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Abstract: ALG-2 (gene name: PDCD6) is a penta-EF-hand Ca2+-binding protein and interacts with
a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified
motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes
of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate
directly or indirectly with the plasma membrane or organelle membranes involving the endosomal
sorting complex required for transport (ESCRT) system, coat protein complex II (COPII)-dependent
ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream
players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2
dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the
subnetwork of interacting proteins.

Keywords: ALG-2; ALIX; calcium; COPII; ESCRT; membrane repair; multivesicular body; PDCD6;
protein–protein interaction; Sec31A

1. Introduction

Two decades have passed since ALG-2 was first reported as a calcium-binding pro-apoptotic
factor of mouse T cells encoded by the Apoptosis-linked gene 2 [1]. Since ALG-2 (also named PDCD6)
has no catalytic activity, physiological functions of ALG-2 are exerted by Ca2+-dependent interaction
with its target proteins. Discovery of ALIX (ALG-2-interacting protein X)/AIP1 (gene name, PDCD6IP)
as the first ALG-2-interacting protein linked ALG-2 and the cell death pathway [2,3]. Although ALG-2
gene knockout mice behaved normally and showed no abnormalities in the immune system [4],
accumulating evidence suggests that ALG-2 is involved in regulation of cell death, cell division,
and signal transduction in cultured cells as reviewed in the past [5,6]. After discovery of ALIX as
an accessory factor in the ESCRT (endosomal sorting complex required for transport) system [7–10]
and identification of novel ALG-2-interacting proteins in different systems, much attention has been
paid in recent years to the role of ALG-2 in membrane repair and vesicular transport [11,12]. In this
review, we focus on recent findings of the structural basis of target recognition and endowed diverse
functions of ALG-2, particularly unveiled from interacting proteins, in the membrane trafficking.

2. Structure of ALG-2

Human ALG-2 (22 kDa, 191 amino acids) has an Ala/Gly/Pro/-rich N-terminal tail followed by
a penta-EF-hand (PEF) domain (Figure 1), which is a region comprised of approximately 170 amino
acid residues containing five repeated helix-loop-helix Ca2+-binding motifs (EF-hands) [13]. The PEF
family includes ALG-2, peflin, sorcin, grancalcin, and calpain subfamily members in mammals [14].
Generally, a pair of EF-hands forms a discrete domain in Ca2+-binding proteins with even numbers of
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EF-hands [15]. Stabilization of the paired EF-hands is facilitated by hydrophobic interactions within
two types of motifs (cluster I and cluster II), each comprised of three residues separately residing at the
pairing partner EF-hands [16]. PEF proteins have a unique feature of utilizing the isolated fifth EF-hand
(EF5) to pair with that of another PEF protein molecule to form a homodimer or heterodimer:
ALG-2/ALG-2 [3,17] and ALG-2/peflin [18], sorcin/sorcin [19], grancalcin/grancalcin [20] and
sorcin/grancalcin [21], and large and small subunits of typical calpains [22]. An alternatively spliced
isoform lacking Gly121Phe122 is generated by utilization of an upstream splicing donor site in mouse
and human pre-mRNAs [23,24] and is designated ALG-2∆GF122 in this review article.
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affinity site (300 μM) were estimated for Ca2+-binding capacity of ALG-2 by flow dialysis in the 
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isothermal titration calorimetry [26]. An alternatively spliced isoform, ALG-2ΔGF122, shows a lower 
Ca2+-binding affinity. Substitutions of amino acids essential for metal coordination in both EF1 and 
EF3 (E47A/E114A) abolished a Ca2+-induced conformational change detected by circular dichroism 
(CD) [17]. Typical EF-hand Ca2+ coordination at EF1 and EF3 was verified by X-ray crystal structural 
analyses of mouse and human ALG-2, and an additional calcium atom was observed at EF5 with 
incomplete coordination, suggesting a lower affinity site [27,28]. Interestingly, a high affinity  
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condition of a physiological concentration of Mg2+ in the cell (~mM) [26]. 
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Figure 1. Structure of human ALG-2. (A) The N-terminal region is rich in Ala/Gly/Pro. A penta-EF-hand
(PEF) domain has five EF hands (EF1–EF5) with eight α-helices (α1–α8). An alternatively spliced
isoform lacks two residues (Gly121Phe122); (B) X-ray crystal structure of the dimeric Ca2+-bound form
of human ALG-2 (PDB code: 2ZN9) is presented by cartoon using PyMol. EF-hands are shown
in different colors for each EF-hand module corresponding to EF1–EF5 in panel A. Gray spheres,
calcium atoms.

3. Ca2+-Binding Capacity

Two high affinity sites with a dissociation constant (Kd) in a µM order (1.2 µM) and one lower
affinity site (300 µM) were estimated for Ca2+-binding capacity of ALG-2 by flow dialysis in the
presence of 0.5% Tween (a 5–10-fold lower affinity in the absence of the detergent) [23,25] and
isothermal titration calorimetry [26]. An alternatively spliced isoform, ALG-2∆GF122, shows a lower
Ca2+-binding affinity. Substitutions of amino acids essential for metal coordination in both EF1 and
EF3 (E47A/E114A) abolished a Ca2+-induced conformational change detected by circular dichroism
(CD) [17]. Typical EF-hand Ca2+ coordination at EF1 and EF3 was verified by X-ray crystal structural
analyses of mouse and human ALG-2, and an additional calcium atom was observed at EF5
with incomplete coordination, suggesting a lower affinity site [27,28]. Interestingly, a high affinity
Mg2+-binding site (Kd ~ 20 µM) was predicted in EF5, which would be fully occupied under the
condition of a physiological concentration of Mg2+ in the cell (~mM) [26].

