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Abstract

With the advance of next-generation sequencing (NGS) technologies, non-invasive prenatal

testing (NIPT) has been developed and employed in fetal aneuploidy screening on 13-/18-/

21-trisomies through detecting cell-free fetal DNA (cffDNA) in maternal blood. Although Z-

test is widely used in NIPT NGS data analysis, there is still necessity to improve its accuracy

for reducing a) false negatives and false positives, and b) the ratio of unclassified data, so

as to lower the potential harm to patients as well as the induced cost of retests. Combining

the multiple Z-tests with indexes of clinical signs and quality control, features were collected

from the known samples and scaled for model training using support vector machine (SVM).

We trained SVM models from the qualified NIPT NGS data that Z-test can discriminate and

tested the performance on the data that Z-test cannot discriminate. On screenings of 13-/

18-/21-trisomies, the trained SVM models achieved 100% accuracies in both internal valida-

tions and unknown sample predictions. It is shown that other machine learning (ML) models

can also achieve similar high accuracy, and SVM model is most robust in this study. More-

over, four false positives and four false negatives caused by Z-test were corrected by using

the SVM models. To our knowledge, this is one of the earliest studies to employ SVM in

NIPT NGS data analysis. It is expected to replace Z-test in clinical practice.

Introduction

On the basis of the discovery of cell-free fetal DNA (cffDNA) in maternal plasma and serum

[1] as well as the advance of next-generation sequencing (NGS) technology [2], Non-invasive

prenatal testing (NIPT) has been developed in 2008 [3, 4] and applied in clinical use recent

years for fetal aneuploidy detection mainly on Down’s syndrome, Edward’s syndrome and

Patau’s syndrome, respectively corresponding to 21-trisomy(T21), 18-trisomy(T18) and

13-trisomy(T13) [3–5]. Before the application of the NGS-based NIPT, there were mainly two
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methods to detect 13-/18-/21-trisomies in clinical practice. One is the non-invasive serological

test with high rate of false positive and false negative [6]; the other is the golden standard—the

invasive amniocentesis with a rate of 1/250 inducing abortion [7]. Comparatively, NIPT is

much more accurate than serological test and safer than amniocentesis. The International

Society for Prenatal Diagnosis [8], the National Society of Genetic Counselors [9], the Ameri-

can College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine

[10] had published committee opinions stating that such a cffDNA testing could be offered to

pregnant women at high risk for fetal aneuploidy as a screening option after counseling.

Except those employing deep sequencing or array-based methods, most NIPTs were performed

using the low-coverage next-generation sequencing (NGS) platforms such as Verifi [11], Materni21

[12], panorama [13] and NIFTY [14]. Similar to copy number variation analysis, the sequencing

reads from a test sample were mapped and counted as depth in bins of a certain size, following by a

measurement of deviation from negative control. Since the triploid fetus has 2–5% more cffDNA

than diploid fetus, Z-test was frequently employed in deviation measurement [3, 15].

Statistically, Z score indicates the significance of deviation from the baseline, e.g. Z> 3

means that the test data approximates the baseline with P< 0.001 and hence is likely to be

from a triploid sample. Types of Z-tests were employed in different NIPT studies, such as Chiu

et al. using average of negatives as baseline [3] and Zhang et al. using internal reference as base-

line [15]. However, these one-Z-test based approaches have many problems in clinical practice.

First, only single Z score is insufficient to give accurate prediction on different samples due to

read distribution bias among individuals. Further, fetal fraction has been proven to be crucial

in trisomy determination [16]; however, it was not involved in one-Z-test based approach in

NIPT NGS data analysis. These problems could result in inaccurate prediction, high cost of re-

testing and delay of treatment.

As shown in Fig 1, the distributions of Z scores of negatives and positives overlapped in a

certain intervals, where the cutoff Z = 3 was unable to discriminate. A simulation shown in S1

Fig indicates that small portion of negative samples could have Z> 3 while small portion of

positive samples could have Z< 3, especially when fetal fraction is around or less than 5%. In

clinical practice, it is guaranteed that any sample with Z score in an interval (1.96, 4), called

"grey zone", requires a retest. It is because that only using Z = 3 as cutoff to separate positives

from negatives may result in inaccurate results.

Therefore, it is meaningful to develop a more precise method for NIPT data analysis. The

support vector machine (SVM) is an excellent tool for this purpose. It is a supervised machine

learning (ML) algorithm that identifies an arbitrarily defined framework for discriminating

query data using a model build from training dataset with selected features [17]. SVM has

already shown high robustness and accuracy in fields [18], such as cancer subtype classification

[19], splice site prediction [20] and single nucleotide polymorphism (SNP) prediction [21].

For NIPT on 13-/18/-21-trisomies, it has been reported that positive samples are much

fewer than negatives [22, 23]. Referred to a clinical experience from ~150,000 pregnancies in

mainland China [23], the positive rates of 13-/18-/21-trisomies were respectively 0.045%,

0.15% and 0.52%. The large difference in number of positive and negative could lead to class

imbalance in ML model training if all data were employed in research. However SVM could

reduce the effect of class imbalance by selecting the support vectors from all given input data.

Further, feature co-linearity would not affect the SVM model in discrimination. Therefore in

this study, SVM is employed to improve the prediction on NIPT NGS data with a purpose to

replace the one-Z-test based approach in current clinical practice. Combining multiple Z val-

ues with indexes of clinical signs and quality control, SVM model was trained for each dataset

of 13-/18-/21-trisomy to accurately discriminate the samples, especially the "grey zone" NIPT

results and those falsely predicted before.

