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Abstract

Background: Presently, there is no comprehensive analysis of the transcription regulation network in hematopoiesis.
Comparison of networks arising from gene co-expression across species can facilitate an understanding of the
conservation of functional gene modules in hematopoiesis.

Results: We used single-cell RNA sequencing to profile bone marrow from human and mouse, and inferred transcription
regulatory networks in each species in order to characterize transcriptional programs governing hematopoietic stem cell
differentiation. We designed an algorithm for network reconstruction to conduct comparative transcriptomic analysis of
hematopoietic gene co-expression and transcription regulation in human and mouse bone marrow cells. Co-expression
network connectivity of hematopoiesis-related genes was found to be well conserved between mouse and human. The
co-expression network showed “small-world” and “scale-free” architecture. The gene regulatory network formed a
hierarchical structure, and hematopoiesis transcription factors localized to the hierarchy’s middle level.

Conclusions: Transcriptional regulatory networks are well conserved between human and mouse. The hierarchical
organization of transcription factors may provide insights into hematopoietic cell lineage commitment, and to signal
processing, cell survival and disease initiation.
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Background
Hematopoietic stem cells (HSCs) are characterized by their
ability to extensively proliferate, differentiate into diverse
mature blood cells, and self-renew to maintain the stem cell
pool [1, 2]. Imbalanced and aberrant HSC differentiation
lead to biased production of cell types and underlie many
constitutional and acquired blood diseases. Differentiation
versus maintenance, proliferation versus quiescence, lineage
specificity and maturation of cells are mainly determined
by transcription factors (TFs) and their target genes (TGs)
within complex transcriptional regulatory networks. Experi-
mental identification of transcriptional regulation is chal-
lenging, and many computational network reconstruction
methods have been developed in order to infer functional
relationships between gene pairs and to provide indirect
evidence of transcriptional regulation.
Most network reconstruction strategies in the past have

been based on measurements of transcription in bulk cell
samples, in which the data represents an average of gene
expression patterns across thousands to millions of cells [3,
4]. Recently, single-cell RNA-sequencing (scRNA-seq) has
developed as a powerful discovery tool to characterize glo-
bal regulatory programs in hematopoiesis [5]. The oppor-
tunity exists to derive a global regulatory network because
the number of observations in a typical single-cell experi-
ment is generally much higher, and thus provide far more
and also different information than can be obtained from
experiments in bulk population [6]. Jie Wang et al. found
that bulk sample specific co-expressed genes were slightly
enriched for protein interactions in BioGRID (https://the-
biogrid.org) with 1.6-fold enrichment. In contrast, interac-
tions were much more enriched in single-cell specific
co-expressed genes with a 5-fold enrichment compared to
the expectation [7]. Compared with bulk expression data,
the co-expressed genes in single cells encode proteins that
are more likely to physically interact with each other. How-
ever, single-cell data are limited due to dropout events
(expressed genes undetected by scRNA-seq) and noise
(technical issues such as PCR amplification bias [8]), which
often make reliable inferences of regulatory networks diffi-
cult. Dropout events are most important in affecting per-
formance when co-expression metrics are directly
calculated using normalized expression data represented
by read counts [9, 10]. Many algorithms have been devel-
oped to impute dropouts but the inferred correlation can
be highly skewed to positive values and affected by the
choice of parameters, as occurs with Markov Affinity-
based Graph Imputation of Cells (MAGIC) [10]. The
algorithm bigScale2 is advantageous as it clusters cells and
calculates z-scores for each gene in terms of differential ex-
pression between pairs of clusters, and then uses z-scores
to calculate gene-pair correlations [9]. bigScale2 circum-
vents dropout and can detect gene-to-gene correlations
that are often otherwise missed.
In a co-expression network, not all genes are equal in
their influence on the network stability and robustness
(Figure S1A). A single gene’s importance in the network
context can be determined using its centrality measures,
such as “connectivity”, also called degree (number of dir-
ectly connected genes), “betweenness” (frequency of being
passed by the shortest paths of pairs of all other genes),
“clustering coefficient” (probability of connections among a
gene’s direct neighbors) and “PageRank” (popularity of a
gene based solely on the number of its interactions [9]).
Genes of high centrality tend to be essential genes, required
for cell survival; several typical genes with high centralities
are shown in Figure S1A. The yeast co-expression network
has been found to possess a “small-world” and “scale-free”
architecture. Small world networks contain highly con-
nected subnetworks, and thus have higher clustering coeffi-
cients (G21 in Figure S1A). In a scale-free network, a
majority of the genes have one or two connectivities, and
only a few genes have a large number of connectivities.
Presently there is no published comprehensive analysis of

regulatory networks during hematopoiesis. In regulatory
networks, edges connecting gene pairs are directed, from
TFs to target genes. In graph theory, such networks are
called directed networks. Gene regulatory networks (GRNs)
appear to share structural characteristics with social net-
works, such as governmental and corporate organizations
that are more oriented toward control than to communica-
tion [11, 12]. Hierarchical structures do exist in biological
regulatory networks such as yeast and E. coli [13].
A typical GRN usually has multi-level hierarchical layers

