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Background: Glioma is the most common primary tumor of the central nervous system
and is associated with poor overall survival, creating an urgent need to identify survival-
associated biomarkers. C1ORF112, an alpha-helical protein, is overexpressed in some
cancers; however, its prognostic role has not yet been explored in gliomas. Thus, in this
study, we attempted to address this by determining the prognostic value and potential
function of C1ORF112 in low-grade gliomas (LGGs).

Methods: The expression of C1ORF112 in normal and tumor tissues was analyzed using
data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA),
Oncomine, and Rembrandt databases. The genetic changes of C1ORF112 in LGG were
analyzed using cBioPortal. Survival analysis was used to evaluate the relationship between
C1ORF112 expression and survival in patients with LGG. Correlation between immune
infiltration and C1ORF112 expression was determined using Timer software. Additionally,
data from three online platforms were integrated to identify the co-expressed genes of
C1ORF112. The potential biological functions of C1ORF112 were investigated by
enrichment analysis.

Results: C1ORF112 mRNA was highly expressed in LGGs (p < 0.01). Area under the
ROC curve (AUC) showed that the expression of C1ORF112 in LGG was 0.673 (95%
confidence interval [CI] � 0.618–0.728). Kaplan-Meier survival analysis showed that
patients with high C1ORF112 expression had lower OS than patients with low
C1ORF112 expression (p < 0.05). Multivariate analysis showed that high expression of
C1ORF112 was an independent prognostic factor for the overall survival in patients from
TCGA and CGGA databases. C1ORF112 expression was positively correlated with six
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immunoinfiltrating cells (all p < 0.001). The enrichment analysis suggested the enrichment
of C1ORF112 and co-expressed genes in cell cycle and DNA replication.

Conclusion: This study suggested that C1ORF112 may be a prognostic biomarker and a
potential immunotherapeutic target for LGG.

Keywords: C1ORF112, biomarker, immunoinfiltration, low-grade glioma, prognosis

INTRODUCTION

Glioma, the most commonly diagnosed and fatal type of
primary tumor of the central nervous system (CNS) (Jiang
et al., 2016), is often associated with poor prognosis (Demuth
and Berens, 2004). As per the new classification of tumors of
the CNS by the World Health Organization (WHO) in 2016,
gliomas of the brain can be classified into four grades (I–IV)
(Diamandis and Aldape, 2018; Aiman and Rayi, 2021)
accordingly, gliomas are considered as “high-grade” and
“low-grade”, wherein, high-grade gliomas show a high
proliferative activity and strong invasion ability; whereas,
low-grade gliomas (LGGs) show slow proliferation and
relatively long survival time. Therefore, it is imperative to
further investigate the key drivers of survival in LGGs and
identify potential therapeutic targets to improve the overall
prognosis.

The malignant development of a tumor is closely associated
with gene expression. In 2012, Van Dam et al. determined that the
mouse BC055324 gene (human homologous gene is C1ORF112)
showed strong co-expression with cancer-related genes, such as,
RAD51 and CCDC6 (van Dam et al., 2012). C1ORF112, an
α-helical protein, is co-expressed with many genes in the
BRCA-Fanconi anemia-associated DNA damage response
pathway, including BRCA1, BRCA2, FANCD2, and FANCI
(Nalepa and Clapp, 2018), and is also modified in some
tumors with TP53 mutation (Edogbanya et al., 2021).
Although, at present, only a few studies have reported the
possible dysregulation of C1ORF112 in gastric cancer (Chen
et al., 2020), this does suggest its biological and clinical
significance in cancer. However, the underlying molecular
functions of C1ORF112 and its expression and prognostic
value in glioma remain undetermined.