SVM-based NIPT
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Materials and methods

Specimen source

This study was a retrospective analysis on the NIPT NGS data obtained from March to July

2016 at Guangzhou DaAn Clinical Laboratory Center. Informed consent was obtained from

all participants. Information such as gestational week and maternal age was obtained while the

names of participants have been masked so as to protect their privacy. The trisomy samples

were validated by amniocentesis. The NIPT experiments were based on the semi-conductor

sequencing platform same as in Liao et al ’s paper in 2013 [24]. The reported results were out-

put through a CFDA-certified standard operation protocol (SOP) and a DaAn Gene’s com-

piled bioinformatics plugin named "Seqboost" developed on the basis of Liao et al ’s paper [24]

that described a one-Z-test based approach for NIPT prediction.

Data summary

In total 5518 NIPT data were collected during the period from two semi-conductor sequencers

located in the NIPT lab in Guangzhou (Table 1). There are forty-six data from triploid samples

with one data labeled "#5267" is positive in both T18 and T21 (S1 Table). Hence there are

forty-seven triploid cases, respectively five for T13, fifteen for T18 and twenty-seven for T21.

Average age of pregnant mother with negative results was 31.83 (95% CI: 15–51), slightly larger

than the average age of ones with positive results (31.70, 95% CI: 17–47). Another 500 negative

samples were recruited as reference negative control for NIPT calling.

As shown in S1 Table, a series of values were listed to demonstrate the information of these

data, including "Z_run" as the Z scores output by "Seqboost" in one’s run, "Real_state" as the

results confirmed by prenatal or postnatal diagnosis, fetal fraction predicted using SeqFF [25],

peak value of read length, maternal age and gestational week. According to CFDA’s NIPT pol-

icy and DaAn Gene’s SOP, Z score = 3 is the cutoff to distinguish negatives and positives.

Fig 1. Density plot of Z scores from current one-Z-test based NIPT. Negatives and positives are shown in dark and

red respectively. Green dash indicates the cutoff of Z = 3 that was frequently used as a criterion in discrimination. Blue

dashes shows the “grey zone” interval between Z = 1.96 and 4, which means failure in discrimination using Z = 3, and

requires a retest.

https://doi.org/10.1371/journal.pone.0207840.g001
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Hence in routine NIPT, the data with "Z_run� 3" would be regarded as positive, meaning it’s

significantly deviated from the baseline of reference dataset; while those with "Z_run < 3"

would be regarded as negative. Hence, the data predicted as positive with "Real_state = -1" as

negative were false positives; those predicted as negative with "Real_state = 1" as positive were

false negatives.

Of these 5518 data, 766 data with unique reads fewer than 3,000,000 or predicted fetal frac-

tion less than 5% were labeled as "QC-filtered" on the basis of quality control (QC) according to

the SOP. The remaining "QC-pass" 4752 data were categorized into three groups for specified

chromosomes on the basis of the principle of statistics: Group "N" as those with Z scores smaller

than 1.96, meaning not significantly higher than baseline of reference dataset (P> 0.05); Group

"P" as those with Z scores larger than 4, meaning significantly higher than baseline of reference

dataset (P< 0.0001); Group "Unclassified" as those with Z scores between 1.96 and 4, meaning

retest is required for double check in nowadays’ NIPT. For each specified chromosome, data in

Groups "N" and "P" were employed to train models and conduct internal validation in this

study. Data in Group "Unclassified" and "QC-filtered" were used in performance test. We also

employed the trained model to correct the four false positives and four false negatives caused by

Z-test in previous NIPT reports.

Feature selection and data reanalysis

Reads generated from semi-conductor Ion Proton Sequencer (Life Technologies) were trimmed

and mapped to human genome 19 (hg19), following by recalibration and realignment through

the automated pipeline of the supporting Ion Torrent Suite Software (Life Technologies). Then

Table 1. Demographic subjects of pregnant women undergoing non-invasive prenatal testing (NIPT) for aneuploidies between 1 March and 31 July in 2016.

Subject a Total % of all Negative % in

group

% of all Positive b % in

group

% of

all

P13 % in

group

% of

all

P18 % in

group

% of

all

P21 % in

group

% of

all

5518 5472 99.18 0.82 5 0.09 14 0.25 27 0.49

Age c 31.83 (15–47) 31.83 (15–47) 31.70 (20–43) 31.2 (25–40) 29.57 (23–42) 32.59 (20–43)

<24 700 12.69 691 12.63 98.71 9 20.00 1.29 0 0.00 0.00 4 28.57 0.57 5 18.52 0.71

25–29 1285 23.29 1273 23.26 99.07 12 26.67 0.93 3 60.00 0.23 5 35.71 0.39 4 14.81 0.31

30–34 1371 24.85 1368 25.00 99.78 3 6.67 0.22 0 0.00 0.00 1 7.14 0.07 3 11.11 0.22

35–40 1741 31.55 1727 31.55 99.20 14 31.11 0.80 1 20.00 0.06 1 7.14 0.06 12 44.44 0.69

>40 421 7.63 414 7.56 98.34 7 15.56 1.66 1 20.00 0.24 3 21.43 0.71 3 11.11 0.71

Week c 17.19 (8–37) 17.2 (8–37) 15.93 (12–21) 13.6 (12–15) 16.21 (12–20) 16.33 (12–21)

<13 651 11.80 643 11.75 98.77 8 17.78 1.23 2 40.00 0.31 1 7.14 0.15 5 18.52 0.77

14–27 4807 87.11 4770 87.16 99.23 37 82.22 0.77 3 60.00 0.06 13 92.86 0.27 22 81.48 0.46

>28 60 1.09 60 1.10 100.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00

CostDay c 10.39 (5–62) 10.38 (5–62) 10.80 (6–18) 10 (8–14) 12.07 (7–18) 10.11 (6–17)

<7 956 17.33 947 17.30 99.06 9 20.00 0.94 0 0.00 0.00 2 14.29 0.21 7 25.93 0.73

8–14 3963 71.82 3933 71.86 99.24 30 66.67 0.76 5 100.00 0.13 9 64.29 0.23 17 62.96 0.43

15–21 561 10.17 555 10.14 98.93 6 13.33 1.07 0 0.00 0.00 3 21.43 0.53 3 11.11 0.53

