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ABSTRACT: The structure and function of the brain greatly rely on different
signaling pathways. The wide variety of biological processes, including
neurogenesis, axonal remodeling, the development and maintenance of pre-
and postsynaptic terminals, and excitatory synaptic transmission, depends on
combined actions of these molecular pathways. From that point of view, it is
important to investigate signaling pathways and their crosstalk in order to better
understand the formation of toxic proteins during neurodegeneration. With
recent discoveries, it is established that the modulation of several pathological
events in Alzheimer’s disease (AD) due to the mammalian target of rapamycin
(mTOR), Wnt signaling, 5′-adenosine monophosphate activated protein kinase
(AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α
(PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2
homologue 1) are central to the key findings. These include decreased amyloid
formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the
importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also
focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in
order to prolong the longevity of AD patients.

1. INTRODUCTION
Alzheimer’s disease (AD) is a chronic neurodegenerative
condition marked by the death of cholinergic neurons over
time, resulting in significant behavioral, motor, and cognitive
deficits, which are mainly attributed to the deposits of Aβ
plaques and hyperphosphorylated tau.1−3 AD pathology is
rather complex in nature; involvement of different signaling
molecules, aberrant proteins, and a number of cellular organelles
may contribute toward its development. For example, neuronal
transmission and calcium fluctuations at synapses depend on the
mitochondria;4,5 thus any imbalance in energy metabolism is
critical to the mitochondria and is regarded as a sensitive
indicator of cognition in AD.6 Reduced synaptic activity and
subsequent brain injury results from mitochondrial dysfunction
and increased Aβ buildup in synapses. Many neurodegenerative
diseases, including AD, have been linked to Aβ buildup, synaptic
changes, and mitochondrial dysfunction.7 To sustain the
electrochemical gradient, the mitochondria’s proper physio-
logical activity relies on their intact structure. Several signaling
pathways have been discovered using genetic methods as
important mediators of the complex functionality of these

neurons, deciding the execution of a process by their
intraneuronal communications.8 Wnt signaling pathways,
AMP-activated protein kinase (AMPK), mammalian target of
rapamycin (mTOR), and activation of the silent mating-type
information regulator 2 homologue 1 (sirtuin 1) axis are among
these signaling pathways (Figure 1). Figure 1 also depicts how
theWnt signaling pathway interacts with AMPK, Sirt1, PGC-1α,
mTOR, and peroxisome proliferator-activated receptor gamma
(PPAR-γ) that leads to a collective decision, either cell rescue or
cell death. When a Wnt ligand binds to the frizzled receptor, it
activates both canonical and noncanonical Wnt signaling. The
canonical pathway (Figure 1, left) inhibits GSK3β, whereas the
noncanonical pathway activates AMPK (Figure 1, right). Sirt1 is
also activated by AMPK. Sirt1 deacetylates PGC-1α, which
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translocates to the nucleus and interacts with PPAR-γ to increase
the expression of genes promoting mitochondrial biogenesis.
AMPK also suppresses the mTOR complex, which stimulates
autophagy.

Many natural and synthetic molecules have shown promise to
modulate the complex interplay of these pathways. Therefore, it
is highly interesting to dictate the present medications swirling
around one drug, one target paradigm, despite the reality that
AD is multifactorial in nature.9 As a result, we require tailored
therapy based on the one-drug multiple-target approach,
keeping in mind not to invite unnecessary adverse effects.
Recent findings have revealed that natural bioactive molecules
hold a future promise in this category. Such molecules possess
powerful antioxidant, anti-inflammatory, and neuroprotective
properties; hence they receive special attention for their
potential anti-Alzheimer activity.10−13 However, these natural
medicines have various pharmaceutical constraints, such as
insufficient lipophilicity and target site selectivity, limiting their
potential use against AD.14 To circumvent these limitations,
current research aims to alter these natural medicines by adding
or removing distinct functional groups in the pharmacophore.
Aside from natural and semisynthetic drugs, combinational
therapy, in which a natural medicine is combined with a
synthetic agent for optimal therapeutic effect, is also gaining
popularity.

In this review, our focus is to propose a potential link between
numerous molecular pathways previously known to play strong
roles in neurodegenerative disorders and how these processes
may also contribute to AD. We believe that better knowledge of
the molecular foundation of these pathways, as well as how they
interact inside the cell, may help us to reduce or prevent
metabolic and neurological impairments seen in AD.

1.1. Crosstalk of AMPK and mTOR in AD. The
involvement of these molecular pathways in AD is not clinically
proven. However, ample numbers of recent findings have shown
that AMPK and mTOR are important targets for dysregulation
in AD.15,16 Various cellular models of AD have revealed that
activating AMPK reduces hyperphosphorylation of tau in rat
cortical neurons,17 while others have found that AMPK may
phosphorylate tau at many locations (Thr231 and Ser396/404)
and disrupt tau attachment to microtubules.18,19 AMPK
activation, on the other hand, has been demonstrated to
suppress amyloidogenesis in neurons in multiple investiga-
tions.20,21 AMPK activation also inhibits mTOR signaling while
increasing autophagy and the lysosomal breakdown of Aβ.22,23
Nonetheless, a recent study found that, at therapeutic doses,
metformin, a biguanide-class oral antidiabetic drug, can activate
AMPK and upregulate transcription of β-secretase (BACE1),
the rate-limiting enzyme for Aβ generation, significantly
increasing the generation of both intracellular and extracellular
Aβ species.24 These findings suggest narrowing down the use of
metformin in diabetic patients having dementia.