(Figure S1B). For yeast, TFs at the top, middle and bottom
levels are related to different biological themes. Top level
TFs have more protein-protein interactions, the middle
layer genes tend to be collaborative in that targeted genes
are co-regulated by other TFs, and lower level genes tend
to be essential. Network motifs, defined as over-represented
subgraphs, are widely considered to be functional units of
GRNs. Two common motifs are feed-forward loop (FFL)
and bi-fan (both color-highlighted in Figure S1B). In FFL, a
TF (B3) regulates another TF (C4) and they together
co-regulate a third gene (D4). A bi-fan motif includes two
TFs (A1, A2) that both regulate on the same two genes (B1,
B2). Characterization of the GRN hierarchical structure and
its motifs as the smallest structural and functional units
should be useful in characterization of the transcription
programs in normal cellular development and function,
and in disease.
Animal models are widely used on the predicate that

fundamental biochemical processes are conserved across
species, most commonly between human and mouse, an
assumption not always supported by rigorous or system-
atic analyses [14–16]. Evolutionary cross-species compari-
sons can provide a framework to refine human biological
research [17]. scRNA-seq has been extensively applied to
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study hematopoiesis of human and mouse, but cross-
species comparison of the hematopoietic system is not
firmly established without published network-level com-
parisons [17].
Here we apply scRNA-seq to profile human and mouse

hematopoietic stem and progenitor cells (HSPCs), and
infer and validate regulatory networks, in order to under-
stand transcriptional programs in hematopoiesis. We
found that regulatory networks were highly conserved be-
tween human and mouse, as reflected by the observation
that the connectivity of hematopoiesis related genes in co-
expression networks built with human and mouse datasets
were similar. Regulatory networks were hierarchical in
structure and middle level genes were more likely to be re-
lated to and collaborative for hematopoietic functions of
differentiation and maturation along lineage pathways.

Methods
scRNA-seq and data processing
Bone marrow samples were obtained from healthy donors
after written informed consent in accordance with the Dec-
laration of Helsinki and approved by the institutional review
boards of the National Heart, Lung, and Blood Institute. Hu-
man bone marrow samples were obtained from healthy do-
nors and processed within 2 h after collection. CD3-CD14-
CD19-CD34+ cells were sorted using a LSRII Fortessa Cyt-
ometer (BD Biosciences). Lineage-CD117+ cells were sorted
from bone marrow of C57BL/6 mice (Fig. 1a). scRNA-seq
cDNA libraries were prepared using the Chromium Single
Cell ‘3 platform (10 ×Genomics). RNA-seq libraries were se-
quenced with the format of paired-end reads of 75-bp on an
Illumina HiSeq 3000 System. Alignment, barcode assign-
ment and Unique Molecular Identifier (UMI) counting were
performed using the Cellranger Single-Cell Software Suite.
Filtered data only included genes with at least one UMI
count detected in at least one cell. Graph-based clusters
methods were applied to group cells based on two-
dimensional t-distributed Stochastic Neighbor Embedding
(tSNE) using Seurat2 at resolution 2 [18]. Each gene from
the cluster was compared to the median expression of the
same gene from cells in all other clusters [19]. Genes were
ranked based on their expression fold change, and the top
cluster-specific genes were compared with published cell
type-specific genes [20]. An HSPC subtype was assigned to
each cluster based on statistical significance of overlap be-
tween HSPC- and cluster-specific genes (Fisher’s exact test).
Raw data from all experiments have been deposited in the
NCBI Gene Expression Omnibus database under the acces-
sion numbers GSE135194 and GSE142235.

Positive control of gene regulations
We downloaded the gene regulation relationships between
60 TFs and target genes (TGs) in the K562 cell line, de-
rived from a patient with a hematologic malignancy, as
annotated with ChIP-chip data from the ENCODE project
as a positive control [21]. (As there are only 60 TFs pro-
filed in this dataset, its coverage is not complete.)

Essential genes and cancer-related genes
Lists of essential genes were extracted from a published
screen of five human cell lines representing a cross-section
of immortalized and cancer tissues [22], to obtain a compil-
ation of 1580 human core fitness genes. Cancer-related
genes were downloaded from https://cancer.sanger.ac.uk/
census, and genes for blood-related tumor types were
retained for our analysis [23]. GWASs data were down-
loaded from GWAS catalog (https://www.ebi.ac.uk/gwas/)
and the susceptibility genes of hematopoiesis were ex-
tracted by keeping the traits associated with blood cell.

Metric for tissue specificity
Tau (τ) value proposed by Kryuchkova Mostacci [24]
was used as a measure for cell type specificity:

bxi ¼ xi
max xð Þ ; and τ ¼

PN
i¼1 1 − bxið Þ
N − 1

;

where xi is the average expression of each gene of all
cells with type i. Tau is calculated on the log RNA-seq
expression data in this study. The values of τ vary from
0 to 1, where 0 means ubiquitous expression, and 1 indi-
cates perfect type specificity. Its advantage for calculat-
ing tissue specificity has been validated [24]. In this
study, cell type specific genes were defined to be those
with τ > 0.8, and were assigned to the cell type with the
highest expression. We also calculated an average ex-
pression value of each gene in each cell type, scaled to
Z-scores relative to a mean value across all cell types,
and converted to p values for cell type specificity, and
used it in activated subnetwork extraction.

Co-expression network reconstruction
We built a human to mouse one-to-one homologous gene
list (13,520 genes) collected from InParanoid (http://inpar-
anoid.sbc.su.se) [25]. Co-expression network reconstruc-
tion and analysis were performed only for genes in this
list. We used bigScale2 (https://github.com/iaconogi/bigS-
Cale2) to build the co-expression networks of human and
mouse with datasets GSE135194 and GSE142235, respect-
ively. Co-expression networks are undirected (network
edges have no direction).
bigSCales2 uses a recursive strategy to produce the

highest number of stable clusters (generated by cell sub-
types and subtle cell states), and then conducts an iterative
differential expression (DE) analysis between all pairs of
clusters. X clusters result in a total of X ∗ (X − 1)/2 unique
comparisons and each comparison yields one cluster DE
Z-score for each gene that indicates the likelihood of an
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Fig. 1 Schematic overview of the study design (a) and analysis pipeline (b). HSPCs were collected from human and mouse bone marrow, and single cell
expression were profiled. Cells were clustered into number of groups and differential expressions (DEs) between pair-wised clusters were calculated. The
correlation between pairs of genes was calculated with DEs for co-expression network reconstruction. CLR algorithm was used to correct background and
build regulatory networks. c Curve of odds ratio for the enrichment of gene pairs in co-expression network in ChIP-chip versus all possible TF-TG pairs with
different correlation cutoff. Higher co-expression between TF and target genes identified by ChIP-seq. Higher co-expressed pairs tended to appear more
frequently in ChIP-chip validated pairs. d Venn diagram showing the overlap of co-expression gene pairs built with human and mouse datasets. Overlap of
gene pairs between human and mouse is significantly higher than that expected from random selection (p < 1e-100)
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expression change between the corresponding two clus-
ters. bigSCales2 subsequently computes correlations be-
tween genes using DE Z-scores instead of expression
values (Fig. 1b).
The distribution of correlations is influenced by biological