>22 38 0.69 38 0.69 100.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00

Demographic characteristics of pregnant women undergoing NIPT for aneuploidies in this study.
a Age means the age of the pregnant mother while doing the NIPT; Week means the gestational week while doing the NIPT; CostDay means the time cost in our NIPT

service.
b Positive means the trisomy in either chromosome 13, 18 or 21. If none of these three chromosomes were found trisomy, the sample would be regarded as Negative in

this study. P13 means trisomy in chromosome 13; P18 means trisomy in chromosome 18; P21 means trisomy in chromosome 21.
c Average values of relevant subjects with minimums and maximums in the brackets.

https://doi.org/10.1371/journal.pone.0207840.t001
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reads were filtered using SAMtools’ command [26] ’samtools view–F 1024 –q 10’ to remove

PCR duplicates and low quality (mapping quality smaller than 10) reads. Thus, the remaining

high-quality unique reads were used for the following analysis. Similar with the CFDA-certified

DaAn Gene’s SOP, read-depth for each contiguous 20kb bin was calculated using the genome-

CoverageBed program in BEDtools [27]. To remove the bias of read-depth distribution caused

by data volume difference, GC content and casual sequencing bias respectively, three types of

normalization were applied in four steps: 1) Intra-run normalization was used to eliminate the

difference between each data; 2) Winsorization that was a transformation reducing the influ-

ence of outliers by moving observations outside a certain fractile in the distribution to that frac-

tile [28], was employed to reduce the extreme read-depth among each contiguous window

consisting of 15 bins of 20 kb; 3) LOESS was employed to remove GC-bias same as in Chiu et al.

’s paper [3]; 4) Intra-run normalization again due to steps 2) and 3) could induce bias of data

size. Mean and standard deviation (s.d.) of read-depth of each chromosome were calculated for

further statistical analysis.

The normalized read-depth of each bin was added up every 15 bins to smooth the read-

depth signal. Then the mean and standard deviation of merged read-depth on each chromo-

some was calculated to statistical analysis for fetal aneuploidy evaluation. For each data, six Z

scores were called as described by the following formula:

Z baseline vs ni ¼
meani � meanðref :iÞ

s:d:ðref :iÞ
ð1Þ

where Z_baseline_vs_nmeans the Z score normalized to the average of reference negative sam-

ples on chromosome i, and ref. means the normalized read-depth values of reference negative

samples.

Z baseline vs pi ¼
meani � meanðref :iÞ � ð1þ f etal%=2Þ

s:d:ðref :iÞ
ð2Þ

where Z_baseline_vs_p means the Z score normalized to the average of predicted reference

positive data, fetal% means fetal DNA fraction. The predicted reference positive data is equal

to the mean value of reference negative data multiplied by a factor (1+fetal%/2) based on the

assumption that half of fetal fraction would be increased when trisomy happens.

Z chr vs ni ¼
meani � medianðmeanðsample chrÞÞ

s:d:ðref :iÞ
ð3Þ

where Z_chr_vs_n means the Z score normalized to the internal reference autosome value that

is the median of all averages of normalized read-depth in each autosome of this sample, which

was similar in Lau’s paper [15].

Similarly, we have:

Z chr vs pi ¼
meani � medianðmeanðsample chrÞÞ � ð1þ f etal%=2Þ

s:d:ðref :iÞ
ð4Þ

where Z_chr_vs_p means the Z score normalized to the predicted positive internal reference

autosome value that is the median of predicted positive averages of normalized read-depth in

each autosome of this sample.

Z sample vs ni ¼
� ðmeanðref :iÞ � meaniÞ
Sm �MADi. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

windowi

p

ð5Þ
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where Z_sample_vs_n means the Z score normalized to the average of sample data, MAD
means the median absolute deviation of read-depth, window means the number of windows

on the chromosome i, and Sm is a factor equal to 1.4826 and makes Sm �MADi. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windowi

p

approximate to the standard deviation of read-depth of sample data.

Z sample vs pi ¼
� ðmeanðref :iÞ � ð1þ f etal%=2Þ � meaniÞ

Sm �MADi. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windowi

p

ð6Þ

where Z_sample_vs_pi means the Z score normalized to the mean value of predicted positive

sample data.

SVM discrimination

Six Z scores together with fetal fraction, peak value of read length, maternal age and gestational

week, were collected for support vector machine classification. For the ten features selected for

SVM classification model training, the six Z score-based features were essential because their

distributions between negatives and positives were significantly different (Wilcox Rank Sum

test, P< 2.2×10−16), while the other four features were not biasedly distributed (Table 2).

Ten features were collected from the data in Groups "N" and "P" for model building on

specified chromosomes. The six Z scores obtained from formula (1) to (6) do not require scal-

ing because they were already normalized, while the other 4 features including fetal fraction,

peak value of read length, maternal age and gestational week, would be normalized to same

scale ranging from 0 to 3 by the command ’svm-scale–l 0 –u +3’. For the training dataset, ’-s’

was used to save the scaling range, and ’-r’ was used to restore the saved scaling range on test

data. Then, the SVM model was constructed by ’svm-train’ and employed to do prediction by

’svm-predict’ in LBSVM package. Despite SVM was quite efficient in handling sparse data, we

also evaluated its performance by assigning two class weights (using ’-wi’ in training) that were

inversely correlated with their instance number, aiming to improve the accuracy in unbal-

anced data.

We trained SVM models using those ten selected features from chromosomes 13, 18 and 21

datasets separately. Let us denote class labels as yi 2 {-1, 1} for normal state and trisomy of

each specified chromosome, respectively. Given a set of training data {xi, yi}, i = 1, 2, . . ., n, the

SVM returns a maximum margin separating hyper-plane with w and an offset b using

argminw;b

1

2
jwTwj þ C

X

i
εi ð7Þ

subject to: yi w
Tϕ xið Þ þ bð Þ � 1 � εi; i ¼ 1; 2; . . . ; n:

where w are feature weights representing the hyper-plane, εi � 0are slack variables

designed to allow misclassified data points, and C> 0 is the penalty parameter for

misclassification.