The “anti-AD” benefits of nature derived phytochemicals have
been found to activate AMPK in several animal studies. For
example, protective and beneficial effects of phytic acid against
amyloid β pathology in Tg2576 mice were found to be
significant. Phytic acid found in dietary grains not only reduces
ROS and Aβ oligomers but also increases the expression of
autophagic proteins like Beclin-1 and Sirt1 and also upregulates
the AMPK pathway.25 Another phyto compound arctigenin
isolated from Arctium lappa has been shown to reduce Aβ
plaques with an increase in Aβ clearance in APP/PS1 AD
mice.26 This plant belongs to the Asteraceae family and is widely
used in Chinese traditional medicine for diabetes, inflammation,
improving skin texture, suppressing growth of tumors, and many

Figure 1. Molecular crosstalk among various important pathways specific to Alzheimer’s disease.
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viral infections. The mechanism of AMPK activation and
inhibition of protein kinase B/mTOR signaling is thought to
responsible for the neuroprotective action of arctigenin. Other
researchers found that levetiracetam and topiramate,21 two
commonly used epilepsy medications, improved behavioral
impairments and reduced plaque formation in APP/PS1 mice.
GSK-3 inhibition and AMPK activation were shown to be the
mechanisms behind these observed benefits via autophagic
degradation of Aβ and its enhanced clearance.27 Latrepirdine, an
antihistaminic medication, also exhibited substantial anti-AD
effects in a phase II research. In TgCRND8 animals, latrepirdine
promoted mTOR and ATG5-dependent autophagy, resulting in
lower levels of Aβ, including APP metabolites, and alleviation of
behavioral deficits and autophagic dysfunction.28 Another drug
candidate, rapamycin, improves neuronal survival; otherwise
used as an immunosuppressant, it is a highly appealing and
interesting molecule in AD.29 However, due to its severe
immunosuppressive impact, it has never been explored as a
viable treatment for AD. The mechanism behind rapamycin’s
anti-AD effects is currently being debated. However, it has been
proposed that increasing autophagy by inhibiting mTOR with
rapamycin improves cognitive impairments and reduces Aβ
pathology and NFTs.30−32

1.2. Role ofWnt Signaling in AD.Wnt proteins are a group
of secreted cysteine-rich glycosylated proteins named after the
Drosophila “wingless” protein and the mouse “Int-1” protein.33

Humans have found 19 of the 24 Wnt genes that express Wnt
protein, whereas genetic research in human, mouse, Drosophila,
zebrafish, and Xenopus populations have revealed 80 Wnt target
genes.33,34 Wnt interacts with cell surface Frizzled (Fz)
transmembrane receptors, inducing at least three different
downstream signaling cascades.34 The canonical Wnt pathway
controls gene transcription via β-catenin, often known as Wnt/
β-catenin. The second is the noncanonical route, which is
regulated by intracellular Ca2+ release, and is also known as
Wnt/Ca2+.35−37 Numerous studies have shown that Wnt
signaling components are altered in AD. β-Catenin levels are
reduced in AD patients carrying presenilin-1 (PS1) inherited
mutations.38 Alvarez et al. investigated the role of Aβ on cultured
hippocampal neurons, Their research team found that Aβ
treatment inhibits the canonical Wnt signaling pathway.39

Similar effects were induced by Dickkopf-1 (Dkk1), a Wnt
antagonist;40 other studies on postmortem brain samples of AD
patients further confirmed this study.41−43

The risk factor for AD, apolipoprotein E (apoE4), inhibits
canonical Wnt signaling;44 disease progression is caused by a
common genetic mutation in the low-density lipoprotein
receptor-related protein 6 (LRP6).45 Clusterin, a multifunc-
tional glycoprotein, has been shown to regulate Aβ toxicity via
the noncanonical Wnt/PCP-JNK pathway, a role player in
hyperphosphorylation of tau and cognitive deficits.46 In the
APPswe/PS-1 transgenic model of AD, activating both canon-
ical and noncanonical Wnt signaling by using Wnt ligands
ameliorates cognitive deficits.47 These findings indicate that
alterations in the Wnt signaling pathway play a role in synaptic
development and AD progression.48 Other pathways such as
inflammatory pathways, (PPAR) α and γ, and nicotinic and
muscarinic ACh receptors interact with the Wnt pathway and
support its neuroprotective potential against AD.49−51

As the number of cholinergic neurons decreases, the activity
of (AChE) and choline acetyltransferase declines.52 In hippo-
campal neurons, it is well-known that Aβ interacts with
macromolecules present at synapses, leading to the formation

of a complex which disrupts the normal synaptic activity.53,54 It
has also been found that Aβ−AChE complexes carry out more
deleterious neurotoxic effects as compared to Aβ,54 implying its
critical role as an anti-AD molecule. Hyperforin, a phytochem-
ical compound, affects the release of acetylcholine in the CNS55

and has shown its potential to attenuate both neurotoxicity and
memory deficits due to Aβ plaques. Using the same molecules, a
semisynthetic derivative, tetrahydrohyperforin, was developed.
This molecule was tested in the AβPP/PS1 transgenic mouse
model of AD and was found effective in restoring activity of
brain AChE; reduction in levels of amyloid plaques and
protection toward cholinergic neurons were also observed.55,56

The Wnt signaling pathway may be involved in translocating a
subset of acetylcholine receptors (AChRs) to synapses,57 and
mutations in the Wnt ligand may also promote significant
behavior deficits.57 These findings imply that Wnt signaling is
involved in synaptic plasticity. The buildup of amyloid is thought
to have a crucial role in the cognitive abnormalities seen in
Alzheimer’s patients. Some evidence suggests that AD is linked
to free radicals.58

In vitro investigations suggest that oxidative stress is one of the
neurotoxic mechanisms of Aβ peptides. Furthermore, depletion
of vitamin E has been demonstrated to increase the quantity of
Aβ by inhibiting its clearance from the brain, resulting in an
increased level of Aβ.59 Peroxisomal proliferation, in combina-
tion with an increase in catalase, has previously been shown to
protect cultured rat hippocampal neurons from the neuro-
toxicity of Aβ, improve spatial memory, protect postsynaptic
proteins, and reduce hyperphosphorylation of tau.60 Wnt
signaling may also protect neurons from oxidative damage in
AD. In primary hippocampal murine neurons, overexpression of
Wnt1 exerts neuroprotection against DNA damage due to
oxidative stress mediated by Aβ.61 Reduced Wnt activity may
also make neural cells more vulnerable to oxidative stress; in
addition to that, Aβ induces overexpression of glycogen synthase
kinase 3 (GSK-3), which causes phosphorylation of β-catenin
and depletes it.62 Also, increased PKC activity, which is
controlled by the Wnt pathway, might result in decreased Aβ
synthesis.63 Upregulation of both DSH-1 and DSH-2 reduces
NFT formation and increases neuroprotection by inhibiting
GSK-3-mediated phosphorylation of tau protein.62