(disparities between human and mouse) and technical fac-
tors (batch effect). To compare networks inferred for the
two species, we used an adaptive rather than fixed correl-
ation threshold. Specifically, the co-expression networks
were built by retaining the top 500,000 correlations (~ 4%).

Gene regulatory network reconstruction
The undirected co-expression network was refined by dis-
carding network edges representing pairs of genes in which
neither was annotated as “regulator of gene expression”, as
we considered such network edges to likely represent spuri-
ous co-regulation or other functional association. Tran-
scriptional regulators were defined as those genes with
Gene Ontology annotations “nucleic acid binding” or “tran-
scriptional regulation”. We then used the Context Likeli-
hood of Relatedness (CLR)-based corrected Z score
approach to assign the regulatory relationship strength to
each TF-target pair [26]. The core of CLR is a background
correction algorithm that computes the significance of a
given correlation Ri, j value by comparing it to all R values
for gene i and all R values for gene j. Briefly, let R be an
N ×N matrix, with each entry, Ri, j, equals the correlation
between a pair of genes (gi, gj) from bigScale2. In order to
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derive a CLR score for that pair of genes, z(gi, gj), first a Z-
score for Ri, j with respect to the elements in the i ’th row
of R was calculated.

zi gi; g j

� �
¼

Ri; j −

P
kRi;k

N
σ i

where σi is the standard deviation of the elements in the
i ’th row of R. Second, we computed a Z-score for Ri, j

with respect to the elements in the j ’th column of R, i.e.

z j gi; g j

� �
¼

Ri; j −

P
lRl; j

N
σ j

where σj is the standard deviation of the elements in the
j ’th column of R. Lastly, two Z-scores were combined
into a CLR pseudo Z-score, as:

z gi; g j

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi gi; g j

� �2
þ z j gi; g j

� �2
r

After CLR background correction, the N ×N matrix of
pseudo Z-scores is used to quantify the confidence of
gene-pair relatedness.

Z ¼
z g1; g1ð Þ ⋯ z g1; gN

� �
⋮ ⋱ ⋮

z gN ; g1
� �

⋯ z gN ; gN
� �

2
4

3
5

Then, using the above matrix we retained the
confident gene pairs with at least one TF to build a di-
rected network from TF to TG. The R script for network
reconstruction was deposited in github (https://github.
com/shouguog/hematopoiesis/).

Identification and functional annotation of conserved and
differentially connected genes in co-expression networks
In a gene network, each node i represents a gene, and
the number of edges attached to a gene, ki, is defined as
its connectivity (or degree)

ki ¼ number egdes with gene i

We defined ki, human and ki, mouse as the connectivity of
the homologous genes in the human and mouse networks,
respectively. Connectivity values were normalized in re-
spect to network size. To calculate the differential con-
nectivity of gene i, we added 10 to each connectivity value
in order to reduce the disproportionate fold change
among low connectivity genes, and then obtained the dif-
ference between human and mouse on a log scale:

Diff K i;human;mouse ¼ log ki;human þ 10
� �

− log ki;mouse þ 10
� �

:

Genes with values greater than zero were more con-
nected in human, while those with a value less than zero
were more connected in mice. A value close to zero (ex-
tremely low absolute values of DiffKi, human, mouse) indi-
cated conserved connectivity between human and
mouse.
Gene set enrichment analysis was performed for genes

in the two 5% tails, and the middle 10%, of the DiffK dis-
tribution, using topGO [27]. The top 5% of genes showed
higher connectivity in the human network, while the bot-
tom 5% of genes showed higher connectivity in the mouse
network. We also defined those with absolute values of
differential connectivity in the bottom 10% (the middle
10% of the true value distribution) as the genes with con-
served regulation (least differential connectivity).

Hierarchical organization of GRN
TFs at different levels have different properties [12].
Hierarchical layouts present a more intuitive picture than
does the conventional hairball or circular representation.
For instance, top-level TFs more strongly influence ex-
pression of the whole transcriptome, and middle-level
ones tend to transfer information-flow and can be bottle-
necks (with high betweenness). We downloaded MATL
AB code for the simulated annealing algorithm (http://
encodenets.gersteinlab.org), and used it to organize our
GRN into a hierarchical structure of four levels. This algo-
rithm arranged all the TFs into different levels in the hier-
archy for maximizing the number of edges extending
from upper to lower levels [21].

GRN motif scanning
Network motifs are small structures that occur signifi-
cantly more frequently than in randomized networks.
For every GRN, 1000 randomized networks were gener-
ated for reference, by maintaining the in−/out-degree of
every network node but rewiring the connected genes
randomly. All three- and four-node motifs were identi-
fied using mfinder [28], with three criteria: (1) occur-
rence > 5; (2) p-value < 0.05 and (3) Z-score value > 2.

Data and code sharing
Datasets and code are available in GEO repertoire
(GSE135194, GSE142235) and github (https://github.
com/shouguog/hematopoiesis/tree/master/
networkmodeling).