Thus, in this study, we used gene expression and clinical
data from Oncomine, The Cancer Genome Atlas (TCGA), and
Chinese Glioma Genome Atlas (CGGA) to investigate the
relationship between C1ORF112 and LGG, and determine
its potential prognostic value in patients with LGG.
Additionally, the genes co-expressed with C1ORF112 were
collected, and their expression levels were verified in LGG. The
results showed that C1ORF112 was significantly overexpressed
in LGG samples and was an independent prognostic factor of
the overall survival (OS) of patients with LGG. Further,
C1ORF112 expression was closely related to the immune
response of LGG, and played a crucial role in the malignant
progression as well. Thus, C1ORF112, as a new prognostic
factor, may be a new therapeutic target for the diagnosis and
treatment of LGG.

MATERIALS AND METHODS

Collection of Patient Data
Weused TCGAdatabase (TCGA-GBM; TCGA-LGG; https://portal.
gdc.cancer.gov/) to download RNA-sequencing transcriptomic data
and corresponding clinical information of 511 patients with LGG
and 95 normal participants, 163 GBM patients and 207 normal
participants. The inclusion criteria were defined as WHO II or III
classified patients with complete prognostic information. From 161
patients with LGG and 28 normal participants, GlioVis (http://
gliovis.bioinfo.cnio.es/) was used to download RNA-sequencing and
corresponding clinical data, and used to verify C1ORF112
expression and prognostic potential in LGGs. Accordingly,
patients with LGGs were then categorized into high and low
expression groups according to the median expression value of
C1ORF112. Additionally, C1ORF112 expression and clinical data of
381 LGG patients were downloaded from the CGGA (http://www.
cgga.org.cn/) (Liu et al., 2018) database to analyze the relationship
between C1ORF112 and patient prognosis. The patients we studied
included both children and adults.

Oncomine Database
Oncomine (https://www.oncomine.org/resource/login.html)
database presents integrated RNA and DNA sequence data
from the Gene Expression Omnibus, TCGA, and published
literature. Using this database, we determined C1ORF112
expression in different types of cancers by setting the
following criteria: p < 0.01, |log2 fold change| > 1.5, gene level
10%, and data type “mRNA”.

cBioPortal Database
cBioPortal for Cancer Genomics (http://cBioportal.org)
integrates data from more than 100 tumor genomic studies,
and records the mutation site and possibility of a copy
number variation at the mutation site. Here, we used high-
throughput cBioPortal data to analyze the genetic changes
associated with C1ORF112 in LGG samples.

Immunoinfiltration Analysis
The relationship between C1ORF112 expression and immune cell
infiltration in LGG samples from TCGA database was
investigated using the Timer online website tool (Li et al., 2016).

Enrichment and Protein-Protein Interaction
Analyses
Multi Experiment Matrix (https://biit.cs.ut.ee/mem/index.cgi)
(Kolde et al., 2012) and COXPRESdb (https://coxpresdb.jp/)
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(Obayashi et al., 2019) platforms were used to obtain
C1ORF112 co-expression genes. Inclusion criterion was p < 0.
05. According to TCGA data, genes with similar expression
patterns as that of C1ORF112 in LGG were analyzed, and the
inclusion criterion was p < 0.05. Using Database for Annotation,
Visualization, and Integrated Discovery (DAVID; https://david.
ncifcrf.gov/) (Huang et al., 2009), we performed gene ontology
(GO) and Kyoto Gene and Genome Encyclopedia (KEGG)
pathway analyses. A protein-protein interaction (PPI) network
of C1ORF112 and co-expressed genes was constructed using
STRING database (https://string-db.org/) (Szklarczyk et al.,
2019), and co-expressed hub genes of C1ORF112 were obtained.

Gene Expression Profiling Interactive
Analysis Database
The Gene Expression Profiling Interactive Analysis (GEPIA)
database (http://gepia.cancer-pku.cn/) (Tang et al., 2019)
integrates TCGA data with GTEx normal tissue data to
provide key interactive analysis and customization capabilities.
Here, we used GEPIA to evaluate the expression and prognostic
value of C1ORF112 in GBM, and to evaluate the expression and
prognostic value of key co-expressed genes in LGG. The
relationship between C1ORF112 and key co-expressed genes
with OS was further analyzed.