4. Interacting Proteins

Comparison of the 3D structures of Ca2+-free and Ca2+-bound forms of ALG-2 revealed only
a small change in the overall structure [28]. However, results of fluorospectrometric analysis of
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recombinant proteins indicated that conformational change and exposure of hydrophobic patches occur
in a Ca2+-dependent manner at µM order concentrations of Ca2+, suggesting that ALG-2 functions
as a Ca2+ sensor [17,29]. A search for ALG-2-interacting proteins is one of first approaches to reveal
physiological functions of ALG-2. Table 1 summarizes published mammalian ALG-2-interacting
proteins, UniProt IDs represented by human proteins, approximate binding regions, binding ability
to the alternatively spliced isoform (ALG-2∆GF122), binding motifs, employed methods, functions,
and references describing interactions [2,3,25,28,30–56]. A variety of proteins have been identified by
several independent groups employing combinations of different methods for validation: (i) the yeast
two-hybrid (Y2H) method; (ii) Western blotting or mass spectrometry of recovered protein samples after
immunoprecipitation (IP) with specific antibodies; (iii) pulldown (PD) with glutathione-S-transferase
(GST)-fused proteins or with Strep-tagged proteins; (iv) Far Western (FW) blotting; and (v) in vitro
binding of recombinant proteins with a surface plasmon resonance (SPR) biosensor. A database
homology search with a query sequence of previously determined interacting motifs is also useful for
the first screen. A report of Fas as an ALG-2-binding protein [47] is controversial due to a later revealed
erroneous reaction of the antibody used [57]. Results of the Y2H method alone are not included in
the list due to low reliability. Interacting proteins suggested by results obtained by using any single
method need further validation for specific binding including identification of a binding sequence.
Interactions only published by one group without such validation have to be taken with caution
as well.

Co-immunoprecipitation and pulldown assays using cell lysates do not necessarily indicate direct
interaction. FW blotting (also called overlay assay) with biotin-labeled or epitope-tagged recombinant
ALG-2 is used for detection of direct binding of unpurified target proteins after SDS-polyacrylamide
gel electrophoresis (PAGE) separation.
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Table 1. ALG-2-interacting proteins reported in mammals. This table presents a list of ALG-2-interacting proteins published. For convenience, UniProt IDs for
human proteins are indicated. Underlined numeric characters of binding motifs indicate that a minimal sufficient binding capacity was confirmed by in vitro binding
assays. Full protein names of interacting partners: ALIX, ALG-2-interacting protein X; ASK1, apoptosis signal-regulating kinase 1; CHERP; calcium homeostasis and
endoplasmic reticulum protein; DAPK1, death-associated protein kinase 1; HD-PTP, His domain-containing protein tyrosine phosphatase; IST1, increased sodium
tolerance-1; PATL1, protein associated with topoisomerase II (PAT)-like 1; PLSCR3, phospholipid scramblase 3; RBM22, RNA-binding motif protein 22; TSG101, tumor
susceptibility gene 101; VEGFR2; vascular endothelial growth factor receptor 2; VPS, vacuolar protein sorting. Abbreviated names of employed methods: Y2H, yeast
two-hybrid; IP, immunoprecipitation; PD, pulldown; FW, Far Western; SPR, surface plasmon resonance. PRR, Pro-rich regions; PEF, penta-EF-hand. Notes: nd, not
determined; n/a, not applicable.

Protein Name Alternative Name UniProt ID
(Human)

Binding Domain/
Region

Binding
Motif

Binding to
∆GF122 Method Function System Reference

ALIX AIP1, PDCD6IP Q8WUM4 PRR 1, 3-like No Y2H, IP, PD, FW, SPR ESCRT accessory [2,3,25,28,30,31]
HD-PTP PTPN23 Q9H3S7 PRR 1-like nd Y2H, PD, FW ESCRT accessory [32,54]
TSG101 - Q99816 PRR 1-like No Y2H, IP, PD, FW ESCRT-I [33,34,54]
VPS37B - Q9H9H4 PRR 1-like No IP, PD, FW ESCRT-I [35]
VPS37C - A5D8V6 PRR 1-like nd IP, PD, FW ESCRT-I [35,54]

IST1 - P53990 PRR 3 No PD, FW ESCRT-III [36]
Sec31A - O94979 PRR 2 Yes IP, PD, FW COPII outer shell [37–40,54]
PLSCR3 PLS3, Scr3 Q9NRY6 PRR 1, 2 Yes IP, PD, FW, SPR cardiolipin translocation [41,54]

annexin A11 AnxA11 P50995 PRR 1-like No Y2H, PD, FW, SPR phospholipid binding [41–43,54]
annexin A7 AnxA7, synexin P20073 PRR 1-like No PD, FW, SPR phospholipid binding [41,43,54]

copine-4 CPNE4 Q96A23 VWFA nd nd Y2H, PD phospholipid binding [44]
Mucolipin-1 MCOLN1, TRPML1 Q9GZU1 N-tail ABH Yes/No PD ion channel [45]

Scotin SHISA5 Q8N114 PRR 1-like No PD, IP, FW apoptosis [46,54]
Fas *1 APO-1, CD95 P25445 nd nd nd Y2H, IP, PD apoptosis [47]

pro-caspase 8 - Q14790 nd nd nd IP apoptosis [48]
VEGFR2 FLK1, KDR P35968 801–1180 nd nd Y2H, IP RTK, angiogenesis [49]

Raf-1 RAF1 P04049 nd nd nd Y2H, IP Ser/Thr kinase [50]
DAPK1 - P53355 nd nd nd Y2H, IP Ser/Thr kinase [51]
ASK1 *2 MAP3K5 Q99683 941–1375 nd No PD, IP Ser/Thr kinase [52]
RBM22 ZC3H16 Q9NW64 PRR 2-like n/a *3 Y2H, FW pre-mRNA splicing [53,54]
PATL1 Pat1b Q86TB9 PRR 2 Yes PD, IP, FW RNA processing [54]
CHERP SCAF6 Q8IWX8 PRR 1, 2-like nd IP, FW pre-mRNA splicing [54,55]
ALG-2 PDCD6 O75340 EF5 nd nd Y2H, IP PEF family [3,17]
peflin PEF1 Q9UBV8 EF5 nd nd Y2H, IP PEF family [18]

sorcin *4 - P30626 PEF nd nd SPR PEF family [56]

*1 Interaction is controversial and probably incorrect (see Ref. [57] for critical evaluation); *2 interaction was observed in the presence of Ca2+ but also at a similar strength in the
presence of 5 mM EGTA [52]; *3 interaction was negative by the GST-ALG-2 pulldown assay, probably due to masking of binding sites [54]; *4 the N-terminal APG-rich region of
ALG-2 binds sorcin in the presence and absence of Ca2+ [56].
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5. Mode of Binding