By solving for the Lagrangian dual of formula (7), we could obtain a simplified optimization

problem

maximize
Xn

x¼i
a
i
�

1

2

Xn

i¼1

Xn

j¼1
ayiyjaiajϕðxiÞϕðxjÞ ð8Þ

subject to
Xn

x¼i
aiyi ¼ 0, 0� αi� C for all i.

SVM-based NIPT
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This dual problem could be efficiently solved using quadratic programming or sequential

minimal optimization (SMO) algorithm.

Here, the solution for w in formula (7) is also given by

w ¼
Xn

i¼1
aiyiϕðxiÞ ð9Þ

Once the optimal solution for αi,. . .,αn is found, the optimal b is then determined using the

maximum margin condition:

b ¼
1

2
½minyi¼1

Xn

j¼1
ajyjϕðxjÞϕðxiÞ � maxyi¼� 1

Xn

j¼1
ajyjϕðxjÞϕðxiÞ� ð10Þ

The decision function for any new point x is then

f ¼
Xn

i¼1
aiyiϕðxiÞϕðxÞ þ b ð11Þ

with f> 0 assign to class 1 and f< 0 assign to class -1.

The inner product ϕ xið Þϕ xj
� �

in formula (8) could also be represented as a kernel function

k, which satisfies k xi; xj
� �

¼ ϕ xið Þϕ xj
� �

.

Here, we applied two kinds of kernel functions for our data: linear kernel function and

radial basis function (RBF). The linear kernel function is based on inner products of input fea-

tures between any two samples, so we could verify if our data are linearly separable. The feature

space of the RBF kernel, on the other hand, enable us to learn a nonlinear classification by

transforming input features into an implied feature space with an infinite number of

dimensions.

The RBF kernel is defined as:

kðxi; xjÞ ¼ expð� gjjxi � xj jj
2Þ ð12Þ

where γ is a kernel parameter controlling the sensitivity of the kernel function. For trainings

with linear kernel function, only one hyper-parameter C needs to be adjusted to select an

appropriate model through k-fold cross validation. A low C makes the decision boundary

smooth, while a high C could select more samples as support vectors and classify more training

samples correctly, which thus is prone to be over-fitting. For the RBF kernel, besides C, there

Table 2. List of features employed in SVM classification.

Feature Number Feature Name Description SVM Scale P value d

D1 Z_baseline_vs_n Z value normalized to the baseline of control samples No < 2.2e-16

D2 Z_baseline_vs_p Z value normalized to the baseline of predictive positive samples No < 2.2e-16

D3 Z_chr_vs_n Z value normalized to the internal chromosome reference No < 2.2e-16

D4 Z_chr_vs_p Z value normalized to the predictive positive internal chromosome No < 2.2e-16

D5 Z_sample_vs_n Z value normalized to the baseline of control samples No < 2.2e-16

D6 Z_sample_vs_p Z value normalized to the baseline of predictive positive samples No < 2.2e-16

D7 Fetal Fetal fraction in maternal plasma Yes 0.7542

D8 Peak Peak value of read length distribution Yes 0.6655

D9 MA Maternal age Yes 0.2541

D10 GW Gestational week Yes 0.5125

In total ten features were used in SVM model training and classification
d Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pone.0207840.t002
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is another kernel parameter γ, defining the extent of influence for those support vectors, with

high values meaning a narrow range of influence. To select optimal parameters (C and γ for

RBF kernel; C for linear kernel), we employed a grid search approach with 0.1 as step and

5-fold cross validation by using grid.py from LIBSVM [17] and expand.grid from ’caret’ pack-

age [29]. And to prevent over-fitting, C values were carefully checked to avoid solutions with

large values.

Other discrimination methods

Other discrimination methods such as linear discriminant analysis (LDA) [28], quadratic dis-

criminant analysis (QDA), decision tree (Dtree) were also tested on the same NIPT dataset in

this study.

Both of LDA and QDA assumed samples drawn from a multivariate normal distribution

Nðμ;ΣÞ with mean vector μ and covariance matrix Σ. The probability of k class was given by:

PðkjxÞ ¼
pkPðxjkÞ
PðxÞ

ð13Þ

where pk was the prior class probability of k classes.

LDA arises when the covariance matrix for each classes were assumed to be the same, in

which case the discrimination boundary could be simplified to:

dðxÞ ¼ xTS� 1mk �
1

2
mTkS

� 1mk þ logpk ð14Þ

In QDA analysis, the covariance matrix from each class is different and its discrimination

boundary is:

dðxÞ ¼ �
1

2
jSk

� 1j �
1

2
ðx � mkÞ

T
Sk
� 1ðx � mkÞ þ logpk ð15Þ

where Sk was the covariance matrix for k class; LDA and QDA were trained by the ’lda’ and

’qda’ methods in ’MASS’ package, respectively.

For Dtree, we directly applied the ’ctree’ method in the R package ’party’, which utilized a

binary recursive portion approach to rank and select those input variables according to their

association with the input classes. We also employed AdaBoost to create a highly accurate pre-

diction rule using the ’caret’ package [29]. We implemented AdaBoost.M1 with decision trees

as weak learners. The final classifier of AdaBoost was a weighted combination of weak classifi-

ers,

hfinðxÞ ¼ argmaxy2Y
X

t:htðxÞ¼y
ln

1

bt

� �

ð16Þ

Where ht, βt were the induced weak classifiers and their assigned weights, respectively. The

AdaBoost model was also trained with the same input as SVM and 5-fold cross validation to

avoid the chance of over fitting.