Statistical Analysis
Unpaired t-test was used to compare the expression levels of
C1ORF112 between different groups, and p < 0.05 was
considered significant. Receiver operating characteristic
(ROC) curves were generated to evaluate the diagnostic
performance of C1ORF112 expression using the SPSS. The
median expression level of C1ORF112 was used to distinguish
between the OS of patients with LGG. Kaplan-Meier method
was used to plot the survival curves, and the OS differences
between the groups were evaluated using log-rank test; here as
well, p < 0.05 was considered significant. Univariate and
multivariate analyses were performed to determine whether
C1ORF112 expression was an independent prognostic marker
in patients with LGG using the Cox proportional risk model.
All statistical analyses were performed using R (version 4.0.2)
and SPSS (version 26.0).

RESULTS

C1ORF112 was Highly Expressed in
Low-Grade Gliomas
Using data from Oncomine, we analyzed the transcriptional
levels of C1ORF112 in different cancer types. Compared with
the normal tissues (p < 0.01, |log2 fold change| >1.5), we found
that C1ORF112 was upregulated in almost all cancer types
(Figure 1A), including colorectal cancer, breast cancer, lung
cancer, sarcomas, and tumors of the CNS. Further, multiple
data sets showed that C1ORF112 expression was significantly
elevated in the CNS (Table 1). For instance, in the Sun Brain
dataset, C1ORF112 expression in diffuse astrocytomas was

2.313 times higher than that in normal tissues (p � 2.23E-4).
Similarly, in the French Brain dataset, C1ORF112 expression
was 1.9 times higher (p � 0.001) in anaplastic
oligodendrocytomas and 1.544 times higher (p � 1.13E-5) in
anaplastic oligodendrocytomas than in normal tissues. We
have analyzed the relationship between C1orf112 and high-
grade glioma using TCGA database. The results indicated that
C1orf112 was highly expressed in high-grade gliomas, but its
prognostic value was not statistically significant (p � 0.59)
(Supplementary Figures S1A,B). We then obtained
C1ORF112 expression profiling data of 511 patients with
LGG using TCGA, and observed that C1ORF112 was
significantly upregulated in the tumor tissues than in the
non-tumor tissues (Figure 1B; p < 0.01). In addition, we
performed a validation using C1ORF112 profiling data from
the Rembrandt database (Figure 1C; p < 0.01), and observed
that C1ORF112 was highly expressed in LGGs. Further, area
under the ROC curve (AUC) showed that the expression of
C1ORF112 in LGG was 0.673 (95% confidence interval [CI] �
0.618–0.728; Figure 1D).

Correlation of C1ORF112 With Clinical
Features in Low-Grade Gliomas
Using cBioPortal, we found that in LGGs, C1ORF112 had a
mutation with a relatively low rate of genetic change.
Therefore, the role of highly expressed C1ORF112 in LGG
development may not be mediated by mutations or
amplification (Figures 3A,B). We analyzed the relationship
between C1ORF112 and WHO grades using TCGA database,
and found that the C1ORF112 mRNA expression was
positively correlated with the WHO grades (Figure 2A). In
addition, We analyzed the relationship between C1ORF112
expression and mutational status of IDH1, ATRX and 1P19Q
co-deletion status (Figures 2B–E). The relationship between
LGG subtype (includes Astrocytoma, Oligoastrocytoma and
Oligodendrogliom) and C1ORF112 expression was also
analyzed (Figure 2F).

Correlation Between C1ORF112
Overexpression and Overall Survival of
Low-Grade Gliomas
To investigate the relationship between C1ORF112 expression
and OS, we classified 255 patients into the high expression group
and 256 patients into the low expression group according to the
median expression value of C1ORF112 in PANCAN-LGG in
TCGA. Kaplan-Meier survival analysis showed that patients with
high C1ORF112 expression had lower OS than patients with low
C1ORF112 expression (p < 0.001; Figure 3C). To further validate
the prognostic value of C1ORF112 expression in LGG, data from
161 patients in the Rembrandt database were analyzed
(Figure 3D; p < 0.05). The results showed that patients with
high expression of C1ORF112 in LGG had significantly lower OS
than those with low expression of C1ORF112. Furthermore,
univariate analysis using TCGA data showed that C1ORF112,
age, and grade were high-risk factors (Table 2). Multivariate
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analysis confirmed that C1ORF112 was an independent
prognostic factor for the OS of LGG [hazard ratio (HR) �
1.554, 95% CI � 1.040–2.321; p � 0.031; Table 2]. Similarly,