Results
Processing of scRNA-seq data of human and mouse
We obtained bone marrow samples from four healthy hu-
man donors. In order to characterize the early stages of
hematopoiesis, we sorted lineage-CD34+ cells to enrich for
HSPCs. In total, after quality control, 15,245 single CD34+
stem/progenitor cells were retained for further analyses.
Sequencing data of single CD34+ cells were visualized

in tSNE (Figure S2A). Hematopoietic cell identity was
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assigned to each cell cluster by comparing cluster-
specific genes with a reported lineage signature gene list
[29]. CD34+ cells could be computationally assigned to
the following subpopulations: multipotent progenitor
HSCs, megakaryocyte-erythroid progenitors (MEPs),
granulocyte-monocyte progenitors (GMPs), B lympho-
cyte progenitors (ProBs), and early T lineage progenitors
(ETPs) (Figure S2A). The number of clusters identified
by Seurat depends on the resolution selected. Although
resolutions 1, 2 and 3 generated different numbers of
clusters, the cell type assignment was almost identical
and did not affect further analyses.
In total, 17,560 Lineage-CD117+ cells from mice were

also clustered unsupervised based on transcriptome similar-
ity using tSNE (Figure S2B). Hematopoietic cell identity
was assigned to each cluster of cells by comparing cluster-
specific genes with accepted lineage signatures [30]. We
could group the cells into: long-term hematopoietic stem
cells (LTHSC), multipotent progenitors (MPP), lymphoid
multipotent progenitors (LMPP), common myeloid progen-
itors (CMP), megakaryocyte-erythrocyte progenitors
(MEP), and granulocyte-monocyte progenitors (GMP) (Fig-
ure S2B).
We defined HSC in human, and MPP and LTHSC in

mouse as conserved HSC; ProB in human and LMPP in
mouse as lymphoid cells; and GMP and MEP in both
species as GMP and MEP, respectively.

Validation of inferred co-expression networks of human
and mouse
To compare differences and similarities of the general co-
expression landscapes between human and mouse in
greater details, we limited our analysis to the 13,520 hom-
ologous genes.
We used gene regulation relationships from ChIP-seq as

positive controls to assess the inferred networks. We
found that TF-target gene (TG) pairs in Chip-chip tended

to have higher expression correlation with odds ratio

¼ ðfraction of TF − TG pairs>corrÞ
ðfraction of random pairs>corrÞ > 2 at correlation 0.9 and the

odds ratio increased with higher correlation (Fig. 1c). Note
that our network reconstruction method set a very strin-
gent cutoff to reduce false positives (but risked that true
regulatory relationships might be discarded as false nega-
tives, a compromise shared by many algorithms in the
field [6]. Additionally, we compared our co-expression re-
sults with TF-gene interactions identified in a TF knock-
down perturbation experiment [31]. In this experiment,
59 TFs were knocked down individually, and differentially
expressed genes were then concluded to be target genes of
the knockdown TF. Again significant enrichment odds ra-
tio was evident (Figure S3A). Furthermore, we found that
our co-expression networks were supported by known
links in public network resources [32–34], including the
databases of TRRUS (an expanded reference of TF-TG by
literature curation), FunCoup (integrated network) and
STRING (integrated protein network). Interacting gene
pairs in these datasets all tended to have higher expression
correlation (Figure S3B-3G).

Co-expression conserved between human and mouse
The overlap between human and mouse co-expression
gene pairs was much higher than that expected by
chance. Specifically, we obtained 42,817 intersected
edges between human and mouse co-expression net-
works (Fig. 1d). In contrast, when we randomly and reit-
eratively permutated the networks with the same
number of nodes and edges, much lower numbers of
intersected edges were obtained (8250 ± 72, p < 1e-100).
Thus, co-expressed gene pairs in human were more
likely to be also co-expressed in mouse, and conversely,
mouse gene pairs more likely in human, indicating
cross-species conservation in gene regulation during
hemopoiesis. We termed human-mouse overlapping co-
expression gene pairs as the conserved co-expression
network. It is reasonable to assume that integration of
converged co-expression predictions in both human and
mouse improves network reconstruction, and the con-
served network may offer a clearer picture of the tran-
scription program during hematopoiesis.

Co-expression networks showed small world and scale
free properties
Both the individual co-expression networks from human
and mouse, and the conserved subnetwork, demon-
strated scale-free behavior. Frequency of connectivity
showed a negative logarithmic correlation with the con-
nectivity (Fig. 2a-c). Although the average numbers of
connections were 377, 282 and 78 respectively, in all
three networks most genes were connected to only a few
other genes, a hallmark of scale-free networks [21].
We next examined whether co-expression networks

were small world by creating randomized networks with
the same number of nodes and edges, and comparing the
mean shortest path length (L) and the Clustering Coeffi-
cient (CC) of networks [35]. The co-expression networks
of mouse and human, and the conserved network, had an
average shortest path length of 2.81, 3.26 and 4.02, re-
spectively. The shortest path lengths for randomized net-
works generated with the Erdos model were 1.96 ± 0.05,
1.92 ± 0.06 and 2.15 ± 0.08. The co-expression networks
showed CC of 0.597, 0.718 and 0.510, respectively, and
randomized networks with the same number of nodes and
edges had clustering coefficients 0.04 ± 0.02, 0.07 ± 0.02
and 0.022 ± 0.03, respectively. Thus, the co-expression
networks had all the properties of a small-world (L ≈ L
random, cc≫CCrandom) with some highly connected sub-
networks (Fig. 2d-e, Figure S1A).



Fig. 2 Power-law distribution of gene connectivity in co-expression network of human (a), mouse (b) and in the conserved network (c). d Odds
ratio of average distance between co-expression network and same-size randomized network in human, mouse and both. e Odds ratios of
clustering coefficient between co-expression network and same-size randomized network in human, mouse and both. f Histogram of log
(degree) of genes in human and mouse networks. Correlation in gene connectivity (g) and page rank value (h) between networks built with
mouse and human datasets
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Our results were robust to modeling at different
thresholds other than the top 500,000 correlated gene
pairs in yielding similar small-world and scale-free prop-
erties (data not shown).