5.1. Binding Pockets in ALG-2

ALG-2-interacting proteins are classified into two major groups by structural features: (i) proteins
containing binding sites in Pro-rich regions (PRRs) and (ii) proteins containing no obvious PRRs.
By successfully narrowing down the binding sites in ALIX, PLSCR3 (phospholipid scramblase 3),
and Sec31A, two different binding motifs were predicted [30,31,40,41]. Synthetic oligopeptides were
used for X-ray crystallographic analyses of the ALG-2/oligopeptide complexes for ALIX and Sec31A
in the presence of Zn2+ in place of Ca2+ [28,58]. While the ALIX peptide binds ALG-2 at two adjacent
hydrophobic pockets largely formed by residues from EF3 to EF5 as well as by Y180 (EF5) of
a dimerizing molecule (Pocket 1, PPYP) and from EF2 to EF4 (Pocket 2, YP), the Sec31A peptide
binds at a different pocket largely formed by residues from EF1 to EF3 (Pocket 3, PPPPGFI) (Figure 2).
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Figure 2. Different hydrophobic pockets used for the binding of ALG-2 to ALIX (ALG-2-interacting
protein X) and Sec31A: (A) complex between ALG-2 and the ALIX peptide (PDB code, 2ZNE, chains A
and C); and (B) complex between ALG-2 and the Sec31A peptide (PDB code, 3WXA, chains A and C).
Peptides are shown in a stick model. Figures were taken from Ref. [58] and modified.

5.2. Mechanism of Binding

Upon binding to Ca2+, the classic EF-hand protein, calmodulin, changes its conformation from
a “closed” state to “open” state and a further gross change makes the two lobes (N-terminal half,
EF1 and EF2; C-terminal half, EF3 and EF4) grab a target peptide [59]. In contrast, upon metal
(Ca2+ or Zn2+) binding to EF3, ALG-2 exhibits only a small shift of α-helix 5 that leads to a change
in configuration of the R125 side chain, resulting in a sufficient move to make Pocket 1 accessible
to the critical PPYP motif of ALIX [28]. Since there are no significant changes in Pocket 3 structures
among metal-free, metal-bound and Sec31A peptide-bound states, dynamic structural differences not
revealed by crystal analysis may account for Ca2+-dependent activation of Pocket 3 [58]. Inability of
the alternatively spliced isoform (ALG-2∆GF122) to bind to ALIX and to a subset of other proteins
(Table 1) is not caused by loss of the aromatic residue (F122), but deletion of the two residues
shortens α-helix 5 and changes the configuration of the R125 side chain so that it partially blocks
Pocket 1 [60]. Unexpectedly, substitution of F122 with Ala increased the ALIX-binding capacity [60].
ALG-2∆GF122 maintains the binding capacity to Sec31A, PLSCR3 and PATL1 (protein associated with
topoisomerase II (PAT)-like 1) [41,54].
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5.3. ALG-2-Binding Motifs (ABMs)

Determination of ALG-2-binding sites in the interacting proteins and amino acid substitution
experiments have revealed three types of Pro-based ALG-2-binding motifs (ABMs) (Figure 3) and one
non-Pro-based ABM.
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proteins containing ALG-2-binding motifs (Type 1, Type 2, and Type 3) are presented. X, any amino acid;
Φ, hydrophobic; Ω, large side chain. Amino acids compatible with ALG-2-binding motifs are indicated
in red except for X positions. IST1, increased sodium tolerance-1; PLSCR3, phospholipid scramblase 3;
PATL1, protein associated with topoisomerase II (PAT)-like 1; CHERP; calcium homeostasis and
endoplasmic reticulum protein.

5.3.1. Type 1

Type 1 motif (ABM-1), represented by ALIX, is comprised of two sub-core sequences (PPYP and
YP, separated by 4 residues) and is found in the confirmed minimal binding sequences of PLSCR3
and CHERP. Regardless of reduction in binding affinity, PPYP is substitutable with PYP and PXYP
(X, variable) [28,31]. Although no experimental evidence has yet been obtained, the distance between
PPYP and YP may be variable depending on the interval sequence (TSG101 (tumor susceptibility
gene 101), 188-CPYPPGGPYP; AnxA11, 4-PGYPPPPGGYP; AnxA7, 4-PGYPPPPGGYP; Scotin,
189-APYPMQYPPPYP). Most ALG-2-interacting proteins that are incapable of binding to ALG-2∆GF122

contain Type I or Type 1-like motifs. VPS37B, VPS37C and TSG101 also contain PPYP, PYP or
PXYP sequences. Unidentified residues substituting the second core-sequence (YP) may potentiate
ALG-2 binding.

5.3.2. Type 2

Type 2 motif (ABM-2), first determined in the Pro-rich region of PLSCR3 and designated PXPGF
(X, any amino acid) [41], was newly defined (Figure 3) on the basis of results of mutational analysis
of the Sec31A sequence [58]. The Type 2 motif of PLSCR3 is not optimal (small amino acid, Ala,
at the position of Ω following Phe), but downstream residues probably with large side chains
may compensate the weak binding ability [41,58]. Since PLSCR3 contains both Type 1 and Type
2 motifs, it retained the capacity to bind to ALG-2∆GF122, but a type 2 deletion mutant did not bind to
ALG-2∆GF122 [41].

5.3.3. Type 3

Increased sodium tolerance-1 (IST1) has an MP-repeat (four times, or five times in a polymorphic
isoform) sequence in the Pro-rich region. Although this sequence (Type 3, designated ABM-3)
alone was not sufficient for ALG-2 binding, it was necessary for IST1 to bind ALG-2 efficiently [36].
IST1 did not bind ALG-2∆GF122. Interestingly, the Type 1 motif in ALIX is followed by a Type 3-like
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sequence, which may potentiate ALG-2 binding. In experimental immunochemistry, epitope-tagging
of a concerned protein with plural epitope sequences is frequently employed to increase the
binding affinity (e.g., 3 × FLAG). Similarly, the presence of multiple motifs of the same or different
types may contribute to augmentation of binding capacities by compensating with multi-valent
suboptimal sequences.

5.3.4. Non-Pro-Based Motif

ALG-2 also binds non-Pro-rich proteins that do not share apparently similar sequences. The ABH
motif (clusters of acidic/basic/hydrophobic residues: 37-EEEDLRRRLKYFF-49) of Mucolipin 1 was
essential for the binding, but sufficiency was not demonstrated [45]. Since the binding ability of
ALG-2∆GF122 was significantly reduced, Mucolipin 1 may bind ALG-2 in a mode similar to that of
Type 1 motif proteins. Since ASK1 (apoptosis signal-regulating kinase 1) binds ALG-2 both in the
presence and absence of Ca2+ [52], the mode of binding should be completely different from that of
other interacting proteins.