Performance tests

The performances of SVM models trained using different hyper-parameter settings were com-

pared respectively for chromosomes 13/18/21. Generally, four types of SVM models were com-

pared: RBF kernel without class weight, RBF kernel with class weight, linear kernel without

class weight and linear kernel with class weight. Firstly for the data in Groups "N" and "P" on

specified chromosomes, an internal validation was done using the model built based on these
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data themselves. Importantly, the trained models were applied to predict the data in Group

"Unclassified", which was the most meaningful application in this study. As well, the models

were applied to predict the data in Group "QC-filtered".

Similarly, we tested the SVM models trained using different parameter settings. Perfor-

mances of models trained using two kernel functions were compared. Also, model trained

using class weight was compared to those trained without using class weight.

Secondly, other ML models such as LDA, QDA and Dtree, were tested in prediction of 13-/

18-/21-trisomies on the three groups of datasets. The performances of other ML models were

compared with the performances of SVM models mentioned above. We also conducted a

comparison between SVM models with optimal parameters and Adaboost.

For visualization of performances of ML models, four ML models trained using feature D1

from formula (1) and feature D3 from formula (3) were tested in internal validation of chro-

mosome 21. The two-dimension hyper-planes for discrimination were plotted using ’contour’

in R package ’graphic’. We also visualized the performance of SVM models using three features

(features D1, D3 and D7 as fetal fraction) in a 3-D plot and corresponding three 2-D plots.

Results

Inaccuracy of one-Z-test approach in NIPT prediction

We employed all of six Z-tests from formulas (1) to (6) to demonstrate their distributions of Z

scores on respectively chromosomes 13/18/21 in all QC-pass NIPT NGS data. As shown in Fig

2, none of Z-test could clearly distinguish positives from negatives. Using Z = 3 as cutoff, Z

scores from formulas (1), (3) and (5) were able to identify all the true positives but a number of

false positives existed especially formula (3). Using Z = -3 as cutoff, Z scores from formulas (2),

(4) and (6) had both false positives and false negatives in discrimination. Though these six Z

scores were significantly biased in distributions between positives and negatives (Table 2, Wil-

cox Rank Sum test, P< 2.2×10−16), the simple discriminating method that was based on a cer-

tain cutoff value would always give false positive or negatives in NIPT calling. Except these six

Z scores, the other four indexes were not significantly biased in distribution between positives

and negatives (Table 2).

This result suggests that the one-Z-test based approach could not guarantee the prediction

accuracy of NIPT NGS data because of the simplicity of discriminating rule. Hence the calling

of NIPT demands a more comprehensive approach that could combine different vectors to

improve the accuracy.

Performance of SVM models

As described in the pipeline (Fig 3), we trained the SVM models using the known datasets

from Group "N" and "P" for chromosomes 13/18/21 respectively. Firstly, models were respec-

tively trained using different hyper-parameter settings for chromosomes 13/18/21. To com-

pare the performances between kernel functions, both linear and RBF kernel functions were

employed to build the models. Further, parameter ’-wi’ was used to adjust C for class weight.

Parameter optimization was employed to find the best C and g using a grid search method

with 0.1 as step and 5-fold cross-validation (See Methods).

On one hand, the models with using RBF kernel performed better than the ones with linear

kernel (Table 3). The models with RBF kernel achieved 100% accuracy in both internal (Group

"N" & "P") and external validation (Group "Unclassified") for all three specified chromosomes.

However, the models with linear kernel did not predict the positives in Group "Unclassified"

well. On the other hand, the models using class weight performed as good as those not using.

It was because that the models not using class weight were sufficiently accurate in the datasets
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of this study (S2 Table). Taken together, the SVM models with using RBF kernel function and

class weight were selected in the following analysis.

In internal validations, the SVM models predicted the training dataset with 100% accuracies

on all three chromosomes. For chromosome 21, 4691 data were employed in model training,

including 19 positives (Z score> 4) and 4672 negatives (Z score< 1.96). Of these 4691 data,

497 were effective as support vectors in model training, including 19 positives and 478 nega-

tives. For chromosome 18, 4704 data were employed in model training, including 7 positives

and 4697 negatives. Of these 4704 data, 309 were effective as support vectors in model training,

including 6 positives and 303 negatives. For chromosome 13, 4710 data were employed in

model training, including 4 positives and 4706 negatives. Of these 4710 data, 2074 were effec-

tive as support vectors in model training, including 4 positives and 2070 negatives.

Importantly, as in external validation, the SVM models performed good in predicting the

QC-pass data that used to be predicted as "Unclassified" (1.96� Z score� 4) by Z-test. For

chromosome 21, all 61 data in "grey zone" (1.3% of all QC-pass data) were accurately predicted

using the training model, including four positives and fifty-seven negatives. It was noted that

Fig 2. Boxplots of Z scores from six types of Z tests on chromosomes 13/18/21. The six types of Z tests were

corresponding with formulas (1) to (6) in Methods. "N" means negatives and "P" means positives. Red dots represent

false positives and green dots represent false negatives.

https://doi.org/10.1371/journal.pone.0207840.g002
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two of the four positives having Z score smaller than 3 (2.44 and 2.52 respectively), however, the

SVM model could correct these false negatives. This result indicated that false negatives would

be induced if only using Z score = 3 as discrimination cutoff that was employed by previous

studies [3, 24]. Fortunately, SVM model trained by known dataset could uncover such false neg-

atives. For chromosome 18, all 48 data in "grey zone" (1.0% of all QC-pass data) were accurately

predicted using the trained SVM model, including 4 positives and 44 negatives. For chromo-

some 13, all 42 data in "grey zone" (0.9% of all QC-pass data) were accurately predicted as "nega-

tive". In summary, all of the data that could not be classified using Z-test (nearly 3% of all QC-

pass data), were precisely predicted using the corresponding trained SVM models. This result

suggested that SVM model could save around 3% of resource in retests. In consideration of mil-

lions of NIPTs were taken each year, such a reduction of cost is meaningful in clinical practice.