1.3. Peroxisome Proliferator-Activated Receptor
Gamma Coactivator 1α (PGC-1α) in AD. It has been
proposed that mitochondrial biogenesis and sirtuins serve as an
essential tool in maintaining energy homeostasis.64 Recent
discovery of Sirt1 inducing PGC-1α acetylation and controlling
mitochondrial activity seems fascinating in the case of age
related disorders.65 Nonetheless, despite its popularity, the idea
that Sirt1 acts in response to nutrient-sensitive variations in
baseline NAD+ levels has received little experimental support
until recently.66 Natural molecules like resveratrol, found in a
number of fruits, is a Sirt1 activator. This compound stimulates
mitochondrial biogenesis, although it is unclear if Sirt1 is
responsible for such positive outcomes.67 Experiments on
SIRT1 knockout mice using resveratrol as a test substance
demonstrated Sirt1 encourages activation of AMPK in a dose-
dependent manner. These findings suggest that Sirt1 is required
for AMPK stimulation and may prove beneficial for mitochon-
drial biogenesis.67 The Sirt1−PGC-1α complex is thought to be
linked with the development of AD. In eNOS-deficient mouse
brains exposed to a high fat diet, one research found that up- or
downregulation of PGC-1α modulates BACE-1 transcription in
vitro and in vivo.68 Fasting over a short period of time lowered
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BACE-1 transcription in the brains of these mice while
increasing PGC-1α expression and activity. PGC-1α inhibitory
action was dependent on ligand-independent activation of
PPAR through Sirt1-mediated deacetylation.68 Sirt1−PPAR−
PGC-1α direct interference with BACE-1 provides a novel
noncanonical Sirt1−PGC-1α pathway in transcriptional repres-
sion in neurons in response to metabolic limitation.68

1.4. Mitochondrial Dysfunction in AD. The “amyloid
cascade theory” has dominated our knowledge of the etiology
and development of AD for over two decades. This concept
proposed that the buildup of Aβ, as a result of APP cleavage,
causes significant biochemical alterations in the brain of AD
patients, leading to abnormalities like cognitive and memory
deficits.69 PS1 and PS2 were two more genes that were later
shown to have mutations in autosomal dominant AD.70,71 In
order to perform the APP processing by the γ-secretase complex,
these proteins form essential components of this complex.
However, in the case of sporadic AD patients, it is surprising that
no mutations in the APP or PS genes has been found.72 The
“mitochondrial cascade theory” was presented in 2004 to explain
the continuous association between growing age and the risk of
AD, as well as to offer a more correct explanation for the
biochemical abnormalities seen in AD patients.73 The
maintenance of mitochondrial activity in AD has received a lot
of attention in fundamental research. Strategies aiming at
boosting mitochondrial health, preventing mitochondrial Ca2+
excess, minimizing membrane destabilization, and improving
overall redox status are among the several techniques. Thus,
there is a search for novel treatments having good effects on
these targets that may prevent dysfunction of mitochondria.74 In
the APP/PS1 animal brain, dietary zeolite (micronized zeolite)
supplementation demonstrated reducd mitochondrial ROS,
enhanced superoxide dismutase (SOD) levels, and minimized
Aβ accumulation.75 Similarly, Salvia sahendica extracts reduced
Aβ-induced reductions in NRF1 and mitochondrial tran-
scription factor A (TFAM) levels.76

In the mouse model APP/PS1, treatment with melatonin and
caffeine greatly improved mitochondrial function and the ATP
level.77 Plant derived apigenin, a flavonoidal compound, reduced
the Aβ induced toxicity; however, it was ineffective in reducing
APP expression and Aβ load.78 Other beneficial effects like
increased intracellular glutathione and peroxidase activities were
significantly improved. Treatment of 3xTgAD animals with
nicotinamide enhanced cognitive function and dynamin-like
protein 1.79 Tetrahydrohyperforin, a semisynthetic derivate of
St. John’s wort, has previously been shown to reduce the
production of 4-hydroxynonenal adducts and caspase-3
activation in the brains of APP/PS1 mice.56 Another research
found that upregulation of PGC-1α and Sirt1 mRNA in
response to physical activity leads to increased mitochondrial
DNA.80 Exercise also regulates the brain mitochondrial redox
balance, and persistent exercise restores apoptotic signaling in
the AD brain.81 Further, polyphenols have been found to reduce
membrane disruption produced by the Aβ42 peptide and tau-
441 proteins, indicating that aberrant protein aggregates may be
interfering with the mitochondrial membrane.82 Through the
activation of oxidative phosphorylation, the regulation of
intracellular NAD+ levels in human brain cells may also be
critical for the preservation of cellular viability during situations
of chronic oxidative stress and mitochondrial malfunction.83

NAD+ is also strongly linked to the PARP, a DNA-binding
family of enzymes.84−86 PARP activation contributes to DNA
repair and proper cellular function under physiological

settings.87 Under pathological conditions, however, PARP
activation causes an increase in NAD+ turnover, a decrease in
ATP synthesis, and the stoppage of all energy-dependent
processes, as well as cell death.88,89 Cellular damage may be
exacerbated by maintaining intracellular NAD+ pools. PARP-
induced astrocyte death has been found to be reduced by NAD+

therapy.86 NAD+ may potentially protect neurons from damage
by increasing energy metabolism and/or promoting sirtuin
activity.90

2. PLANT MATERIALS AND DERIVED
PHYTOCHEMICALS FOR TREATMENT OF AD
2.1. Resveratrol. There have been several studies

investigating the potential role of resveratrol in AD. This natural
compound is found in grapes, berries, and red wine. Due to its
multipotent health benefits, studies are being carried out to look
for its neuroprotective potential.91 Like curcumin, it possesses
antiamyloidogenic characteristics and reduces the amount of
intracellular Aβ peptides without affecting Aβ-producing
enzymes or β-secretase.92 Protein kinase C activation by
resveratrol protects SH-SY5Y neuroblastoma cells and hippo-
campal neurons against Aβ-mediated damage.93 Resveratrol
protects neurons and microglial cells by scavenging free
radicals.94 Inhibiting COX-2 and nitric oxide synthase
expression, resveratrol reduces NF-κB activity.95,96 Numerous
animal studies have indicated that trans-resveratrol prevents
cognitive decline and spatial memory loss.97−100 Intracerebro-
ventricular (icv) colchicine-induced cognitive impairment and
oxidative stress in rats were reversed after chronic resveratrol
therapy.101 In 119 patients, resveratrol was used to treat AD. For
a period of 52 weeks, each subject received 1 mg of resveratrol
every day. The therapy reduced MMP-9 levels and increased
MDC, IL-4, and FGF-2 levels in the CSF compared to the
placebo group.102 Patients’ ADAS-Cog, MMSE, and activities of
daily living scale (ADLS) scores all improved significantly after
12 months of treatment with a combination of resveratrol,
dextrose, and malate. In addition, resveratrol was shown to be
safe, efficacious, and tolerable.103,104