validation using the CGGA database confirmed that C1ORF112
was indeed an independent prognostic factor for the OS of LGG
(HR � 1.500, 95% CI � 1.109–2.209, p � 0.009; Table 2).

FIGURE 1 | C1ORF112 expression between cancer and normal tissues in LGG patients. (A). Transcriptional expression of C1ORF112 in different types of cancer
diseases. C1ORF112 mRNA is highly expressed in low-grade glioma tissues in TCGA dataset (B) and Rembrandt dataset (C). (D) Receiver operating characteristic
analysis (ROC) of C1ORF112 in LGG. ****p < 0 .0001.

TABLE 1 | Significant changes of C1ORF112 expression in transcription level between Brain glioma and Normal brain tissues (ONCOMINE).

Types of
brain glioma
VS normal

Fold change p Value t-Test Ref

C1ORF112 Diffuse Astrocytoma 2.313 2.23E-4 4.004 Sun Brain
Anaplastic Oligoastrocytoma 1.900 0.001 5.828 French Brain
Anaplastic Oligodendroglioma 1.544 1.13E-5 5.545 French Brain
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Relationship Between C1ORF112 and
Immune Infiltration
Immune cell infiltrationmay be an important pathophysiological factor
in the development of glioma. We analyzed the relationship between
C1ORF112 expression and infiltration of six common immune cells:

B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells. C1ORF112 expression was positively correlated with all
six immune cells (p < 0.001; Figure 4), indicating that patients with
high C1ORF112 expression in LGGs had higher immune cell
infiltration than patients with low C1ORF112 expression.

FIGURE 2 | C1ORF112 mRNA was related to WHO Grade (A), IDH1 (B), ATRX (C), TP53 (D), status of 1P19Q co-deletion (E), and LGG subtypes (F). **p < 0.01,
****p < 0 .0001.

FIGURE 3 | Genetic alterations and prognostic value of C1ORF112 expression in low-grade gliomas. (A) Mutation rate of C1ORF112 in LGGs. (B) Putative copy
number alterations of C1ORF112 in LGGs. (C) Survival curves of OS from TCGA dataset (n � 511). (D) Survival curves of OS from Rembrandt dataset (n � 161).
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Enrichment and Protein-Protein Interaction
Analyses of C1ORF112 Co-expressed
Genes
We obtained 2000 C1ORF112 co-expressed genes from Multi
Experiment Matrix and Coxpresdb platforms. Then, 1,000 genes
similar to C1ORF112 expression patterns in LGGs were obtained
by calculating the TCGA database. Finally, 319 overlapping genes
(that were overlapping in all three databases) were considered as
the co-expressed genes of C1ORF112 in LGGs (Figure 5A). GO
enrichment analysis showed that C1ORF112 and the co-
expressed genes were mainly enriched in cell division, DNA
repair, and ATP binding (Figures 5B–D). KEGG analysis

revealed that C1ORF112 and the co-expressed genes were
mainly enriched in cell cycle, DNA replication, pyrimidine
metabolism, and RNA transport (Figure 5E). PPI analysis
showed that CDK1, CCNB1, CCNB2, CDC20 were the key co-
expressed genes of C1ORF112 in LGGs (Figures 6A,B).

Correlation Between the Key
C1ORF112 Co-expressed Genes and
Low-Grade Gliomas
We used GEPIA to analyze the RNA-sequencing data of 518
LGG tissues from TCGA and 207 normal samples from the

TABLE 2 | Univariate and multivariate analysis of C1ORF112 expression profile in TCGA database and CGGA database.