6. Interacting Protein Network of ALG-2 in Membrane Trafficking

Membrane trafficking is mediated by vesicles that are carried from originating membranes to
target membranes. Biogenesis of vesicles is initiated by deformation of the lipid bilayer in a restricted
membrane area and then by budding and finally by abscission. Budding occurs in topologically
opposite directions: (i) budding away from the cytosol; and (ii) budding into the cytosol (Figure 4).
ALG-2 participates in part and plays regulatory roles by Ca2+-dependently interacting with key players
in both systems.
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Figure 4. Topologically opposite budding of vesicles. Cytosolic proteins are recruited to the budding
sites, but orientations of membrane deformation are opposite. (A) Endosomal sorting complex required
for transport (ESCRT)-associated vesicle budding occurs from the cytosolic face of the membrane
towards the extracellular space or into the organelle lumen; (B) Membrane coated with coat proteins
(clathrin, coat protein complex I (COPI), and COPII) buds from the plasma membrane or organelle
membranes into the cytosolic space.

6.1. ESCRT System

Endocytosed ubiquitinated membrane proteins, which are destined for lysosomal degradation, are
recruited to a specialized area on endosomal membranes by multiprotein complexes named ESCRT-0,
-I and -II. Sequentially transferred cargoes are further transported into inward budding vesicles by
concomitant membrane deformation with spirally polymeric ESCRT-III [10]. Disassembly of the
ESCRT complexes by the AAA-type ATPase VPS4 pinches off the buds into multivesicular bodies
(MVBs). This ESCRT system in MVB sorting is conserved from yeast to humans [10], but remodeled
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machineries consisting of ESCRT-III/VPS4 as well as parts of the complexes and accessories are used
in different combinations for exerting specific functions, such as virus budding, cytokinetic final
abscission of daughter cells at the midbody, extracellular vesicle release, plasma membrane repair,
neuron pruning, nuclear pore complex (NPC) surveillance, and nuclear envelope (NE) reformation
(Figure 5) (see Refs. [10,11] for reviews and references therein). ALG-2 has been shown to be involved
only in the following two ESCRT systems, but involvement in other systems is not necessarily excluded.
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6.1.1. Endosomal Sorting Pathway

The ALG-2-interacting protein X, ALIX, has three distinct domains: N-terminal Bro1 domain,
middle V domain and C-terminal Pro-rich region (PRR) (Figure 6). CHMP4 (ESCRT-III core subunit)
and TSG101 (ESCRT-I subunit) bind ALIX at the Bro1 domain and the PRR, respectively. The V domain
binds the so-called late domain of HIV (human immunodeficiency virus)-1 p6 Gag and EIAV (equine
infectious anaemia virus) Gag p9 by recognizing the LYPXnL motif (Figure 6) [7,8,61]. Thus, ALIX
promotes budding of retrovirus particles by bridging ESCRT-I and ESCRT-III. The V domain plays
roles in cargo recognition by binding to the YPXnL motif of G protein-coupled receptor PAR1 and
P2Y1 for ubiquitin-independent MVB sorting [62,63]. Binding of the ALIX V domain to polyubiquitin
has also been reported [64].

By using conformation-specific monoclonal antibodies of ALIX for co-immunoprecipitation
and analysis of interacting abilities of mutants, ALIX has been shown to exhibit inactive and active
conformations [65]. The closed conformation is maintained by intramolecular interaction between
hydrophobic Patch 2 of the Bro1 domain and the TSG101 docking site (717-PSAP motif) in the PRR.
Relief of intramolecular interaction is achieved by mutations of interacting residues [65], binding of
ALG-2 in a Ca2+-dependent signaling pathway [66], and phosphorylation of Ser at 718-SAPS-720 by
kinases that are activated in the mitotic phase (PLK1 (Polo-like kinase 1), PKD (protein kinase D),
and others) [67]. These actions induce global conformational change from an auto-inhibitory closed
form to an open active form that permits interaction with partner proteins at hydrophobic Patch 1 for
CHMP4 in the Bro1 domain and V domain for EIAV p9 or ubiquitinated epidermal growth factor
receptor (EGFR) [68]. Knockdown of ALIX or ALG-2 with siRNAs suppressed MVB sorting of the
ligand-bound EGFR, promoted sustained activation of ERK1/2 and retarded EGFR degradation [66,68].
While S718-S721 phosphorylation of ALIX was not involved in the regulation of MVB sorting of
endocytosed EGFR, it was required for ALIX to function in cytokinetic abscission and retroviral
budding [67]. On the other hand, ALG-2 was not required for the final abscission in cytokinesis or for
retroviral budding.
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and lysobisphosphatidic acid (LBPA), a phospholipid enriched in MVB. Sites of phosphorylation
by cytokinetic kinases are highlighted in green, and the TSG101 (tumor susceptibility gene 101)
docking site is underlined in ALIX. Sequences of proteins containing the LYPXnL-motif and interacting
with the V domain of ALIX are highlighted in cyan at the conserved residues. PRR, Pro-rich region.
CEP55, centrosomal protein of 55 kDa; PLK1, Polo-like kinase 1; PKD, protein kinase D. The mode of
interaction between ALG-2 and Sorcin is different from between ALG-2 and Ca2+-dependent targets
(see Text).

Knockdown effects of ALIX and ALG-2 on MVB sorting of EGFR reported by Kuang’s
group [66,68] challenge the notion that ALIX is not critically involved in MVB sorting of ubiquitinated
EGFR and that His domain-containing protein tyrosine phosphatase (HD-PTP), a paralog of ALIX,
is utilized for MVB sorting as a functional mammalian ortholog of yeast Bro1 [69,70]. Using mouse
embryonic fibroblast (MEF) Alix−/− cells, Mercier et al. [71] demonstrated that ALIX regulated
fluid-phase endocytosis and internalization of cargoes, including interleukin-2 receptor (IL2R) β chain
and cholera toxin B (CTxB), via clathrin-independent endocytosis (CIE) but had no apparent effects on
clathrin-mediated endocytosis (CME) of the transferrin receptor or downstream endosomal trafficking.
Degradation of EGFR was delayed in Alix−/− cells at a high EGF concentration (100 ng/mL, condition
for CIE) but not at a low EGF concentration (2 ng/mL, condition for CME). ALIX binds endophilins
and other SH3 domain-containing proteins (CIN85/SETA, CD2AP, Src, Hck) [72,73]. Knockdown of
endophilin-A suppressed CTxB uptake [71]. Moreover, rescue experiments by expression of ALIX
mutants in Alix−/− cells indicated that a binding site of endophilins in ALIX was essential for
complementation, but those of TSG101 and CIN85 were dispensable. It would be interesting to
know whether ALG-2 and Ca2+ regulate CIE by inducing conformational change of ALIX.