2.2. Curcumin. Turmeric, known as “golden spice”,
commonly used in Indian and Middle Eastern cooking style,
contains a natural compound called curcumin. Similar to
resveratrol, it has been investigated for possible advantages in
treating a range of ailments, including AD.105,106 Curcumin has
anti-inflammatory, antitumor, wound healing, and antibacterial
properties.107,108 Amyloid plaques and inflammatory cytokines
are both inhibited by curcumin, similar to the JNK-mediated
pathway.109 Curcumin (400 mg) was evaluated by Chin et al.109

in 60 persons aged 60−65 years for its acute and chronic effects
on mood and cognition. Acute therapy with a single dose
significantly enhanced a participant’s working memory.
Curcumin (90 mg twice day for 18 months) was studied by
Small et al.110 in 40 persons for its impact on memory and the
production of amyloid plaques and tau tangles. Apart from
improving memory and concentration, curcumin also reduced
the amyloid and tau buildup in the hypothalamus region.110

2.3. Catechins in Green Tea, or Polyphenols. Catechins
are polyphenolic phytochemicals found in the leaves of Camellia
sinensis.111 Several studies have shown that green tea extract can
safeguard neurons from Aβ-induced damage in cellular models
of neurodegeneration.112 A reduction in Aβ production in APP-
695 AD mice and also alleviation of the Aβ load in Tg2576 have
been demonstrated.113 Catechins in green tea seem to be more
potent antioxidants than vitamin C, vitamin E, or α-
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tocopherol.114,115 Catechins scavenge ROS and lipid perox-
idation, and they also reduce cytokine-induced inflammation
and COX-2 expression in response to IL-1 and Aβ.116−118 There
was less memory loss in the group receiving catechin-containing
water than in the group receiving plain drinking water after (icv)
injection of Aβ.119 A 7 year follow-up study of 7139 Chinese
participants was conducted in 2012 to see if there was a
relationship between tea drinking and cognitive performance. As
a measure of cognitive functioning, a verbal fluency standardized
test was employed. Regular tea consumption has been linked to
improved cognition.120 As part of another study, researchers
investigated the link connecting tea drinking and the evolution
of cognitive deficits. The scoring of the Mini Mental State
Examination (MMSE) was being used to assess the results of
1438 community-living Chinese adults in this study. Tea intake
in higher amounts has been shown to be linked to a reduced
incidence of cognitive deficits and impairment.121 Similarly, in
2017, Gu et al. examined the link between intake of tea and
cognitive decline in adults. There was a positive correlation
between cognitive functioning and tea intake in this society-
based investigation.122

2.4. Ellagic Acid. Ellagic acid, a polyphenolic natural
product obtained from various fruits and nuts, is a promising
neuroprotective agent that exhibits anti-inflammatory and
antioxidant properties.123−125 Recent research has shown that
ellagic acid can affect a wide range of cell signaling pathways. As a
result, neurodegenerative disease may be delayed or slowed
down. Because of its multiple neuroprotective properties, such
as its iron chelating and free radical scavenging abilities and its
potential to activate cellular signaling cascades and to lessen
mitochondrial dysfunction, ellagic acid can also be employed in
pharmaceutical preparations to manage neuronal disorders
including AD.126

2.5. Epigallocatechin-3-gallate. Epigallocatechin-3-gal-
late (EGCG) is the main catechin constituent in green tea,
and it is employed in the management of carcinoma,
cardiovascular (CVS), and CNS disorders due to its
antioxidative potential.127,128 At 10 mg/kg oral dose, EGCG
has been reported to block AChE, as well as increase the activity
of glutathione peroxidase. The nonamyloidogenic α-secretase
proteolytic pathway was promoted by EGCG in Tg2576 mouse
neurons transfected with the human “Swedish” mutant APP.129

This reduced the production of Aβ in these cells and in primary
neurons. With fish oil, the bioavailability of EGCG was
enhanced and the synergistic effect of EGCG inhibited the
accumulation of Aβ in Tg2576 mice.130 Numerous studies have
found that EGCG has multiple neuroprotective properties, such
as inhibiting α-secretase and enhancing memory formation,131

protecting neurons from inflammation and activating astro-
cytes,132 and so on. Althoughmore clinical evidence is needed to
prove EGCG’s therapeutic uses, it may exhibit a key role in the
treatment of AD.

2.6. Nicotine. Current research suggests that nicotine
possesses protective effects against neurodegenerative disor-
ders.133 The potential of nicotine in blocking Aβ-mediated
caspase activity and programmed cell death, lowering the
generation of free radicals as well as enhancing intracellular
calcium through nicotinic receptors,134 and averting mitochon-
drial abnormalities has been already acknowledged.135 To
reduce β-amyloidosis in transgenic rodents, it can effectively
reduce the Aβ deposit, copper, and zinc concentrations.136,137

The activity and level of iNOS decreased in mice treated with
nicotine, which might be linked to reduced NF-κB stimulation

and MAP kinase expression. Moreover, nicotine treatment in an
AD rat model showed that Aβ-induced declines in learning and
short-term cognition could be prevented by nicotine.138 It is not
possible to use nicotine as an agent to treat AD; however, these
data imply that nicotine receptors might be a possible
therapeutic target for AD.