Datasets Univariate Multivariate

Variable HR (95% CI) P HR (95% CI) P

TCGA Age 4.764 (3.042–7.462) <0.001 4.998 (3.111–8.030) <0.001
Gender 1.159 (0.796–1.686) 0.441 1.053 (0.715–1.550) 0.795
Histological_type 0.752 (0.607–0.932) 0.009 0.800 (0.634–1.010) 0.061
Histologic_grade 3.630 (2.397–5.496) <0.001 3.067 (2.015–4.668) <0.001
Idh1_mutation 0.895 (0.544–1.472) 0.663 0.957 (0.572–1.601) 0.867
C1ORF112 1.876 (1.284–2.740) 0.001 1.554 (1.040–2.321) 0.031

CGGA Age 1.486 (0.760–2.905) 0.246 1.012 (0.507–2.023) 0.972
Gender 1.085 (0.811–1.452) 0.583 1.146 (0.846–1.553) 0.378
Histological_type 1.224 (1.114–1.343) <0.001 0.558 (0.395–0.786) 0.001
Histologic_grade 2.932 (2.096–4.100) <0.001 17.005 (5.715–50.604) <0.001
Idh1_mutation 0.463 (0.339–0.630) <0.001 0.517 (0.367–0.728) <0.001
C1ORF112 1.772 (1.324–2.372) <0.001 1.500 (1.109–2.209) 0.009

FIGURE 4 | The relationship between C1ORF112 and the level of immune infiltration.
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FIGURE 5 | Functional enrichment of C1ORF112 and its co-expressed genes in low-grade gliomas. (A) Venn diagram of C1ORF112 co-expressed genes in LGG.
(B) Enriched GO terms in the “biological process” category. (C) Enriched GO terms in the “cellular component” category. (D) Enriched GO terms in the “molecular
function” category. (E) Kyoto Encyclopedia of Genes and Genomes Pathway.
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GTEx project, and found that CDK1, CCNB1, CCNB2,
and CCDC20 were highly expressed in the LGG tissues
and poorly expressed in the normal tissues (Figures
6C–F). Kaplan-Meier survival analysis showed that LGG
patients with high CDK1, CCNB1, CCNB2, and CDC20

expression had a significantly lower OS than patients with
low CDK1 expression (p < 0.001; Figures 7A–D). LGG
analysis in TCGA showed that C1ORF112 was significantly
positively correlated with the key co-expressed genes
(Figures 7E–H).

FIGURE 6 |C1ORF112 and its co-expressed genes in a protein-protein interaction network in low-grade gliomas. (A) PPI network. (B) Top 10 of key co-expressed
genes of C1ORF112. The expression level of key co-expressed genes in LGGs was : (C) CDK1; (D) CCNB1; (E) CCNB2; (F) CDC20. *p < 0 .05.
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DISCUSSION

Glioma, a highly heterogenous tumor, is the most commonly
diagnosed tumor in the CNS and is associated with poor OS
(Ostrom et al., 2018; Waker and Lober, 2019). While there
have been a few studies on C1ORF112 mRNA, to our
knowledge, no study has investigated the correlation
between C1ORF112 and LGG. In this study, 163 GBM
tissues and 207 normal tissues were studied in TCGA
database. Our results showed that C1ORF112 was
significantly overexpressed in GBM, but the prognostic
analysis was not statistically significant. This might be
explained by the small number of glioblastoma samples and
different molecular mechanisms between LGG and GBM.
Therefore, we integrated and screened clinical RNA-
sequencing data from TCGA, CGGA, and Rembrandt
databases, and obtained a total of 1053 LGG tissues and 123
normal tissues. Our results revealed that C1ORF112 was
significantly overexpressed in LGGs with ATRX mutation,
TP53 mutation, 1p19q non-codel, or Astroglioma. In
addition, univariate and multivariate analyses showed that
C1ORF112 expression was an independent prognostic factor
for LGG. The enrichment analysis showed that C1ORF112 and
its co-expressed genes were associated with cell cycle, DNA
replication, pyrimidine metabolism, nucleotide excision, and
repair, RNA transport, purine metabolism, and the Fanconi
anemia pathway. Therefore, C1ORF112 may play an
important role in glioma pathogenesis, and may be a
potential LGG biomarker.