Conserved and species-specific co-expression connectivity
in human and mouse
The range of gene connectivity values in human was gen-
erally comparable to that in mouse, suggesting broad
structural similarity in gene regulation (Fig. 2f). There was
high correlation in genes’ connectivity values between hu-
man and mouse networks (Fig. 2g). PageRank confirmed
high correlation of human and mouse (Fig. 2h). The DiffK
differential connectivity values approximately followed a
normal distribution and p values were calculated based on
normal distribution (Figure S2E). We also calculated FDR
with the locfdr package (https://cran.r-project.org/pack-
age=locfdr), in which the empirical nulls with parameters
were estimated by maximum likelihood. The degree, p
value and FDR were shown in Table S1.
To evaluate evolutionary conservation and divergence in

network connectivity between human and mouse in more
detail, for each gene we calculated a DiffK value of differ-
ential connectivity for in silico functional analysis. We
ranked homologous genes according to the DiffK differen-
tial connectivity values and selected the top and bottom
5% from the list for functional enrichment analysis. The
topGO analysis was conducted using functional annota-
tion in the org.hs.eg.db package in Bioconductor (org.mm.
eg.db provided similar results; data not shown). The top

https://cran.r-project.org/package=locfdr
https://cran.r-project.org/package=locfdr
http://org.hs.eg
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1000 over-represented GO terms, both for differentially
connected and conserved genes, are shown in Table S1.
Genes showing more connection in human or mouse were
largely related to general cellular functions, including me-
tabolism and development, such as GO:0035337 (fatty-acyl-
CoA metabolic process), GO:0086065 (cell communication
involved in cardiac conduction), GO:0030258 (lipid modifi-
cation), GO:0019395 (fatty acid oxidation), GO:0034440
(lipid oxidation) and GO:0007423 (sensory organ develop-
ment). In contrast, many functional terms shared by con-
served genes were hematopoiesis-related: GO:0002244
(hematopoietic progenitor cell differentiation), GO:0048535
(lymph node development), GO:0045646 (regulation of
erythrocyte differentiation), GO:0048821 (erythrocyte
development), GO:0043249 (erythrocyte maturation), GO:
0030851 (granulocyte differentiation) and GO:0002714
(positive regulation of B cell mediated immunity). These
results suggest species conservation is able to improve gene
network reconstruction, consistent with evolutionary selec-
tion theory. Genes with strongly conserved connectivity
were generally to be functionally evolutionary stable, and
play important roles in hematopoiesis [36].
Gene regulatory networks identify essential and
hematopoietic cell-type specific genes
Next we examined type-specific transcription programs in
different cell types. For this purpose, a Cytoscape plug-in,
jActiveModules, was utilized to identify cell type-specific
subnetworks (connected sets of genes with unexpectedly
high levels of expression in certain cell types) in conserved
networks [37]. A cell type-specific subnetwork might in-
clude genes that are not specifically expressed but are
tightly connected to other highly specific genes. We chose
jActivemodules because it can integrate multiple p values,
and thus utilize gene specificity values tau (p values for τ)
of both human and mouse. Subnetworks are shown in
Fig. 3a-b and Figure S2C-D.
The ontological annotations of genes in cell type-

specific subnetworks agreed with their functionality. Table
S2 shows the top 1000 GO biological processes terms that
were significantly enriched and their corresponding func-
tions in different subnetworks of hematopoiesis. With
microarray (human bulk sample) data, Noa Novershtern
et al. identified lineage specific modules of highly co-
expressed genes during hematopoiesis [38]. The genes in
their modules were observed to be highly co-expressed
also in our study with an average R value of 0.55.
HSC-specific subnetworks were present for ribosomal

protein genes or genes that function mainly in cell dif-
ferentiation and stem cell proliferation. The main terms
included: GO:0008283 (cell proliferation); GO:0035239
(tube morphogenesis); GO:0072089 (stem cell prolifera-
tion) and GO:0042254 (ribosome biogenesis).
Genes in the MEP subnetwork mainly functioned in
erythropoiesis. The main terms included: GO:0048821
(erythrocyte development); GO:0002262 (myeloid cell
homeostasis); GO:0030218 (erythrocyte differentiation)
and GO:0034101 (erythrocyte homeostasis).
Genes in the GMP subnetwork (Figure S2D) mainly

functioned in the immune system. The main terms in-
cluded: GO:0006955 (immune response); GO:0002446
(neutrophil mediated immunity); GO:0036230 (granulo-
cyte activation); GO:0042119 (neutrophil activation); GO:
0002252 (immune effector process); GO:0002444 (myeloid
leukocyte mediated immunity); GO:0002275 (myeloid cell
activation involved in immune response) and GO:0002263
(cell activation involved in immune response).
Genes in the LMPP/ProB (lymphoid cells) subnetwork

(Figure S2C) also were immune-related. The main terms
included: GO:0030217 (T cell differentiation); GO:0045321
(leukocyte activation); GO:0030098 (lymphocyte differenti-
ation); GO:0001775 (cell activation); GO:0042110 (T cell
activation); GO:0036037 (CD8-positive); GO:0006955 (im-
mune response); GO:0002521 (leukocyte differentiation)
and GO:0048534 (hematopoietic or lymphoid organ
development).
Generally speaking, topological features of genes in a

network associate to their biological importance [21].
Genes with high connectivity are termed “hub genes”
and are usually functionally important. “Betweenness”
measures the number of the shortest paths transiting
through the gene, and highest betweenness genes con-
trol most of the information flow in the network, repre-
senting the critical nodes of the network (such as G11 in
Figure S1A). Betweenness is a better indicator of essenti-
ality than is gene connectivity, although they are usually
highly correlated. Network connectivity and betweenness
of gene lists are shown in Supplemental File 1. Some in-
dividual examples are provided below.
In normal hematopoiesis, MEIS1 expression is corre-

lated with cell self-renewal, with levels highest in HSCs
and declining with differentiation. In mouse, MEIS1 is re-
quired to maintain functional LT-HSCs [39], and MEIS1
was indeed the top hub gene in the HSC subnetwork.
GATA1 is a hub gene with high betweenness in the