HD-PTP has the Bro1 domain, the V domain and the PRR as well as a phosphotyrosine
phosphatase (PTP) domain and the PEST sequence in addition to the ALIX structure [32]. The HD-PTP
Bro1 domain binds not only CHMP4 but also STAM2 (ESCRT-0 subunit), and the V domain binds
UBAP1 (ubiquitin-binding ESCRT-I subunit) [32,74,75]. The PRR of HD-PTP binds ALG-2, TSG101 as
well as STAM2 [32,74]. Binding partners of ALG-2 in the ESCRT system are not limited to ALIX and
HD-PTP. ALG-2 also binds to selective ESCRT-I subunits (TSG101, VPS37B, VPS37C) and ESCRT-III-like
IST1 (Table 1). The 717-PSAP motif for TSG101 in ALIX is dispensable for interaction with ESCRT-I by
the Ca2+-dependent adaptor action of dimeric ALG-2 that bridges ALIX and ESCRT-I [34]. The bridging
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capacity of ALG-2 seems weak for HD-PTP and ESCRT-I because VPS37A, which is incapable of
ALG-2-binding, is selectively used for UBAP1-containing ESCRT-I [76]. Since the PTP domain of
HD-PTP is catalytically inactive [77], differential utilization of ALIX or HD-PTP in the endosomal
sorting pathway may depend on differences in recruited interacting partners under experimental
conditions used.

The Bro1 domain of ALIX binds lysobisphosphatidic acid (LBPA), enriched in MVB,
and regulates biogenesis of intraluminal vesicles (ILV) and back fusion of ILV to endosomal limiting
membranes [78–80]. Microvesicles are released into the extracellular space from the plasma membrane
(ectosomes, shedding vesicles) or by release of ILV by fusion of MVB with the plasma membrane
(exosomes) [81]. ALIX and the ESCRT machinery play critical roles in both ectosome secretion and
exosome secretion. Syntenin, a cytoplasmic adaptor of syndecan, interacts with ALIX through LYPXnL
motifs and regulates exosome biogenesis [82].

6.1.2. Plasma Membrane Repair

Injury of the plasma membrane triggered by pore-forming toxins and various physical stresses
is a threat to cell survival, and the wounded membrane needs to be rapidly repaired [83]. Entry of
extracellular Ca2+ is a major and early signal for this process. Two recent reports indicate that the
ESCRT system works in plasma membrane repair [84,85]. ALIX and ESCRT-III proteins were locally
recruited in a Ca2+-dependent manner to laser-beam-wounded sites and mediated the closure and
pinching out (shedding) of the wounded plasma membrane portion [84]. The Bro1 domain of ALIX has
a tight Ca2+-binding site (Kd = 467 nM), and binding to LBPA requires Ca2+ [79]. Mutations of either
the Ca2+-binding site or LBPA-binding site impaired accumulation of ALIX at the wound site [84].
However, it remains unclear whether a wound membrane site is enriched in LBPA and ALIX can
function as a Ca2+ sensor. Identification of ALG-2 as an initiator of the sequential recruitment of ALIX,
ESCRT-III, and VPS4 to laser-wounded sites by live cell imaging has partly answered the question [85].
Importantly, knockdown of ALG-2 impaired accumulation of ALIX, but vice versa was not true,
i.e., ALG-2 accumulated at the wounded sites in the ALIX-knockdown cells [85]. Thus, a new question
comes up: how is ALG-2 recruited to the wounded sites? Although ALG-2 exposes hydrophobic
surfaces upon Ca2+-binding and is recovered in membrane fractions [29], phospholipid binding
under physiological conditions remains unknown. Annexins, Ca2+-dependent phospholipid-binding
proteins [86], have been shown to play important roles in membrane repair [87]. Interestingly, copines
(C2-type Ca2+-dependent phospholipid-binding proteins) and annexin A7, both ALG-2-interacting
partners (Table 1), are included in the list of proteins of the plasma membrane injury proteome in which
cell surface levels were elevated as a result of ionomycin treatment [85]. Future studies are required to
determine whether these phospholipid-binding proteins are involved as upstream factors of ALG-2 in
the above-described membrane injury model. Remarkably, ESCRT-0 and ESCRT-II were not recruited
to the wounded sites. Among ESCRT-I subunits, only TSG101 was enriched in the wounded plasma
membrane [85]. Live cell imaging indicates that accumulation of ALG-2 precedes accumulation of
TSG101. Taken together, the results suggest that ALG-2 plays roles similar to the roles of ESCRT-0 in
MVB biogenesis, HIV-1 Gag in virus budding, and CEP55 in cytokinesis [11,85]. Interestingly, CEP55
interacts with ALIX and TSG101 at the GPPX3Y motif [88], which overlaps with the ALG-2-binding
site (Type 1 motif) in ALIX [28].

6.2. ER-to-Golgi Vesicular Transport

Most integral membrane proteins and secretory proteins are synthesized on endoplasmic
reticulum (ER) membranes, correctly folded in the ER lumen, incorporated into ER-derived transport
vesicles and reach their final destinations via the Golgi apparatus. Cargo protein sorting and formation
of vesicles coated with coat protein complex II (COPII) are accomplished at specialized regions of the
ER named ER exit sites (ERES) [89,90]. ALG-2 binds Sec31A, a component of the outer layer of COPII,
in a Ca2+-dependent manner and is recruited to the ERES to stabilize Sec31A [37–40]. ALG-2 was
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shown by in vitro assays to participate in the regulation of ER-to-Golgi vesicular transport at two steps:
(i) suppression of homotypic fusion of COPII vesicles [91]; and (ii) attenuation of the budding of COPII
vesicles using purified COPII proteins and permeabilized cells [92]. Inhibiting COPII budding and
suppressing homotypic COPII fusion would lead to a reduction of ER-Golgi intermediate compartment
(ERGIC) function and thereby slow down the transport of cargoes. In other words, it would be
expected that ALG-2 depletion would increase the trafficking of cargoes. However, the observed
effects of ALG-2 depletion by siRNA on the transport of the temperature-sensitive variant of
vesicular stomatitis virus envelope glycoprotein (tsO45 VSV-G), a model cargo, described by three
research groups including ourselves are not consistent: no effects in HeLa cells (data not shown in
Ref. [37]), mild suppressive effects in normal rat kidney (NRK) cells (figure not shown in Ref. [93]),
and accelerating effects in HT1080 cells [94]. The discrepancies are probably due to differences in
methods, assay conditions, and cell lines used. By using cyclopiazonic acid (CPA) (the reversible
inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, SERCA) and Ca2+-free medium,
Bentley et al. depleted the luminal Ca2+ but maintained the cytosolic Ca2+ at the basal level and
concluded that the source of Ca2+ utilized by ALG-2 in the ER-to-Golgi transport regulation was
supplied by luminal Ca2+ leaking from the ER or vesicles [91,93]. How and on what signaling event
Ca2+ leaks from the lumen is not known. It remains to be established whether there are specificities in
vesicular transport regulation of cargoes other than VSV-G by ALG-2. There might exist cargoes that
are more strictly regulated by Ca2+/ALG-2. On-demand regulatory transport from the ER to the Golgi
involving Ca2+-signaling event may be more beneficial to the cells than unregulated transport in order
to avoid wasting energy and substances.