2.7. Rosmarinic Acid. Rosmarinic acid (Lamiaceae genera)
has numerous pharmacological properties, involving anti-
inflammatory, antioxidant, neuroprotective, and anticancer
actions.139,140 In rats, rosmarinic acid (intraperitoneally at
dose 0.25−4 mg/kg) substantially decreased impairments
caused by Aβ, primarily by impeding NF-κB and TNF-
α.141−143 Additionally, this acid was found to constrain tau
protein, as well as to shield neurons against Aβ-induced
cytotoxicity.144 As an anti-inflammatory and antilipid perox-
idant, rosmarinic acid has already demonstrated enhancing
short-term spatial cognition in rat models. Rosmarinic acid
cannot be used to treat AD until more clinical trials are
performed.145,146

2.8. Docosahexaenoic Acid (DHA). Polyunsaturated fatty
acids (PUFA), namely docosahexaenoic acid, are included in a
popular health supplement (DHA), which has been shown to
have multiple effects on neurodevelopment and neurofunc-
tion.147 AD incidence is negatively associated with plasma DHA
concentrations in epidemiological studies,148,149 which show
that older adults who consume more DHA have a lower risk of
developing the disease. Additional studies have shown that the
neuroprotective activities of DHA and polyunsaturated fatty
acids, involving antiapoptotic activity, antioxidants, and anti-
inflammation, and including neurogenesis, can help prevent the
progression of AD symptoms.150,151 There is scientific evidence
that backs the lack of polyunsaturated fatty acids is associated
with an upsurge in oxidative stress in the brain of transgenic
mice.152 Polyunsaturated fatty acids are said to increase
glutathione concentrations and also reduce NO production
and iNOS expression.153,154 Taking DHA supplements can
assist in lessening oxidative anxiety and improve AD’s
symptoms, making it a useful food supplement to combat the
disease.

2.9. Prosapogenin III. Prosapogenin III is a steroidal
saponin compound found in the roots of various plants including
Liriope platyphylla. It possesses a variety of actions such as
antiasthmatic, neurogenic, and antiallergic effects as well as
prevention of diabetes.155 The neuroprotective efficacy of L.
platyphylla extract on SH-SY5Y cells using hydrogen peroxide
(H2O2) mediated damage was investigated.156 The results
showed neuroprotective effects of an extract via preventing the
phosphorylation of the p38 protein triggered by H2O2.

156

Prosapogenin III also has anti-inflammatory and antioxidant
capabilities, which may enhance its neuroprotective benefits. To
fully comprehend its underlying mechanisms of action and
potential use for treating AD, further study may prove
rewarding.

2.10. Physostigmine. Physostigmine is a naturally occur-
ring alkaloid compound found in the seeds of the Physostigma
venenosum plant, also known as the Calabar bean. Physostigmine
has been found to enhance cognitive function in people with
AD, because it readily penetrates the blood−brain barrier
(BBB).157 Physostigmine improved learning in rats to prevent
damage to the brain from oxygen deprivation.158 Many synthetic
physostigmine derivatives have been developed as a result of
these hopeful discoveries, and some have reached clinical trials
for the treatment of AD. In phase IIIb clinical studies,
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rivastigmine is the most therapeutically active derivative. This
drug blocks AChE G1 in the hippocampus and cortex, which is
important for cognition in AD.159 The clinical pharmacokinetics
of physostigmine were evaluated in a randomized, double-blind,
placebo-controlled study including nine Alzheimer’s patients.
Physostigmine inhibited butyrylcholinesterase in a dose-
dependent manner. Five people who received butyrylcholines-
terase inhibitors saw an improvement in their memory and
cognition.160 Researchers in another study delivered the
antidementia drug physigmin to 12 individuals with AD over
the course of 3−5 days, at dosages of 0, 0.5, 1, 2, and 2.0 mg
every 2 h. There was a significant influence on cognitive behavior
in 7 of the 10 subjects.161

2.11. Galantamine. Galanthus woronowii bulbs, which
belong to the Amaryllidaceae family, are used to make
galantamine. It was first discovered in 1952 as a tertiary alkaloid.
Memory loss and cognitive impairment in Alzheimer’s patients
may be treated with AChE inhibitors.162 Galantamine was the
subject of seven large-scale, placebo-controlled investigations in
people with AD. Galantamine was shown to be both safe and
effective in these investigations.163 Alzheimer’s patients have
found galantamine to be both beneficial and safe. A randomized,
double-blind, placebo-controlled experiment examined galant-
amine’s efficacy and safety in treating AD. The study comprised
653 AD individuals who had symptoms ranging from moderate
to severe. Compared to the placebo group, the galantamine
group showed superior cognitive abilities after 6 months of
treatment. There was a significant difference between the test
and placebo groups when it came to the severity of the dementia
symptoms they experienced. Galantamine’s effects on mild to
moderate Alzheimer’s patients were studied in a 5 month,
placebo-controlled, double-blind study. Galantamine-treated
individuals showed higher ADAS-Cog scores after 5 months of
therapy. Galantamine has been shown in studies to enhance
cognitive and behavioral performances at doses of 16 and 24
mg/day.164

2.12. Berberine. There is a lot of berberine, an alkaloid of
the benzylisoquinoline group, in the roots, rhizomes, stem, and
barks of plants in the family of flowering plants known as
Ranunculaceae. Neuroprotective and cardiac protective proper-
ties, as well as antitumor and anti-inflammatory and antibacterial
properties, are all found in this compound.165 Berberine works
as a neuroprotective agent by suppressing the voltage-gated
potassium current.166 In Alzheimer’s patients, the cholinergic
system is stimulated, which improves cognitive function. o-
Chlorothiophenyl berberine, which inhibits AChE and BuChE,
is one of several berberine hybrids and analogues developed.
Antioxidant properties may also be seen in these substances.167

Plants like Berberis aquifolium (Oregon grape), Berberis aristata
(tree turmeric), Berberis vulgaris (barberry), Coptis chinensis
(Chinese goldthread), Hydrastis canadena (goldenseal), Phello-
dendron amurense (Amur cork tree), and Tinospora cordifolia
contain the isoquinoline alkaloid berberine (BBR).168 There is
evidence that berberine possesses antioxidant, AChE and
butyrylcholinesterase inhibition, cholesterol-lowering, and
monoamine oxidase inhibitory effects.169 Researchers found
that BBR inhibited Aβ-induced increase in IL-6, COX-2, and
iNOS expression170 as well as tau hyperphosphorylation and the
production of Aβ in vitro.171−173 BBR reduced NF-κB in
microglia by blocking the PI3K/PKB andMAPK pathways.13,174

It has been observed that the use of BBR (100 mg/kg), which
promotes learning and long-term spatial memory retention in
Tg mice and decreases the amount of C-terminal APP fragment

in N2a murine neuroblastoma, reduces APP and tau protein
hyperphosphorylation through AKT/GSK3 signaling.175

2.13. Huperzine. Discovered from the club moss Huperzia
serrate, huperzine is an alkaloid sesquiterpene. In Chinese folk
medicine, it is used to treat cognitive deficits, inflammation in
the circulatory system, and fever. Huperzine has been shown to
be safe for both humans and animals in several studies.176