High C1ORF112 mRNA expression has been previously
reported in breast cancer (Leo et al., 2005), gastric cancer
(Chen et al., 2020), desmoid tumors (Bowden et al., 2007),

bladder cancer (Sanchez-Carbayo et al., 2007), head and neck
squamous cell carcinoma (Renkonen et al., 2017), cervical
cancer, and others. Increased copy number of C1ORF112
has been reported in breast cancer studies (Gonzalez-Perez
et al., 2013; Rubio-Perez et al., 2015). However, to date, the
expression of C1ORF112 in LGG has not been studied, and the
expression of C1ORF112 in other cancers has only been
verified via the co-expression analysis of related genes. In
this study, we confirmed that C1ORF112 was significantly
overexpressed in most tumors in TCGA database. Further
analysis showed that C1ORF112 was highly expressed in
LGG than in normal tissues (p < 0.001). Additionally, the
AUC was 0.673. Together, these results suggest that
C1ORF112 has the potential to be a diagnostic marker for
many cancers, including LGG. The expression of C1ORF112 is
closely related to the survival of patients with endometrial
cancer, wherein, higher the expression, worse the prognosis.
Notably, our study is the first to show that C1ORF112
expression may influence the prognosis in LGG. By
analyzing TCGA-LGG data, we found that patients with
high C1ORF112 mRNA expression had poor OS, and this
was an independent prognostic factor for OS and progression-
free survival. This result was supported by clinical LGG data
from the Rembrandt database as well. In addition, multivariate
analysis showed that C1ORF112 was an independent
prognostic factor for LGG. Therefore, it is necessary to
further investigate the role of C1ORF112 in LGG.

To explore the possible mechanism of C1ORF112 in LGG, we
performed enrichment analysis of C1ORF112 and its co-
expressed genes, and found that they were enriched in cell
cycle, DNA replication, Fanconi anemia, Mismatch repair,
Nucleotide excision repair etc. Previous studies have found

FIGURE 7 | The TCGA database was used to analyze the prognostic value and correlation of co-expressed genes. Survival curves of OS: (A) CDK1; (B) CCNB1;
(C) CCNB2; (D) CDC20. Correlation between C1ORF112 and key co-expressed genes: (E) CDK1; (F) CCNB1; (G) CCNB2; (H) CDC20.
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that C1ORF112 may influence the Fanconi anemia pathway or its
regulation (Liu et al., 1998; Auerbach, 2009). Zhaojing et al. has
reported that LINC00152 promotes the proliferation, migration,
and invasion of gastric cancer cells in vitro through the cell cycle
pathway (Zhao et al., 2015). Qiuni et al. reported that cullin-7 is a
predictor of poor prognosis in patients with breast cancer, and is
involved in the regulation of breast cancer cells by regulating the
cell cycle (Qiu et al., 2018). Yun et al. reported the involvement of
the cell cycle pathway in cerebellar meningeal metastasis of non-
small cell lung cancer (Fan et al., 2018). Hung-Wei et al. reported
that overexpression of cell cycle regulating nuclear cell protein
L2DTLwas associated with the progression and poor prognosis of
hepatocellular carcinoma (Pan et al., 2006). Thus, the cell cycle
not only plays an important role in tumor regulation, but also
affects the prognostic evaluation (Williams and Stoeber, 2012).
C1ORF112 and its co-expressed genes were positively correlated
with the cell cycle. Four key co-expression genes (CDK1, CCNB1,
CCNB2, and CDC20) of C1ORF112 were further analyzed.
CDK1-mediated perturbations in chromosome stability and
G2/M control that promotes cell cycle progression are key
tumorigenic events (Asghar et al., 2015). Overexpression of
FOXM1 and upregulation of CCNB1 leads to a malignant
phenotype (Katoh et al., 2013). CCNB2 is overexpressed in
non-small cell lung cancer and is closely associated with poor
prognosis (Qian et al., 2015). High expression of CDC20 is
significantly associated with reduced survival of most human
tumors (Wang et al., 2018). Therefore, we speculate that
C1ORF112 may be involved in the progression of LGG via the
cell cycle. DNA damage repair is a phenomenon that DNA
molecules of normal cells are damaged followed by a series of
activation of various enzymes to restore their structures (Ciccia
and Elledge, 2010). The mechanism plays an important role in
maintaining gene stability (Yan et al., 2016). DNA damage repair
includes four types: nucleotide excision repair, base excision
repair, recombination repair, and mismatch repair. DNA
damage repair is quite important for regulating the therapeutic
response of cancer (Squatrito and Holland, 2011). Numerous
chemotherapeutic drugs exert anti-tumor effects through DNA
damage (Pang et al., 2020). Temozolomide, for example, is the
first-line drugs to kill glioma cells by damaging their DNA. Our
analysis showed that C1ORF112 and its co-expressed genes were
involved in nucleotide excision repair and mismatch repair.
Therefore, we speculate that C1ORF112 may be involved in
the progression of LGG through facilitating DNA damage repair.
Finally, we concluded that four key co-expression genes of
C1ORF112 (CDK1, CCNB1, CCNB2, and CDC20) were
highly expressed in LGG, and the high expression of these
genes was closely associated with poor prognosis in patients
with LGG.