A subset of annexin A11 (AnxA11) colocalizes with Sec31A and ALG-2 at the ERES [94].
Physical association of AnxA11 with Sec31A is mediated by dimeric ALG-2 that bridges AnxA11 and
Sec31A by functioning as a Ca2+-dependent adaptor as in the case of ALIX–ESCRT-I interaction [34,35].
This adaptor function seems specific in selecting partners because ALG-2 did not bridge ALIX and
Sec31A [94]. Knockdown of either AnxA11 or ALG-2 accelerated ER-to-Golgi transport of VSV-G in
HT1080 cells [94]. AnxA11 may function as a Ca2+-dependent membrane anchor to hold the COPII
vesicles at the ERES until abscission is ready (Figure 7). It is possible that unknown membrane-tethering
proteins associating with ALG-2 also regulate the rate of budding and abscission process.
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6.3. Membrane Associated Proteins Interacting with ALG-2

It is rational to presume that ALG-2, working as a Ca2+-sensor protein, finds partners more easily
in the vicinity of the plasma and organelle membranes through which Ca2+ is released into the cytosol.
A few integral membrane proteins and membrane-associated proteins are known to interact with
ALG-2 in a Ca2+-dependent manner: Scotin [46], Mucolipin-1 [45] and PLSCR3 [41].

6.3.1. Scotin

Scotin is a type I transmembrane protein that is localized to the ER membrane and the nuclear
envelope [95]. Overexpression of Scotin caused caspase-dependent apoptosis [95]. Interestingly,
the promoter regions of both Scotin and ALG-2 genes have p53-responsive elements, and these genes
were induced by DNA damage accompanied by transactivation activity of p53, as revealed by luciferase
reporter assays [95,96]. The C-terminal cytosolic domain of Scotin was sufficient for the ER localization
but the N-terminal luminal cysteine-rich domain was not necessary [95]. The cytosolic domain
contains a PRR for interaction with ALG-2 [46], but the relationship between subcellular localization
and ALG-2-binding capacity is not known. Scotin is a member of the SHISA family (SHISA1-9) and
constitutes a large family of STMC6 (single-transmembrane proteins with conserved 6 cysteines),
which is postulated to function as adaptors to regulate other transmembrane proteins [97]. SHISA4 is
the closest paralog of Scotin (also named SHISA5). It binds ALG-2 directly as shown by FW blotting
with biotin-labeled ALG-2 [54], but examination by other assay methods is required for confirmation
of the interaction.

6.3.2. Mucolipin-1

Mucolipin-1 (MCOLN1; TRPML1, transient receptor potential mucolipin 1; non-selective
cat ion channel) functions as a vesicular Ca2+-release channel in late endosomes/lysosomes and
controls membrane trafficking of proteins and lipids by promoting membrane fusion of amphisomes
(intermediate organelles of autophagosome/endosome fusion) and lysosomes [98]. Autosomal somatic
recessive mutations in the human MCOLN1 gene cause a lysosomal storage disease, mucolipidosis
type IV [99]. Vergarajauregui et al. [45] reported that ALG-2 bound MCOLN1 Ca2+-dependently in the
region with a cluster of acidic, basic and hydrophobic residues (ABH motif: 37-EEEDLRRRLKYFF-49)
present in the N-terminal cytosolic tail (NTail). Although the physiological role of ALG-2 binding to
MCOLN1 is not known, aggregation of abnormal endosomes by expression of GFP-MCOLN1 was
greatly reduced when the ALG-2-binding domain was mutated (44-RLK/AAA). GST-MCOLN1-NTail
pulled down not only ALG-2 but also Sec31A and Sec13 in similar quantities in EGTA-eluted fractions.
Since GST-MCOLN1-NTail did not pull down the Sec31A/Sec13 complex in ALG-2-depleted cells,
the interaction between MCOLN1 and the Sec31A/Sec13 complex was thought to be indirect by the
adaptor function of ALG-2 [45]. Because of the differences between working places of Sec31A/Sec13
(ER-to-Golgi transport) and MCOLN1 (endolysosome pathway), interaction of MCOLN1 with
Sec31A/Sec13 in the presence of Ca2+/ALG-2 on the ER membrane seems unlikely. Those authors
used only a GST-MCOLN1-NTail pulldown assay and analyzed fractions eluted with 10 mM EGTA.
Unknown ALG-2-binding proteins, capable of interacting with MCOLN1-NTail but not eluted from
the beads, cannot be excluded as genuine ALG-2-interacting proteins.

The mammalian target of rapamycin (mTOR) kinase phosphorylates TRPML1 (MCOLN1) and
inactivates the Ca2+-efflux channel TRPML1 of the lysosome [100]. Interestingly, Sec13 was found
to be one of subunits constituting the GATOR2 (GTPase-activating proteins toward Rags 2) complex
that indirectly regulated mTOR complex 1 (mTORC1) [101]. Since Sec31A was not contained in the
GATOR2 complex, the available Sec31A and Sec13 by the GST-MCOLN1-NTail pulldown assay must
have been a cytosolic free Sec31A/Sec13 heterodimer. A recent study has shown that lysosomal
TRPML1 functions as a ROS sensor [102]. Release of Ca2+ from the lysosome triggers calcineurin
(Ca2+/calmodulin-activated Ser/Thr phosphatase)-dependent nuclear translocation of transcription
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factor EB (TFEB), which regulates autophagy and lysosome biogenesis [102]. Potential involvement
of ALG-2 in the endolysosome system would expand roles of ALG-2 in organelle-associated
Ca2+-signaling other than the ER.