Studies in animals and cells have shown that it can be used to
treat AD.177,178 According to a study on rats, huperzine
increased the rats’ cognitive memory and reduced free radical
toxicity and Aβ fragment aggregation in a rat model of AD are
prevented by the antioxidant huperzine A.179 For example,
huperzine is less toxic than synthetic AChE inhibitors like
donepezil and tacrine, and is more selective for AChE than for
BuChE, according to a multicenter, double-blind clinical
research.180 For 12 weeks, a clinical study with 200 patients
randomly assigned 100 patients to either 400 g of huperzine A or
a placebo. One hundred individuals received 400 g of huperzine
A daily for 12 weeks, while the other 100 received a placebo in a
randomized, double-blind study.181 Huperzine’s safety and
efficacy were evaluated in a multicenter, prospective, double-
blind, placebo-controlled, randomized research. Huperzine was
given to 50 mild Alzheimer’s patients for 8 weeks, whereas a
placebo was given to 53. This included the Wechsler memory,
Hasegawa dementia, and Mini Mental State Examination
assessment scales. According to the study, huperzine improved
the mental health of 58% of the participants.182 One of H.
serrate’s sesquiterpene alkaloid compounds, huperzine A (HSA),
was discovered in this firmoss.183 Inflammation and fever were
treated with H. serrate preparations in traditional Chinese
medicine, and memory was improved with H. serrate. For
example, huperzine A, like rivastigmine and donepezil, blocks
AChE. It also inhibits the action of apoptotic factors andNGF in
the brain. Huperzine A (0.1 mg/kg) has been shown to improve
the Morris water maze test results in Tg mice. The activation of
β-secretases, the PKC/MAPK pathway, and phosphorylated
GSK-3 are thought to be responsible for these effects.184,185

Another possible mechanism by which huperzine A exerts its
neuroprotective effects is by inhibition of the NMDA receptor
and the potassium current.186 Subcellular Aβ accumulation may
be reduced by huperzine A, according to a study published in
2013.187 Using tacrine−huperzine A hybrids developed by
Camps and associates, they were able to block AChE and reduce
Aβ-induced oxidative damage.188,189 Tacrine−huperzine A
hybrids were shown to have fewer side effects in clinical testing
than commercial AChE inhibitors,190 making them an asset in
the search for new treatments for AD.

2.14. Ginger. In order to make ginger, you need the
rhizomes of Zingiber of f icinale, which is a member of the
Zingiberaceae family. For example, zingiberene is one of the
primary active ingredients in gingerols.191 With the use of
colorimetric analysis, its ability to inhibit AChE has been
demonstrated in vitro.192 Inhibition of AChE by Z. of f icinale
causes a buildup of ACh in the synapses. Stimulation of the
cholinergic pathway improves cognitive functioning in the
patients of AD. The lipid peroxidation that occurs as a result aids
in AD prevention.193 Antioxidant effects are due to the
inhibition of the acetylcholinesterase enzyme, which prevents
excess NMDA receptor activation and thus reduces lipid
peroxidation.194 Traditional medicine has long employed ginger
extracts, ginger tea, and ginger inclusions in Alzheimer’s therapy.
Antioxidant as well as AChE-inhibiting actions of ginger’s active
components have recently been discovered. ACh levels are
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restored in the brain by ginger extracts, which prevent the
quinolinic acid and sodium nitroprusside modulated mem-
branous lipid peroxidation associated with AD.192 In a secretase
test and rodent animal experiments, the reduction amination
compound of ginger oil extracts with nitrogen demonstrated a

significant antagonistic effect.195 Z. of f icinale is a popular
ingredient in food supplements because of its use in ginger tea.
When it comes to Z. of f icinale, the most important constituents
are bisabolene (found in large amounts), gingerol, zingiberene,
and monoterpenes. Z. of f icinale extracts have been reported to

Figure 2. Chemical structures of plant derived phytochemicals for the treatment of Alzheimer’s disease.
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have multiple activities in the central nervous system
(CNS),192,196 including inhibition of AChE, lipid peroxidation,
NMDA receptors, and reactive oxygen species. There is still a
need to conduct clinical trials with Z. of f icinale.

2.15. Ginkgo biloba. To make Ginkgo biloba extract, the
dried green leaves of the plant are pounded into a powder and
infused with alcohol. The plant belongs to the Ginkgoaceae
family. Writings from 2800 B.C. describe its use as a memory
enhancer197 and antioxidant powerhouse.198 Flavonoids and
terpenoids in the leaf extract provide neuroprotection.199

Maintaining a redox environment lowers ROS levels. Addition-
ally, Ginkgo biloba enhances the enzymes GSH and GCS, which
are responsible for reducing glutathione (GSH), and γ-glutamyl
cysteinyl (GCS) Ginkgo biloba extract was investigated for 24
weeks in a randomized, controlled trial to see whether it had any
impact on memory. A total of 404 people (aged 51) with
moderate to severe AD or vascular dementia were included in
the study. Ginkgo biloba extract significantly improved cognitive
performance, neuropsychiatric symptoms, and functional
abilities in patients with both AD and other forms of
dementia.200 In a recent study, Rapp et al. examined the
therapeutic effect of EGb in the treatment of 189 patients with
240 mg/kg EGb per day and positive control groups of 5−10
mg/kg donepezil for 12 months. Neurobehavioral and
pathological results were shown to be somewhat improved
when compared to donepezil.201 More research has shown that
EGb has beneficial therapeutic effects on a variety of clinical
indicators and biomarkers associated with AD.202,203

2.16. Blueberries. One of the most popular fruits in the
world is Vaccinium angustifolium, and it contains methyl
butanoate as well as the aromatic compound linalool.204 The
blueberry’s capacity to improve memory and focus has been
shown in several studies. Blueberry supplementation has been

shown to increase cognition and motor coordination in
animals.205 For a period of 16 weeks, consuming wild berry
juice improved memory, cognition, and recall of word lists.206

The striatum, where reversal learning takes place, is targeted by
blueberry polyphenols. Antioxidant-rich anthocyanin, present in
the hippocampus and the neocortex of aged rats, was observed to
accumulate.207 This region is in charge of the brain’s ability to
think. Stress signaling was activated in COS-7 cells by
transfecting oxidative stress sensitive muscarinic receptors
(MAChRs) into the cells, which were subsequently mixed
with C-2 ceramide cells. Lowered oxidative stress in cells was
reduced by pretreatment with blueberry extract.208 The
expression of NF-κB, an age-related protein that increases with
age and oxidative stress, has been demonstrated to be reduced by
blueberry-rich diets.209 Antioxidant properties of anthocyanins
in blueberries have been shown in studies on rodent brains and
neurons. Wild blueberry juice was administered to nine elderly
people with early memory loss over a period of 12 weeks.
Memory and cognition in the blueberry juice group were
superior to those of the placebo group, with greater learning and
word list recall.210 The antioxidant, anti-inflammatory, and
antiapoptotic activities of polyphenols, especially anthocyanins,
were shown to be particularly potent in the research. As a whole,
these characteristics help to enhance neuronal signaling as well
as learning and memory capacity. A well-designed clinical study
based on this clinical evaluation may prove its therapeutic
effectiveness.