MEP subnetwork. GATA1 is expressed in primitive and
definitive erythroid cells and megakaryocytes, and gene-
targeting studies have confirmed its importance in these
cells. For examples, in chimeric mice, GATA1-null eryth-
roid cells fail to mature beyond the proerythroblast stage,
and absence of GATA1 in megakaryocytes leads to in-
creased proliferation and deficient maturation of megakar-
yocytic progenitors [40].
CD48 is a hub gene with high betweenness in the

LMPP/ProB subnetwork. This gene encodes a member
of the CD2 subfamily of immunoglobulin-like receptors
which appear on the surface of lymphocytes and other



Fig. 3 a Top active co-expression subnetwork expressed in MEP progenitors identified by jActiveModules. b Top active co-expression subnetwork
expressed in HSC progenitors identified by jActiveModules. c-d Network density of co-expression networks built with two different thresholds
(top 500,000 and 1,000,000)
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immune cells, and participate in activation and differen-
tiation pathways in these cells. Cd48−/− mice are se-
verely impaired in CD4+ T cell activation on signaling
through the T cell receptor [41].

HSC subnetwork was sparse in comparison to
differentiated cell subnetworks
When network density, the ratio of edge number to the
total number of all possible edges (2 ∗ # edge/ # node/
(#node − 1) ), was calculated, the HSC subnetwork showed
the lowest density. Low density indicated functional diver-
sity of expressed genes and broad differentiation potential
at this stage. Genes driving differentiation toward distinct
lineages were active in the HSC subnetwork, but they did
not display the high co-expression characteristic as in cells
fully committed to differentiation stages. In differentiated
cells, only functionally related genes specific to the cell
type were highly expressed and cooperated to form a
denser co-expression network (Fig. 3c-d). The co-expres-
sion network in its entirety showed low density due to the
functional diversity of genes expressed.
All subnetworks showed small world properties when

compared to randomized networks. The whole network,
HSC, MEP, GMP and LMPP/ProB specific subnetworks
had the average shortest path lengths of 5.2, 3.9, 2.4, 2.4
and 2.3, respectively. In contrast, Erdos random networks
containing the same number of nodes and edges had the
average shortest path lengths of 2.86 ± 0.06, 3.54 ± 0.08,
1.96 ± 0.09, 1.95 ± 0.06 and 1.97 ± 010, respectively. The
whole network, HSC, MEP, GMP and LMPP/ProB subnet-
works had clustering coefficients of 0.49, 0.33, 0.51, 0.57
and 0.499, respectively. In contrast, the clustering coeffi-
cients of Erdos random networks with the same number of
nodes and edges were much lower at 0.01 ± 0.02, 0.021 ±
0.03, 0.097 ± 0.04, 0.13 ± 0.03 and 0.123 ± 0.04, respectively.
Again, the co-expression subnetworks showed small-world
properties (L≈ > Lrandom, cc≫ ccrandom). The clustering co-
efficient in HSC had the highest odds value versus random-
ized network, as the HSC subnetwork showed the most
distinct small world properties (Fig. 4a-b).
When the subnetworks were created with the top

1000 tau values of all cell types, rather than constructed
using the jActiveModules algorithm, similar results were
obtained (data not shown).

Gene regulatory network reconstruction and analysis
We combined the advantages of a context-based method
[26] and Z-score based bigScale2 approaches. Correlations
were calculated with transformed variables, in which ex-
pression counts were replaced by Z-scores derived from
cell clusters. The correlation matrix was then scaled by
row and column to identify significant gene pairs, and
gene ontology (GO) information was used to trim the net-
work to “regulators of gene expression” in order to retain
only putative causal relationships. We obtained a
GRN with 469 genes and 1017 edges with threshold
of 5; and 2570 genes and 9060 edges with threshold
of 3. The final regulatory hierarchy had > 85% of its
edges directed downward. For co-expression networks,
we identified the subnetwork of GRNs which was spe-
cifically expressed in different cell types with jActive-
Modules (results not shown).
Network motifs in GRNs
Motifs are defined as the small building blocks in networks,
for which appearance frequency is significantly higher than
the expected value from randomized networks. Motifs are
considered the smallest structural and functional units of a
network. In GRN, motifs are typically composed of several
TFs that co-regulate in characteristic patterns, and their tar-
get genes, as for examples, bi-fans, FFL, or negative feed-
back loops [21]. We identified all 3- and 4-node sub-graphs
(see Fig. 4c and Supplemental file S3) in the GRN and com-
pared their occurrence in randomized networks using the
sampling tool mfinder to identify motifs [28]. We distin-
guished motifs shared by GRNs and all cell type-specific
subGRNs, from those that only occurred in a few cell types,
and denoting the latter cell type-specific motifs (CTSM).
There were two shared and eight CTSM motifs. FFL and
bi-fan motifs were observed in both GRN and all the cell
type specific subGRNs. Thus, combinatory regulation at the
transcriptional stage tended to be topologically similar
across different cell types.
FFL is a motif in GRNs of many organisms (yeast, E.