6.3.3. PLSCR3

Phospholipid scramblases (PLSCRs) are palmitoylated membrane-anchored proteins and
have Ca2+-dependent phospholipid scrambling activities in vitro, but phosphatidylserine (PtdSer)
externalization activity in vivo has been skeptically argued [103,104]. Plasma membrane PtdSer
externalization for “Eat-me signal” during apoptosis is catalyzed by other factors, i.e., TMEM16F and
Xkr8 [105]. PLSCR3 promotes translocation of cardiolipin from the mitochondrial inner membrane to
the outer membrane [106]. This process is coupled with a regulatory role of PLSCR3 in cardiolipin
de novo biosynthesis and its resynthesis [107]. Knockdown of PLSCR3 decreased the delivery of
pro-mitophagy-stimulated mitochondria to autophagosomes, which was mediated by binding of the
autophagy protein LC3 to cardiolipin [108]. PLSCR3 gene knockout (Plscr3−/−) mice accumulated
abdominal fat and displayed insulin resistance and glucose intolerance [109]. On the other hand,
overexpression of PLSCR3 inhibited the adipogenesis of mouse 3T3-L1 cells by suppressing induction
of the mRNAs of late stage pro-adipogenic transcription factors [110]. The biological significance of
ALG-2 binding to the N-terminal PRR of PLSCR3 has not been clarified. PLSCR3 was secreted to the
extracellular space by an unconventional pathway, most likely by exosomes, the secretion of which was
significantly suppressed by expression of a dominant negative ATPase-defective form of VPS4B [111].
ALG-2 may bridge PLSCR3 and other proteins involved in exosome secretion.

7. Interplay of PEF Proteins

7.1. Peflin

PEF protein genes must have been duplicated several times, diverged, and acquired specific
functions in vertebrates [14]. Rayl et al. [112] reported that knockdown of peflin enhanced VSV-G
transport from the ER to Golgi and that double knockdown of peflin and ALG-2 canceled the
knockdown effect of peflin in normal rat kidney (NRK) cells. Their plausible explanation is that
knockdown of peflin diminishes the formation of a peflin/ALG-2 heterodimer and causes an increase
in ALG-2 homodimer formation, resulting in activation of the PRR of Sec31A for interactions with inner
shell components or cargo-associating proteins. Peflin tends to dissociate from ALG-2 in the presence
of Ca2+ under an immunoprecipitation condition including detergent [18]. However, it remains
to be established whether the ALG-2/peflin heterodimer remains and retains the ability to bind
target proteins under physiological conditions. Alternatively, the peflin monomer and ALG-2/peflin
heterodimer might have specificities different from that of the ALG-2/ALG-2 homodimer for target
binding. It is also possible that an ALG-2/peflin heterodimer bridges partners that are different from
those bridged by an ALG-2/ALG-2 homodimer.

7.2. Sorcin

Sorcin is classified into the group II PEF subfamily including typical calpains due to the similarity
of the positions of intron insertions in the genome as well as amino acid sequence similarity in the
EF1 region [14]. However, the entire sequence of sorcin is more similar to those of group I PEF
proteins including ALG-2 and peflin [113]. Sorcin interacts with a variety of proteins including
ryanodine receptor (RyR), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), Polo-like
kinase 1 (PLK1), and carbohydrate-responsive element-binding protein (ChREBP) (see Refs. [114,115]
and references therein). Interestingly, ALG-2 and sorcin share AnxA7 (synexin) and AnxA11 as common
interacting proteins [42,43,116]. Sorcin was recruited to the chromaffin granule membrane by AnxA7
in a Ca2+-dependent manner and inhibited AnxA7-mediated chromaffin granule aggregation [116].
Both AnxA11 and sorcin localized to the midbody during cytokinesis, and knockdown of AnxA11 or
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sorcin caused failure in completing cytokinesis and induced cell death [115,117]. Cell cycle abnormality
was also reported for ALG-2 knockdown cells [118]. Sorcin associated with ALG-2, most probably
by binding to the Ala/Gly/Pro-rich N-terminal tail of ALG-2, in the presence and absence of Ca2+

in in vitro binding assays using a surface plasmon resonance (SPR) biosensor [56]. Relatively large
estimated dissociation constants (Kd = 3.5~12 µM) suggest that the interaction is weak and that
binding of the two different PEF proteins occurs under limited conditions in restricted areas where
both proteins accumulate in the cells. Immunofluorescence microscopic analysis showed that sorcin,
AnxA7, and AnxA11 as well as ALG-2 partly colocalized at the midbody [56,115,117]. Since sorcin does
not bind ALIX [3], localization of sorcin to the midbody may depend largely on binding to AnxA11,
which is known to be required for midbody formation [117]. Interplay of sorcin, AnxA11, and ALG-2
might contribute to the regulation of PLK1, which phosphorylates sorcin [115] and ALIX to induce an
open conformation for initiation of ESCRT-III assembly [67].

7.3. Calpains

Calpains are nonlysosomal intracellular Ca2+-activated cysteine proteases and are classified into
two major groups: typical calpains (containing PEF domains) and atypical calpains (lacking PEF
domains) [22]. Among the typical calpains, conventional m- or µ-calpains, which have a common
small subunit also containing a PEF domain, are required for Ca2+-facilitated survival after plasma
membrane damage [119]. Interplay of acute membrane sealing of the injury sites by activation of the
ALG-2/ALIX/ESCRT-III pathway and localized remodeling of the cortical cytoskeleton by proteolytic
calpain actions may be necessary for full recovery of injured cells [83–85]. Calpain-7, an atypical calpain
lacking the PEF domain, possesses a tandem repeat of MIT (microtubule-interacting and transport)
domains [113]. Budding yeast lacks typical calpains but retains Rim13p, which associates with Snf7p
(CHMP4) and is recruited to the endosomal membrane by ESCRTs [120]. The yeast calpain cleaves
Rim101p (a transcription factor containing a YPXL/I motif), which interacts with Rim20p (an ALIX
homolog, a paralog of yeast Bro1p) to induce gene expression for ambient pH adaptation [120].
Physiological substrates of mammalian calpain-7 have not been determined yet, but proteolytic activity
of calpain-7 is significantly enhanced by ESCRT proteins including IST1, with which calpain-7 directly
interacts through the MIT domains [121,122]. Calpain-7 is involved in proteolytic downregulation of
internalized EGFR in the endosomal pathway [123]. Although the roles of ALG-2 in calpain-7 functions
remain to be clarified, the physical link of IST1/ALG-2 and IST1/calpain-7 suggests acquisition of
diversity in vertebrates by creating new genes for typical calpains (working ESCRT-independently)
by fusion of the genetically separated prototypic calpain catalytic domain and the PEF domain [113].
In mammalian cells, connections of CHMP4, ALIX (and HD-PTP), ALG-2, IST1, and calpain-7 (Figure 6)
may have specific proteolytic missions, which need to be clarified.