Infiltration of immune cells plays a crucial role in tumor
growth, metastasis, and treatment response (Gieryng et al.,
2017). Therefore, we analyzed the correlation between
C1ORF112 and infiltrating immune cells. The results showed
that the expression of C1ORF112 was negatively correlated with
tumor purity and positively correlated with the infiltration of
CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic cells,
and other immune cells. This is the first report of the potential

involvement of C1ORF112 in immunity. According to the
immune response, low-grade gliomas can form an
immunosuppressive tumor microenvironment similar to other
tumors that impair T cell antitumor responses via immune
checkpoint inhibition pathways. Immune checkpoint inhibitors
(i.e., monoclonal antibody inhibitors) were develped to block
these inhibitory signaling pathways, activate systemic immunity,
and thus enhance T cell activity. Typically, Programmed cell
death 1 (PD-1) and its ligand Programmed cell death ligand 1
(PD-L1) mediates tumor immunosuppression by promoting
T cell apoptosis and Treg induction (Nduom et al., 2016).
Therefore, PD-1/PD-L1 is an important immunosuppressive
interaction for tumor cells to escape from the immune killing
of the matrix. Dung et al. reported the mismatch repair deficiency
predicts response of tumors to PD-1 blockade (Le et al., 2017).
Our current study found that C1ORF112 and its co-expressed
genes are functionally enriched in mismatch repair. However,
further studies are needed to evaluate the role C1ORF112 and
mismatch repair on PD-L1 immune checkpoint therapy.
Immunotherapy aims to strengthen the immune system of a
patient to recognize and attack tumor cells. Therefore, C1ORF112
may be a target for future immunotherapy.

Through this study, we have improved the understanding of
the relationship between C1ORF112 and LGG; however, there
are still some limitations of our study. The knock-down and
knock-out experiments of C1ORF112 is supposed to be
performed to explore and verify its function in LGG in our
future study. For example, proliferation, migration, invasion,
and immune response of LGG cells, and in vivo study using
LGG mouse model can be performed to verify the mechanism
of C1ORF112. Translating these cell cycle-associated
biomarkers into practical clinical applications also requires
further investigation. In conclusion, the overexpression of
C1ORF112 mRNA in LGG was closely related to the poor
prognosis of patients with LGG. Enrichment analysis showed
that C1ORF112 may regulate the progression of LGG via the
cell cycle, affect the prognosis of patients with LGG, and thus
play a potential role as a carcinogenic factor. Finally, this study
suggests that C1ORF112 may be a potential biomarker for the
diagnosis and prognosis of LGG, and a potential
immunotherapeutic target.
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