coli, mouse, and human). FFL is defined as a motif with
three nodes: two TFs (B3 and C4) and a target gene (D4),
in which B3 regulates C4, and both jointly regulate D4
(Figure S1B). Both experimental data and computational
simulations suggest that FFL serves as a sensitive delay
element: expression of a target gene is delayed due to the
required stimuli from both TF1 (B3) and TF2 (C4), and
that time is required awaiting the signal from TF1 for TF2
(C4) to accumulate to a critical level to activate transcrip-
tion of D4. FFL filters fluctuations from short transient
stimuli (of insufficient duration or strength to allow C4 ac-
cumulation to a critical value needed to activate D4). Fur-
ther combination of FFLs can generate multi-output FFLs
with different functions, such as generating “first in, first
out” patterns in the transcripts of target genes [42]. Bi-fan
motifs are statistically over-represented in a gene regula-
tory network: here, two TFs co-regulate two target genes.
Bi-fan motifs appear to temporally regulate signal propa-
gation and to synchronize outputs from the two TFs,
analogous to OR gate or AND gate in electronic circuits
[43]. One FFL and one bi-fan motifs were shown in Fig.
4e. All three genes in FFL (GATA2, IRF8, TMSB10) were
correlated with haematological characteristics. Four genes



Fig. 4 a. Odds ratios of average distance between genes (i.e. length of shortest path) in the co-expression network versus that in the same size
randomized network. b Odds ratios of clustering coefficient between the co-expression network and the same-size randomized network. c Four
node motifs observed in co-expression networks and tissue specific sub-networks. The ID can be found in Supplemental file S3 and https://www.
weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/uploads/NetworkMotifsSW/mfinder/motifdictionary.pdf. d Hierarchical structure of GRN (level 1
genes were excluded due to large number of genes). There were lower numbers of TFs in higher levels of hierarchy. e Example FFL and bi-fan
motifs identified in hematopoietic GRN
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in bi-fan (MEIS1, RAB38, PBX1, ELF1) were associated
with hematopoietic stem cell.

Pyramidal regulatory hierarchies in networks
Hierarchical layout of a GRN provides a more intuitive
picture than does the conventional hairball or circular
presentation. Previous work has revealed that TFs at dif-
ferent levels often have different properties. For instance,
in E coli and yeast, top-level TFs more strongly influence
expression of the whole transcriptome, and middle-level
TFs tend to transfer information flow and can be bottle-
necks (with high betweenness) [12].
The hematopoietic regulatory network had a four-

layer pyramid-shaped hierarchical structure (Fig. 4d): the
number of TFs on each level was smaller than that of
the previous level (a similar pyramidal hierarchy has
been observed in E. coli and yeast). We investigated ran-
domized networks for similar hierarchical organizations.
After randomly rewiring the edges between TFs and
their targets within the regulatory network as a whole,

https://www.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/uploads/NetworkMotifsSW/mfinder/motifdictionary.pdf
https://www.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/uploads/NetworkMotifsSW/mfinder/motifdictionary.pdf
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the pyramid-shaped hierarchical structure disappeared
(Fig. 5a). Furthermore, the average out-degrees of all TFs
were equal in randomized networks, markedly distinct
from the established GRN (Fig. 5b-c). Similar results were
obtained using this approach when randomly rewiring
yeast GRNs [12].
About 20 % of genes located to the top level (level 4),

where there was only a small number of TFs (Fig. 4d).
Most TFs had partners to co-regulate other genes, rather
than acting alone, a characteristic of “democratic” rather
than “autocratic” hierarchies [44].

Functional properties of TFs at different levels of the GRN
hierarchy
After functional annotations of all TFs at different levels
(Table S3), we discovered that top-level TFs tended to
regulate gene expression and differentiation. Terms in-
cluded: GO:0006355 (regulation of transcription) GO:
0010467 (gene expression), GO:0030154 (cell differenti-
ation) and GO:0032502 (developmental process).
In contrast, TFs in middle levels (level 2–3) were associ-

ated with pathways related to hematopoiesis. Main func-
tional terms for the level 3 included: GO:0061515 (myeloid
cell development), GO:0009888 (tissue development), GO:
0030218 (erythrocyte differentiation), GO:0034101 (erythro-
cyte homeostasis) and GO:0045165 (cell fate commitment).
Main functional terms for the level 2 included: GO:0036230
(granulocyte activation), GO:0002275 (myeloid cell activa-
tion involved in immune response) GO:0040008 (regulation
of growth), GO:0043299 (leukocyte degranulation) and GO:
0002444 (myeloid leukocyte mediated immunity).
Genes locating at the bottom level were responsible to

general functions such as GO:0007049 (cell cycle) and
GO:0006281 (DNA repair).
Overall, top level TFs functioned in general pathways

of cell development and differentiation, and those at the
middle level defined cell type-specificity.
For each TF, we defined a collaboration score [(#of

target genes which are cotargeted by other TFs)/(#of tar-
get genes)] as the ratio of coregulated to total target
genes (TF C1 in Figure S1B). Level 2 members had col-
laboration scores at the maximum value of 1: almost all
TFs had at least one coregulation partner for every tar-
get gene they regulated (Fig. 5c-d). Such a pattern of
gene regulations in a GRN that is highly collaborative
because TFs partner with other TFs and very few act
alone to regulate downstream target genes. TFs at the
lower level had higher collaboration scores (Fig. 5d). TFs
at the higher levels of the hierarchy mainly regulate
genes engaged in general cellular functions., and they re-
quire fewer interactions due to high tolerance for fluctu-
ations in expression. In contrast, TFs at lower levels of
the hierarchy must collaborate for appropriate expres-
sion of cell type-specific transcription programs [44].
Genes targeted by the same TFs have similar functions
and are co-expressed, with the degree of co-expression
increasing as the number of shared TFs increases [45].
We examined tau (τ) values of cell-type specificity of