2.17.Withania somnifera. Ashwagandha or Indian ginseng
is the common name for the Solanaceae plant Withania
somnifera. The root of this plant is the most often used part of
the plant.211 Sitoindosides, withaferin, glycowithanolides, and
withanoside are found in it. It is withanoside212 that is linked to
Withania’s neuroprotective properties. It reduces memory loss

Table 1. List of Phytochemicals, Plant Materials, Their Source and Mechanism of Action for the Treatment of Alzheimer’s
Disease

no. compound
molecular
weight plant source mechanism ref

1 resveratrol 228 grapes, berries, and red wine inhibits COX-2 and nitric acid synthase expression 96,
220

2 curcumin 368 Curcuma longa increases HSP production and reduces amyloid and tau buildup in the
brain’s amygdala and hypothalamus

108,
221

3 catechins − dried leaves of Camellia sinesis protects neurons against Aβ-induced impairment in vitro 222
4 ellagic acid 302 derives from ellagitannins found

in some nuts, fruits, etc.
activates cellular signaling cascades and minimizes mitochondrial
dysfunction

223

5 epigallocatechin-3-gallate 458 extracted from green tea inhibits AChE and α-secretase, enhances memory formation 224
6 nicotine 162 alkaloid found in the nightshade

family of tobacco plant
belonging to Solanaceae

blocking Aβ-mediated caspase activity and programmed cell death,
lowering generation of free radicals as well as enhancing intracellular
calcium through nicotinic receptors

225

7 rosmarinic acid 360 Rosmarinus of f icinalis substantially decreases impairments caused by Aβ, primarily by
impeding NF-κB and TNF-α

226

8 docosahexaenoic acid
(DHA)

328 cold-water fish acts by increasing glutathione concentrations and also reduces NO
production and iNOS expression

227

9 prosapogenin III 722 Liriope platyphylla activation of macrophages by restricting MAPK/NF-κB 228
10 physostigmine 275 Calabar beans blocks AChE G1 in the hippocampus and cortex 229
11 galantamine 287 Galanthus woronowii AChE inhibitor 230
12 berberine 336 Berberis aquifolium inhibits AChE, butyrylcholinesterase, and MAO; also suppresses

voltage gated potassium current
105

13 huperzine A 242 Huperzia serrate inhibits NMDA receptor and potassium current 231
14 ginger 568 rhizomes of Zingiber of f icinale inhibits the acetylcholinesterase enzyme, which prevents excess

NMDA receptor activation and thus reduces lipid peroxidation
232

15 anthocyanins 207 blueberries increases NF-κB and age-related proteins 233
16 rivastigmine 250 Calabar beans inhibits butyrylcholinesterase 234
17 withanoside 470 Withania somnifera reduces neuronal degeneration 235
18 lipoic acid 206 increases ACh production and hinders free radical hydroxyl chelation 236
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Figure 3.RivastigmineMTDLs, in which rivastigmine was combined with rasagiline, syntheticM30, and scutellarin (natural) sources to demonstrate a
multivariate mode of action, as well as a bio-oxidizing methodology for efficient drug diffusion into the CNS across the BBB.
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as well as axonal degeneration in rats that have been exposed to
Aβ.213 Neuron and synaptic healing are assisted by the
metabolization of withanoside into sominone after therapy.214

Axon and dendrite development were boosted in rats’ cortical
neurons after they were cultured in Aβ for 4 days and then
treated with sominone and anoside. An extract containing

sitoindosides and withaferin reversed this effect.215 Interleukin
1, which has been linked to plaque formation and neuro-
degeneration, may be reduced by using W. somnifera root
extract.216 People with mild to severe cognitive impairment were
randomly assigned to receive either W. somnifera root extract
(300 mg twice day) or a placebo. Ashwagandha root extract

Figure 4. Specifics of multiple donepezil MTDLs in which donepezil was mixed with synthetically derived (propargyl, metal chelator, PF960, ASS234,
and AP2238) and naturally derived (melatonin and ferulic acid) drugs to demonstrate a multivariate mode of activity.
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treatment for 8 weeks increased cognitive performance
compared to a placebo, according to the study.217

2.18. Lipoic Acid. α-Lipoic acid, or lipoic acid, is a naturally
occurring cofactor for the enzymes pyruvate dehydrogenase and
α-ketoglutarate dehydrogenase, which are both mitochondrial
enzymes. Animal caprylic acid was used to create this
supplement.218 By activating ChAT and enhancing glucose
absorption, lipoic acid may increase the production of
acetylcholine. The additional physiological properties of lipoic
acid make it effective in treating different central nervous system
disorders. TNF-α and INOS are two inflammatory proteins that
may be reduced by lipoic acid.219

Figure 2 includes the chemical structures of some of the plant
derived phytochemicals in this review used for the treatment of
AD. Phytochemicals, plant materials, their sources, and
mechanisms of action for the treatment of AD are summarized
in Table 1.