Surprisingly, the SVM models also acted effectively in predicting the 766 QC-filtered data

(S2 Table). For chromosome 21, the model precisely predicted all the QC-filtered data, includ-

ing 4 positives and 762 negatives. For chromosome 18, 763 out of 766 data were correct

(99.61%). One positive was wrongly predicted as "negative" with prediction probability 64%,

while two negatives were incorrectly predicted as "positive" with predicted probabilities 88.6%

and 97.6% respectively. For chromosome 13, 765 out of 766 data were correct (99.87%). Only

one positive data that was regarded as "negative" with Z score = 2.79, was also incorrectly pre-

dicted as "negative" by the SVM model. This demonstrated that the SVM model could perform

well in most of QC-filtered data but could not uncover all false negatives, suggesting that qual-

ity control is still necessary to guarantee the accuracy of NIPT.

Fig 3. Strategy of employing SVM models to improve NIPT calling. The SVM models were trained using known

datasets. Once after confirmation, validated data could be added up to the training dataset to enhance the prediction.

https://doi.org/10.1371/journal.pone.0207840.g003
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Comparison with other ML models

Compared with other ML models, SVM models performed relatively better in the datasets of

this study. SVM models obtained 100% accuracy in both internal validation and prediction on

"Unclassified" dataset (Table 4). For internal validation, LDA model showed three false nega-

tives in chromosome 21 and one in chromosome 18, QDA model showed three false positives

in chromosome 21 and seven false negatives in chromosome 18, and Dtree model showed

three false positives in chromosome 13. For the prediction on "Unclassified" dataset, LDA

model showed only 25% sensitivity in chromosome 21 and 50% sensitivity in chromosome 18,

QDA model had one false negative and four false positives in chromosome 21 and could not

predict any positive in chromosome 18, and Dtree model had high rate of false positives in all

Table 3. Performance of SVM models on NIPT prediction using different parameter setting.

Chr21 Group "N" & "P" Group "Unclassified"

Model e Real status Support vector number Prediction Sens. f Spec. Prediction Sens. Spec.

N P N P

SVM-RBF-opt N 365 4672 0 100.00% 100.00% 57 0 100.00% 100.00%

P 19 0 19 0 4

SVM-linear-opt N 2 4672 0 100.00% 100.00% 57 0 0.00% 100.00%

P 2 0 19 4 0

SVM-RBF-opt-w N 478 4672 0 100.00% 100.00% 57 0 100.00% 100.00%

P 19 0 19 0 4

SVM-linear-opt-w N 2 4672 0 100.00% 100.00% 57 0 0.00% 100.00%

P 2 0 19 4 0

Chr18 Group "N" & "P" Group "Unclassified"

Model Real status Support vector number Prediction Sens. Spec. Prediction Sens. Spec.

N P N P

SVM-RBF-opt N 106 4697 0 100.00% 100.00% 44 0 100.00% 100.00%

P 7 0 7 0 4

SVM-linear-opt N 2 4697 0 85.71% 100.00% 44 0 0.00% 100.00%

P 2 1 6 4 0

SVM-RBF-opt-w N 303 4697 0 100.00% 100.00% 44 0 100.00% 100.00%

P 6 0 7 0 4

SVM-linear-opt-w N 3 4697 0 85.71.00% 100.00% 44 0 0.00% 100.00%

P 1 1 6 4 0

Chr13 Group "N" & "P" Group "Unclassified"

Model Real status Support vector number Prediction Sens. Spec. Prediction Sens. Spec.

N P N P

SVM-RBF-opt N 1976 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 4 0 4 0 0

SVM-linear-opt N 2 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 2 0 4 0 0

SVM-RBF-opt-w N 2070 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 4 0 4 0 0

SVM-linear-opt-w N 2 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 2 0 4 0 0

Four types of SVM models were compared in both internal and external validation for each of chromosome 13/18/21.
e w means employing class weight to adjust parameter C; opt means employing optimization for parameters C and gamma in cross validation.
f Sens. is short for sensitivity; Spec. is short for specificity.

https://doi.org/10.1371/journal.pone.0207840.t003
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three chromosomes. We also compared Adaboost that employed Dtree in model training with

SVM models in prediction on training dataset (S2 Fig). Both SVM models using different ker-

nels have similar high accuracy with Adaboost in chromosome 21 and 18, while SVM models

performed slightly better in chromosome 13. This result may indicate that SVM models per-

formed comparatively well in NIPT prediction under this dataset. However, other ML models

also have the potentials in improving calling. Like Adaboost employing Dtree to create a high

accurate prediction rule can enhance the accuracy. Similarly, neuronal network could also

employ a class of model to create a high accurate prediction rule.

Table 4. Performance of different discrimination models on NIPT prediction using ten selected features.

Chr21 Group "N" & "P" Group "Unclassified"

Model g Real status Prediction Sens. h Spec. Prediction Sens. Spec.

N P N P

SVM N 4672 0 100.00% 100.00% 57 0 100.00% 100.00%

P 0 19 0 4

LDA N 4672 0 84.20% 100.00% 57 0 25.00% 100.00%

P 3 16 3 1

QDA N 4669 3 100.00% 99.90% 53 4 75.00% 93.00%

P 0 19 1 3

Dtree N 4672 0 100.00% 100.00% 51 6 100.00% 89.50%

P 0 19 0 4

Chr18 Group "N" & "P" Group "Unclassified"

Model Real status Prediction Sens. Spec. Prediction Sens. Spec.

N P N P

SVM N 4697 0 100.00% 100.00% 44 0 100.00% 100.00%

P 0 7 0 4

LDA N 4697 0 85.70% 100.00% 44 0 50.00% 100.00%

P 1 6 2 2

QDA N 4697 0 0.00% 100.00% 44 0 0.00% 100.00%

P 7 0 4 0

Dtree N 4697 0 100.00% 100.00% 40 4 100.00% 90.90%

P 0 7 0 4

Chr13 Group "N" & "P" Group "Unclassified"

Model Real status Prediction Sens. Spec. Prediction Sens. Spec.