8. Interaction of ALG-2 with Membrane Receptors and Signal Transducers

ALG-2 is associated with cancer development [5,124], and clinical investigation of cancer cells
and tissues have revealed the usefulness of monitoring the expression of ALG-2 (often quoted PDCD6)
as a biomarker for prognosis [125–127]. ALG-2 and ALIX interact with pro-caspase-8 and tumor
necrosis factor (TNF) α receptor-1 (TNF-R1), respectively, in the death-inducing signaling complex [48].
The ALIX/ALG-2 complex is thought to allow recruitment of pro-caspase 8 onto endosomes containing
TNF-R1. Park et al. [128] reported that ALG-2 promoted TNFα-dependent apoptosis through the
activation of NF-κB signaling pathways, changing the expression of pro-apoptotic and anti-apoptotic
factors. ALG-2 associates with endothelial growth factor receptor 2 (VEGFR2) and suppresses the
PI3K/mTOR/p70S6K signaling pathway [49]. ALG-2 has been reported to interact with cancer-
or apoptosis-associated Ser/Thr-kinases such as Raf-1 [50] and DAPK1 (death-associated protein
kinase 1) [51] in a Ca2+-dependent manner but with ASK1 Ca2+-independently [52].
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9. Association with the Nucleus

The nuclear function of ALG-2 is also becoming apparent from findings of interactions of
ALG-2 with RNA-associated proteins CHERP (Ser/Arg-rich splicing factor superfamily) and RBM22
(RNA-binding motif 22, spliceosomal nuclear protein), which contribute to the regulation of alternative
splicing of pre-mRNAs [53,55,129]. PATL1, a cytoplasmic P-body mRNA decay factor, also co-localizes
at subnuclear regions with Ser/Arg-rich splicing factor SC35 (SRSF2) and is thought to be involved in
nuclear RNA processing [130]. Nuclear Ca2+ concentration is regulated partly by cytosolic Ca2+

passing through the nuclear pore complex (NPC) and also partly independently by release of
ER-nuclear envelope (NE)-stored Ca2+ by ion channels localized on the nuclear membrane facing the
nucleoplasm [131]. The ESCRT-III/VPS4 machinery functions for surveillance of NPC integrity and
resealing of the reformed NE during mitosis (see Ref. [11] for review). When immune cells and tumor
cells migrate through the tight interstitial space, extensive deformation of the cell and its nucleus causes
membrane injury. The ESCRT-III/VPS4 machinery has been shown to play critical roles in the repair
of this interphase NE bleb rupture [132,133]. It remains to be established how the ESCRT-III/VPS4
machinery is recruited to the wounded sites. AnxA11 has been reported to associate with the reforming
nuclear envelope in late telophase of mitosis [134]. Translocation of AnxA11 to wounded NE sites in
interphase might activate a pathway similar to the ALG-2/ALIX/ESCRT pathway, which has been
shown to be involved in the plasma membrane repair [84,85].

10. Perspective

As described in this review, various ALG-2-interacting proteins have been identified, but roles of
ALG-2 on a molecular basis have been partially clarified only in limited cases of the ALIX-associated
ESCRT system and in the COPII system. In both cases, membranes provide assembly sites of the
multiprotein complex, and extracellular or organelle-stored Ca2+ serves as a source for activation of
ALG-2. The ESCRT system and the COPII system are conserved in eukaryotes. ALG-2 homologs in
lower eukaryotes may play similar roles but in a different mode of action in each organism. Yeast and
invertebrate homologs of human ALIX and Sec31A also have PRRs, but sequences similar to those of
the ALG-2-binding motifs shown in Figure 3 have not been found. The budding yeast ALG-2 homolog
named Pef1p binds yeast Sec31p at the PRR in the absence of Ca2+, but not in the presence of Ca2+,
in a binding assay mixture [135].

Calmodulin binds many target proteins by recognizing different motifs in Ca2+-dependent and
Ca2+-independent manners and displays flexible structures for binding [136,137]. Calmodulin also
bridges proteins with the two lobes (the N-terminal and the C-terminal EF-hand pairs) inter- and
intra-molecularly by binding to two target motifs [138,139]. It remains to be established whether
one monomeric molecule of ALG-2 has a capacity to bridge two binding partners or only a homodimer
can bridge them due to steric restrictions. In addition to the three hydrophobic pockets (Pockets 1, 2,
and 3) in ALG-2 (Figure 2), computational algorithms predict one more hydrophobic cavity near the
interface of the two dimer molecules [140]. It would be intriguing to see whether Pocket 4 accepts
a new type of motif that has not been determined yet. In conclusion, ALG-2 interacts with a variety of
proteins with diverse modes of recognition and may play roles as a Ca2+-dependent adaptor to relocate
target proteins to the proper subcellular space, such as to the plasma and organelle membranes and
to the nucleus. Identification of novel interacting proteins and elucidation of functional roles should
provide more lines of evidence that dimeric ALG-2 bridges proteins to expand the interacting network
and contributes to regulation of Ca2+-dependent membrane trafficking.
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Abbreviations

ABM ALG-2-binding motif
ALIX ALG-2-interacting protein X
AnxA11 annexin A11
CEP55 centrosomal protein of 55 kDa
CIE clathrin-independent endocytosis
CME clathrin-mediated endocytosis
COPII coat protein complex II
CTxB cholera toxin B
EGFR epidermal growth factor receptor
ER endoplasmic reticulum
ERES ER exit site
ESCRT endosomal sorting complex required for transport
GST glutathione S-transferase
ILV intraluminal vesicle
LBPA lysobisphosphatidic acid
mTOR mammalian target of rapamycin
MIT microtubule-interacting and transport
MVB multivesicular body
NE nuclear envelope
NPC nuclear pore complex
PEF penta-EF-hand
PRR Pro-rich region
TNFα Tumor necrosis factor alpha
VSV-G vesicular stomatitis virus envelope glycoprotein
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