3. SEMISYNTHETIC MULTITARGETED INHIBITORS
FROM NATURAL SOURCES AS POTENTIAL
ANTI-ALZHEIMER DRUG CANDIDATES
3.1. Derivatives of Rivastigmine. Carbamylation of

AChE’s serine-OH is accomplished by rivastigmine (RVS),
which binds to the catalytic anion site by the aid of tertiary
amines.237 Figure 3 shows the effective delivery of RVS into the
BBB using a bio-oxidizing method. Administration of uncharged
medications has both peripheral and central side effects, and
their therapeutic application has been severely restricted since
charged pharmaceuticals are known to be impermeable to the
BBB. Since 1,4-dihydroquinoline has a structural resemblance to
RVS, it was chosen for this project.238 This analogue has an
enamine nitrogen that is nonprotonable and so readily
penetrates the BBB, oxidized to form charged ammonium
metabolites, and permits its attachment to the catalytic anion
site.238 The conversion of NAD+ to NADH is themechanism for
oxidation.239 At the C-3 position, the electron-withdrawing
group (EWG) was linked in order to avoid this oxidation, which
is highly prevalent in the periphery area.240 As a result, if a
medicine can be successfully delivered via this method, it
reduces adverse effects and boosts the drug’s effectiveness. The
combination of scutellarin and rivastigmine has been described
by Sang et al.241 In addition to being a powerful flavone,
scutellarin is also known to have properties notably anti-
inflammatory, antioxidant, and ion-chelating and also to block
the development of Aβ. The downsides of these medicines
include limited solubility and bioavailability, as well as BBB
impermeability.242 When these medications are combined with
rivastigmine, they show better pharmacokinetic and pharmaco-
dynamic aptitude in terms of Alzheimer’s antiaction.241

Moreover, rasagiline (TV3326), an establishedMAO-B blocker,
and its derivative,M30, which acts as an antioxidant, as well as an
iron chelator in combination with RVS have been studied by
Weinreb et al.243 In a study combining RVS with this medicine,
the anti-Alzheimer antidepressant effects were improved, while
RVS had no significant adverse effects when delivered alone.243

3.2. Derivatives of Donepezil. A popular anti-Alzheimer
medication with great selectivity for AChE’s binding sites, CAS
as well as PAS, is donepezil (DNP).244 While the benzyl group
links well with the amino acid Trp-78 at the CAS binding site,
the indomethoxy group interacts with PAS amino acids Tyr-70
and Trp-279.245 H-bonding and AChE inhibition were
discovered to be caused by the indanone pharmacophore’s
inclusion of carbonyl functional groups (Figure 4).245 As a

consequence, it was revealed that AChE PAS is significant in the
formation of Aβ. The therapy and management of AD might be
improved by using a medication like DNP, which binds to both
CAS and PAS. As previously stated, AD is complex in origin,
with ROS and inflammation playing a significant part in its
development. Computer-aided drug designing has been used to
mix DNPwith other polyvalent naturally or synthetically derived
medications in order to produce MTDLs, so it might have an
effect that is multifactorial in nature and therefore be effective.
For example, curcumin, trolox, and ferulic acid have been shown
to have neuroprotective properties but lack the necessary
pharmacokinetics and pharmacodynamics for therapeutic use.
Figure 4 shows that these medicines were coupled with DNP,
which resulted in significant polyvalent action.244−248 In the
same way that a natural medication was manufactured and
coupled with DNP, synthetic medicines were also created. DNP
and its propargylamine pharmacophore, ASS234, displayed
inhibition of both MAO-A and MAO-B and also inhibition on
AChE and BuChE enzymes.249 DNP-pyridyl hybrid, on the
other hand, was synthesized by combining ASS234 with DNP,
and it demonstrated an enhanced antioxidant activity above
ASS234 alone. A strong synthetic chemical with a similar mode
of action to DNP is AP2238. Dual-mode AChE inhibition and A
inhibition properties were observed in the hybrid created from
DNP-AP2238, which had been fused with the N-methylbenzyl
amino moiety of AP2238.250

3.3. Derivatives of Tacrine. An AChE antagonist known as
tacrine was licensed for use in the treatment of AD.
Pharmacophores are essential for the drug to work. However,
hepatotoxicity forced its removal.251 Efforts were undertaken to
improve its effectiveness and minimize its side effects.
Nimodipine, nilvadipine, and huperin A are included in the
2018 formulation of tacrine. Antioxidant and anti-inflammatory
nimodipine is often used in subarachnoid hemorrhage
(SAH).252 Tacripyrine was synthesized by combining tacrine
with 1,4-DHP nimodipine. It reduces Ca2+ levels and inhibits
AChE activity.253 A CCB (antihypertensive) medication,
nilvadipine, has been shown to be safe and effective in the
treatment of AD.254 SCR1693, a GSK-3 and A inhibitor created
by combining tacrine and nilvadipine, improves memory deficits
by raising BDNF and ACh levels.253 A clinical trial
(NCT02017340) is now examining nilvadipine’s ability to
combat AD in 500 persons. Huperin A (hupertacrine) was
developed in the United States and China as a supplement as
well. Hupertacrine’s antiaction against AD was enhanced.253

Antioxidant and neuroprotective activities of cinnamic acid, its
derivatives, and tacrine were shown to boost the inhibitory
effectiveness of AChE by Quintanova et al.255 Moreover, the
compounds were also potent antioxidants, anti-inflammatory,
and Aβ inhibitors.255 Keri et al.255 and Mantoani et al.256 also
combined tacrine with sulfanilamide and donepezil to generate a
triazole−quinoline hybrid, respectively. The MTDLs and
tacrine conjugates have not yet been studied in clinical trials.256

Curcumin permeability and efficacy were improved by tacrine-
curcumin hybrids and other semisynthetic medications while
tacrine side effects were reduced.257 The cholinergic systemmay
be utilized to treat and regulate AD, according to current
research. Tacrine analogues and hybrids with new classes of
multifunctional bioactive properties, such as melatonin,
hydroxyquinoline, or thioflavin, have also been discussed.258
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4. CONCLUSION
AD is one of the most well-known neurodegenerative
conditions, and it has a significant impact on patients’ overall
quality of life. Its care and treatment impose a significant socio-
economic cost. New data suggests that various confounding
factors, in addition to amyloid-β and tau protein, are involved in
the etiology of AD. As a result, AD is thought to have multiple
causes. However, available pharmacotherapeutics have thus far
been predicated on the one-drug, one-target concept, that they
have been unable to exhibit meaningful therapeutic effects. As a
result, the focus has shifted to an MTDL approach, in which the
pharmacophore of an approved drug is fused or conjugated with
other natural or synthetic moieties to create hybrid molecules
that moderate multiple targets and signaling pathways at the
same time, resulting in a significant therapeutic effect in AD. As a
result, this review article discusses the multiple signaling
pathways involved in the pathogenesis of AD, as well as the
therapeutic effects of various natural products, their pharmaco-
logical aspects, and the details of various MTDLs derived from
synthetic and natural sources.
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