N P N P

SVM N 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 0 4 0 0

LDA N 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 0 4 0 0

QDA N 4706 0 100.00% 100.00% 42 0 NA 100.00%

P 0 4 0 0

Dtree N 4703 3 100.00% 99.90% 25 17 NA 59.50%

P 0 4 0 0

Four types of ML models were compared in both internal and external validation for each of chromosome 13/18/21.
g Corresponding R packages were employed to build models for each ML algorithms except SVM that employed libSVM. It is because libSVM is comparably applicable

in parameter selection. Here SVM is default parameter setting; LDA means linear discriminant analysis; QDA means quadratic discriminant analysis; Dtree means

decision tree.
h Sens. is short for sensitivity; Spec. is short for specificity; and Accu. is short for accuracy.

https://doi.org/10.1371/journal.pone.0207840.t004
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We took chromosome 21 as an example to visualize how the SVM models worked (Fig 4).

Using two out of ten features (D1 from formula (1) and D3 from formula (3)), nearly all of

four ML models illustrated good discrimination lines on the training dataset (Groups "N" and

"P"), except that LDA has one false negative. A 3-D plot and its three 2-D plots were also given

to show how SVM model works in discriminating negatives and positives (S3 Fig), using fea-

ture D1, D3, and D7 (fetal fraction). These results were for visualization of how the ML models

discriminated the data, whereas all of ten features were used in model training.

Correcting the previous false callings caused by Z-test

We also employed the trained SVM models to predict eight cases that were wrongly predicted

by Z-test before. As shown in Table 5, all of eight samples were corrected by using the SVM

classification model, according to the prediction probabilities. For the four false positives

reported previously, values of features D1, D3 and D5 (from formulas (1), (3) and (5), see

Methods) significantly exceeded 3, while values of features D2, D4 and D6 (from formulas (2),

(4) and (6)) also significantly lower than -3. Similarly, four false negatives also showed ambigu-

ous values of features D1 to D6, suggesting that none of these six Z scores were reliable to do

prediction independently. This further demonstrated that the SVM model was better than the

commonly used one-Z-test based approach.

In summary, SVM model has shown its potential in discrimination of NIPT results in this

study, especially compared with the current one-Z-test based method. The SVM models using

RBF kernel achieved 100% accuracies in trisomy detection of 13/18/21 in both internal and

external validation. With this improvement, it is expected to reduce the cost of retests on sam-

ples in grey zone as well as the cost caused by false positives and false negatives. As shown in

Fig 3, we expect that the SVM model could be further improved if 1) more known data were

Fig 4. A 2-D contour plot of four ML models on NIPT data of Groups "N" and "P" on chromosome 21. Features

D1 and D3 were applied in this visualization and represented as X-axis and Y-axis respectively. Dark solid points

illustrate the negative samples and red solid points the positive samples. The four two-dimension hyper-planes for

discrimination (green for SVM, blue for LDA, pink for QDA and orange for decision tree) were drawn on the basis of

predicted categories, using ’contour’ in R package ’graphic’.

https://doi.org/10.1371/journal.pone.0207840.g004
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validated and added up to model-training; 2) more impacted features were discovered and

added up to model-training. Some other clinical signs such as the values from serological test

could be employed together with NIPT data to do prediction. In future, we plan to validate

and optimize our ML method for trisomy prediction in a larger dataset.

Discussion

Due to the inaccuracy of serological testing and the potential harm of amniocentesis, NIPT is

suggested to be adopted in nowadays’ prenatal screening with purpose to detect 13-/18-/21-tri-

somies. In clinical practice, positive result of NIPT would be suggest to take amniocentesis

while negative result does not require. Therefore, a false negative NIPT report would result in

wrong diagnosis and delay of treatment, while a false positive NIPT report would require the

patient to take an unnecessary amniocentesis with a risk of abortion. Some may argue that the

current one-Z-test based NIPT prediction approach is precise enough, however, let us do a

simple calculation: assume that 1,000,000 women come take NIPT and 1% of them have tri-

somy fetuses, which means there are 990,000 negatives and 10,000 positives; based on the accu-

racy of one-Z-test approach provided by Chiu et al. [3] (Sensitivity 97.9% and Specificity

99.7%), there would be 210 false negatives and 2970 false positives; this means 210 women

would be wrongly diagnosed and give birth to trisomy fetuses and 2970 women would take an

unnecessary amniocentesis with 12 of them would miscarry the normal fetus when taking

amniocentesis. In fact, the number of newborn in China was 4 million in 2015 [30] but it is

believed to increase in future since the implementation of two-child policy. Therefore we are

motivated to improve the accuracy of prediction on NIPT NGS data, which the one-Z-test

based approach could not satisfy.

Recently, many groups have noted that the one-Z-test approach cannot satisfy the accurate

prediction on NIPT NGS data. Bayindir et al. supplemented a Meta Z-test, which means the Z

test of Z score, in discrimination [31]. Yu et al. improved the count-based analysis by supple-

menting another size-based approach [32]. Using more cutoff values is a good way to ensure

the prediction accuracy of positives and negatives, however it would also increase the number

of unclassified samples and hence demand more retests. Further, the fetal fraction was a key

Table 5. Correction of previous false negatives and false positives by current SVM model.

