconate, 2 MgCl2, 8 KCl, 0.2 EGTA, 10 HEPES,

4 Na2-ATP, 0.3 Na-GTP, pH 7.35. Recording pipettes were

positioned at the cell body of MCs within the mid-lateral olfactory

bulb whose primary dendrites could be followed to the glomerular

layer. The stimulation configuration was the same as in the earlier

in vitro experiments. The intensity of the stimulation was adjusted

to evoke a MC response when the cell was held in voltage clamp at

both –70 mV and +40 mV. Electrophysiological data were
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recorded with Multiclamp 700B (Molecular Devices), filtered at

2 kHz and digitized at 10 kHz. Data acquisition and analysis were

performed with pClamp10 (Molecular Devices) and Igor Pro

6.10A (WaveMetrics). All experiments were conducted at 30–

32uC. The membrane resistance and access resistance for each cell

was monitored throughout each experiment. All cells had an

access resistance between 10–25 MV and any cells whose access

resistance changed .30% during recording were discarded.

AMPA/NMDA EPSC ratio. The AMPAR and NMDAR

mediated components of ON-evoked MC EPSCs were dissociated

and measured during recording (see Figure 9A, B). The AMPAR

component of a MC EPSC was recorded when the cell was held at

–70 mV and consisted of a large negative peak immediately

following ON stimulation. The NMDAR component of a MC

EPSC was recorded when the cell was held at +40 mV in the

presence of the AMPAR antagonist NBQX (20 mM). This

NMDA-mediated EPSC consisted of a slower, longer lasting

positive current measured between 50–100 ms following ON

stimulation. The ratio of the AMPAR and NMDAR components

of MC EPSCs were measured to obtain an AMPA/NMDA ratio

for each cell. Values reported are mean6SEM of the AMPA/

NMDA ratio for occluded (control) and non-occluded (learning)

slices.

Paired-pulse ratio. To examine whether early odor

preference learning modifies presynaptic release, the paired-pulse

ratio (PPR) of two evoked EPSCs with an inter-stimulation interval

of 50 ms was measured while the cell was held in voltage clamp

mode at –70 mV. A PPR of ON-evoked MC EPSCs for each cell

was calculated (ratio of EPSC2/EPSC1). Values presented are the

mean6SEM for occluded (control) and non-occluded (learning)

slices.

Supporting Information

Figure S1 D-APV central bulbar infusion induced odor
preference learning in rat pups. D-APV (50 mM, 1 ml; N = 6)

or vehicle aCSF (N = 6) was infused centrally in the bilateral

olfactory bulbs during odor training. The pups were tested for

odor preference 24 hr later. D-APV central infusion induced odor

preference when compared to the control (t = 2.335, p = 0.021).

Bars show the percentages of time spent on the peppermint side in

a two-choice test box in different experimental groups. *p,0.05.

Error bars, mean6SEM.

(TIF)

Figure S2 Muscimol lateral bulbar infusion interfered
with peppermint odor perception in rat pups. Muscimol

(10 mM, 1 ml; N = 6) or vehicle aCSF (N = 6) was infused laterally

in the olfactory bulbs. The pups were tested for odor preference

10 min after the infusions. Muscimol-infused pups lost the natural

aversive response to peppermint bedding which was shown by the

control pups (t = 2.227, p = 0.025). Bars show the percentages of

time spent on the peppermint side in a two-choice test box in the

two experimental groups. *p,0.05. Error bars, mean6SEM.

(TIF)
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