genes at different levels, and found that the genes at the
middle level were more likely to be selectively expressed
in certain cell types than those at the top level. This result
was consistent with the functional analysis described
above and further supported the inference that differenti-
ation was mainly controlled by middle level TFs (Fig. 5g).
External signals to the GRN
In a hierarchical GRN, regulation of gene expression in
cells normally occurs in a multistep fashion, starting
from TFs at the top of the hierarchy, which receive
stimulating signals from outside and have more external
partners. The roles of top-level TFs in receiving and pro-
cessing external signals can manifest in higher number
of interactions with other proteins (directly or indirectly
via receptors). Indeed, in our analysis, top-level TFs on
average showed more interactions with other proteins
than did TFs of other levels, as was observed in yeast
and E. coli [12] (Fig. 5e).
GRN hierarchy and organism survival and disease
TFs at higher levels can indirectly regulate genes through
intermediate TFs, and thus higher-level TFs are more influ-
ential in GRN. The importance of these TFs to the GRN
hierarchy would also indicate that aberrations in them are
more likely to cause the organism to deviate from normal
healthy physiology toward a disease process. We investi-
gated the role of TFs in initiating disease, especially blood
related cancers. Results are displayed in Fig. 5f. Evidently,
human TFs at higher levels were more likely to be blood
cancer-related, confirming the power of influence of high-
level TFs in the hierarchy. Similarly, high level genes tend
to appear in the reported gene lists associated with
hematopoietic traits collected in GWAS category (Fig. 5i).
TFs at higher levels are more influential, and they

regulate gene expression through the transcription cas-
cades. In GRN, top-level TFs might be expected to be
essential [22]. However, in our reconstructed GRN, TFs
at the lower levels of the network tended to be essential
genes, more than those at higher levels (Fig. 5h), as has
been observed in GRNs of yeast and E. coli [12]. TFs at
the top of the transcription regulation hierarchy coord-
inate gene expression across different pathways, which
remain functional upon deletion of these TFs, even
though the qualitative expression pattern and quantita-
tive levels of expression in these pathways may be al-
tered. TFs at the bottom of the hierarchy regulate
critical biological processes, and their disruption is not
tolerated by the cell [12].



Fig. 5 a Hierarchical structure of randomized GRNs. The level 1 genes were excluded. b The histogram of degree (connectivity) of genes in the GRN,
which showed power-law distribution. c The histogram of degree (connectivity) of genes in the random GRN, in which power-law distribution was lost. d
Collaboration scores of genes at different levels. e Average numbers of interacting proteins of genes at different levels of the GRN hierarchy. f Fraction of
cancer related genes at different levels. TFs at higher levels of the hierarchy were more associated with cancer (g) tau (cell type specificity) scores of genes
at different levels. TFs at the bottom level of the hierarchy were cell type specifically expressed in hematopoiesis. h Fraction of essential genes at different
levels. TFs at the bottom level of the hierarchy had a strong tendency to be essential genes. i Fraction of hematopoiesis related genes as annotated by
GWAs at different levels. TFs at higher levels of the hierarchy were more associated with hematopoietic traits in GWAS studies
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Conclusion and discussion
Our comparative transcriptomic analysis of the hematopoietic
system revealed evolutionary conservation in hematopoietic
gene regulation across human and mouse. Genes in the
conserved co-expression networks were more related to
hematopoiesis than those in networks built from human or
mouse only.
In this study, we carried out comparative transcrip-

tomic analysis of the hematopoietic systems in human
and mouse, through co-expression network and regula-
tory network modeling. Co-expression networks that
were well conserved between these two disparate ani-
mals were more related to hematopoiesis than networks
built with the data of human or mouse only. In addition,
the HSC subnetwork had distinct network features com-
pared to differentiated cell subnetworks, such as lower
network density and higher clustering coefficients.
Mouse modelling is a powerful tool to validate functions
of homologous genes in humans. Pathophysiology can
be brought by abnormalities of interactions among gene
modules, and inference or validation of functions of net-
work perturbation in human disease in mouse models
heavily depends on the evolutionary conservation of
networks between mouse and human [46]. Our current
analysis only encompassed human and mouse, and
addition of data from more species, when they become
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available, would be helpful in assessing the evolution of
hematopoiesis.
Genes most evolutionarily conserved in connectivity

tended to be specific to a biological process,
hematopoiesis in the current study, thus providing clues
for gene functional study with the mouse model. The
HSC subnetwork had particular network features com-
pared to differentiated cell subnetworks, such as lower
network density and higher clustering coefficients.
Similar to GRNs in yeast and E. coli, we found that
the GRNs in human and mouse hematopoietic sys-
tems also possessed a pyramidal hierarchical struc-
ture. Decision making in a hierarchy structure is a
multi-level process, in which information is trans-
ferred from top to bottom. TFs at the top receive
outside signals and regulate more genes, and TFs at
the middle levels are responsible for regulating and
coordinating the genes at the bottom level for lineage
specific functions. Further, GR during hematopoiesis
also utilizes FFL and bi-fan to organize the regulation
program, same as GRNs in other organisms during
other biological processes. GRN level-specific func-
tions at different levels and network motif sharing in-
dicate evolutionary conservation at the level of
organization and hierarchy of GRNs. Although the
yeast GRN was built from genetic and ChIP-chip ex-
periments, and our GRN was imputed from single cell
gene expression data, they shared similar pyramid
hierarchy and network motifs. In addition to conser-
vation across species, this concordance supports the
robustness of our network reconstruction algorithms.
Our study only used gene expression data. However,

including other types of experimental data and
resources would be valuable, as in incorporating and
integrating genomic expression, genome sequences,
proteomic data, protein-DNA binding data, high-
content gene association inferred from molecular
pathology and text mining of the published literature.
Diverse data sources can be integrated in parallel or
with Bayesian approaches [3]. Beyond protein coding
genes, miRNA and lncRNA data would add yet more
layers to the depth of understanding of gene regula-
tion [47]. Further, our datasets were derived only
from stem and progenitor cells, and comparison with
the transcription network in differentiating and
mature blood cells may enlarge the perspective of
hematopoiesis.
There are many challenges in the computational re-

construction of gene networks. Both metrics to quantify
and criteria to define gene regulation relationships will
need to be optimized. Novel experimental developments,
different methods of dataset integration, and more and
efficient algorithms will improve the accuracy of gene
network descriptions.
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