Sample Error

type i
Reported Z

score

D1 j D2 D3 D4 D5 D6 D7 D8 D9 D10 Probability of

negative in SVM

prediction

Probability of

positive in SVM

prediction

chr13

13_FP_1 FP 3.61 7.80908 -18.4017 10.4249 -15.4931 8.12209 -19.1393 22.38411066 151.515 32 17 0.998877 0.00112284

13_FP_2 FP 4.78 7.74425 -9.47269 9.7306 -7.34031 8.2322 -10.0696 14.70334619 130.36 25 17 0.998162 0.00183793

chr18

18_FN_1 FN 1.77 3.31662 -2.6893 5.82699 -0.108174 3.20528 -2.59902 5.63756896 119.412 42 17 1.71E-007 1

18_FN_2 FN 1.43 5.54394 -3.20759 8.52815 -0.100806 5.79965 -3.35554 8.214781802 149.353 41 16 1.00E-007 1

18_FP_1 FP 3.22 3.36731 -10.1558 4.56993 -8.8769 3.31148 -9.98747 12.69375338 153.482 26 17 0.984857 0.015143

18_FN_3 FN 1.93 5.92865 -4.21056 6.68878 -3.41427 4.61288 -3.2761 15.25077553 148.944 27 18 2.13E-005 0.999979

chr21

21_FP_1 FP 2.27 2.17527 -10.4262 4.38166 -8.02835 2.35229 -11.2747 17.3586114 139.857 25 17 0.997866 0.00213356

21_FN_1 FN 1.76 6.7041 -3.30991 8.41899 -1.47674 5.21281 -2.57365 13.79432935 150.056 36 12 0.00435514 0.995645

The SVM model trained in this study corrected four false negatives and four false positives previously called by one-Z-test method.
i FP means false positive and FN means false negative.
j The definitions of features D1 to D10 were given in Table 2.

https://doi.org/10.1371/journal.pone.0207840.t005
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factor that could influence the prediction of one-Z-test approach, however it was not consid-

ered in one-Z-test approaches like Chiu et al. ’s [3], Chen et al. ’s [5] and Liao et al. ’s [24].

BGI’s NIFTY employed a logarithmic likelihood odds ratio between binary hypotheses that

took fetal fraction in consideration [14], but it still relies on a single-dimension cutoff to pre-

dict the result. Other information like maternal age is also important in NIPT NGS data pre-

diction [33]. In this study we showed that ML method is a good way to solve the problems

above. Combining multiple Z-tests and other features, the trained SVM models achieve

extremely high prediction accuracy and decrease the number of unclassified data. In fact the

enhancement is instantaneous as there is few steps in parameter optimizing. Both linear and

RBF kernels can achieve same high accuracy in prediction. This suggests that positives and

negatives have significant differences in the distributions of selected features.

We also noted that other ML methods could achieve similar improvement. Since the effec-

tiveness of ML depends on the selected features and dataset, it is uncertain that SVM definitely

performs best in NIPT NGS data analysis. However we have achieved our goal of improving

the NIPT prediction accuracy to an extremely high level by using SVM models. We also tested

some other ML methods using the same features in this study. For LDA and QDA, collinearity

between features could be one of reasons of lower accuracy in prediction, while SVM allows

collinearity between features. Besides SVM, Adaboost also had high accuracy in prediction. It

is worth to keep testing these machine-learning algorithms if there are more features and more

data in future, since our objective is to find the best approach for clinical use. Temporarily,

SVM showed the most robustness according to this study. For the ten features selected for cur-

rent SVM model training, the four non-Z-score features actually were not significantly biased

in distributions between negatives and positives, though IONA’s paper reported that maternal

age was useful in correcting its NIPT results [33], which might be due to the differences in

sample composition.

In conclusion, we developed an accurate SVM-based approach and showed its potential in

trisomy prediction on chromosomes 13/18/21. Compared with the one-Z-test approach, it has

advantages in prediction accuracy and effectiveness, resulting in lower rate of false result and

lower cost of retest. Other MLs could also improve the prediction accuracy on NIPT NGS

data, and SVM is suggested according to this study. Such a ML approach could also have

potential in detection of aneuploidy of other chromosomes or even micro-duplication and

deletion, which would be included in our program if sufficient diagnosed cases were available.

For further validating and optimizing our ML methods, we are planning to gather a larger and

more comprehensive dataset in future. We suggest that the ML methods would be employed

in NIPT prediction instead of the one-Z-test based approach in clinical practice.

Supporting information

S1 Fig. Z value distributions of current one-Z-test based NIPT in simulation. Each of the

three normal distributions were simulated by bootstrapping 10,000 times for negative samples

(green line), positive samples with fetal fraction 5% (cyan line) and positive samples with fetal

fraction 10% (red line) respectively. Yellow dash line means Z score equal to 3. Dark dash lines

show the interval of grey zone. When fetal DNA fraction is around 5% that is possible to happen

in real, it became difficult to distinguish positives and negatives from samples in grey zone.

(TIFF)

S2 Fig. Comparison of 5-fold cross validation among two SVM models and Adaboost

model. (A) Chromosome 21; (B) Chromosome 18; (C) Chromosome 13.

(TIFF)
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S3 Fig. A 3-D contour plot and its relevant 2-D contour plots on NIPT data of Group "N"

and "P" on chromosome 21. Features D1, D3 and D7 were employed in this visualization and

represented as X-axis, Y-axis and Z-axis respectively. Dark solid points illustrate the negative

samples and red solid points the positive samples.
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S1 Table. Information of the 5,518 samples employed in this study. Each sheet represents

the relevant information of all samples in each of chromosome 13/18/21. A series of values are

listed for each of chromosome 13/18/21, including the demographic subjects, six types of Z

scores obtained from formulas (1) to (6), real actual result and grouping information.

(XLSX)

S2 Table. Detailed information of performance test of SVM models on NIPT prediction

using different parameter setting. Column of Group "N"&"P" is the result of internal valida-

tion; column of Group "Unclassified" is the result of external validation for the QC-pass data

that could not be classified by one-Z-test method; column of Group "QC-filtered" is the result

of external validation for the QC-filtered data. The rows of SVM models using RBF kernel

with class weight and optimal parameter setting are bold.

(XLSX)

S3 Table. Detailed information of performance test of different ML models on NIPT pre-

diction. Column of Group "N"&"P" is the result of internal validation; column of Group

"Unclassified" is the result of external validation for the QC-pass data that could not be classi-

fied by one-Z-test method; column of Group "QC-filtered" is the result of external validation

for the QC-filtered data. The rows of SVM models are bold.

(XLSX)
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