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Classification 
of the plant‑associated lifestyle of 
Pseudomonas strains using genome 
properties and machine learning
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The rhizosphere, the region of soil surrounding roots of plants, is colonized by a unique population 
of Plant Growth Promoting Rhizobacteria (PGPR). Many important PGPR as well as plant pathogens 
belong to the genus Pseudomonas. There is, however, uncertainty on the divide between beneficial 
and pathogenic strains as previously thought to be signifying genomic features have limited power 
to separate these strains. Here we used the Genome properties (GP) common biological pathways 
annotation system and Machine Learning (ML) to establish the relationship between the genome 
wide GP composition and the plant-associated lifestyle of 91 Pseudomonas strains isolated from the 
rhizosphere and the phyllosphere representing both plant-associated phenotypes. GP enrichment 
analysis, Random Forest model fitting and feature selection revealed 28 discriminating features. A 
test set of 75 new strains confirmed the importance of the selected features for classification. The 
results suggest that GP annotations provide a promising computational tool to better classify the 
plant-associated lifestyle.

Among the targets set by the United Nations to achieve the zero-hunger goal, the need to double the agricultural 
food production is specified1. Earlier attempts to improve plant performance and production focused on plant 
breeding, pest control by chemical means and the implementation of synthetic fertilizers tapping into finite global 
reserves2,3. While these strategies were successful in enhancing production, the increasing adverse effects on the 
environment challenges us to find sustainable alternatives4–6.

A multitude of studies has demonstrated that cooperative microbiomes can play important positive roles 
in plant growth, development, and fitness2,3,7. One particular hotspot is the rhizosphere, the region of soil sur-
rounding plant roots, colonized by Plant Growth Promoting Rhizobacteria (PGPR)8. A stable PGPR population 
can increase the stress tolerance, growth and yield of crop plants by enhancing nutrient uptake from the soil 
and through modulation of plant phytohormone status and metabolism7,9–15. The most studied PGPR are Pseu-
domonas spp., a functionally diverse group representing plant beneficial as well as (opportunistic) pathogenic 
species such as P. syringae that can live on the plant surface as an epiphyte. Under right conditions P. syringae 
can also colonize the interior tissue of the plant and cause disease16–18.

The plant-associated lifestyle of a Pseudomonas strain is the result of a diverse spectrum of plant-host interac-
tion pathways. Genome based correlational approaches have identified a number of marker genes contributing to 
the phenotype19–21. These marker genes are however, to a certain degree, shared between both groups22 and con-
sequently, the uncertainty on the divide increases with each new genome added. Until now, a generic description 
of presence and completeness of biological functions and pathways contributing to the plant-associated lifestyle 
of a Pseudomonas strain is lacking. Such knowledge would bring fundamental insights into their potential to 
enhance plant performance and resilience.

Comparative functional genomics is possible when genes are placed in biological context. Genome Properties 
(GP) is domain-based functional annotation system whereby functional attributes can be assigned to a genome23. 
The resource represents a collection of 1286 common biological pathways evidenced by a distinct sets of protein 
domains. For a functional comparison at a larger scale, protein domains are better scalable and less sensitive 
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to sequence variation compared to techniques based on sequence similarity 24,25. Here we applied GP-based 
functional genomics using the total of 1286 features and machine learning techniques to compare 91 completely 
sequenced Pseudomonas strains with a documented lifestyle: 58 soil-dwelling Pseudomonas strains classified as 
PGPR and 33 known plant-pathogens, mostly epiphytic P. syringae strains (EPP). As strains with different life-
styles often belong to a single species, it was suggested that genomic islands gained and lost through homologous 
recombination may encode important determinants of the plant-associated lifestyle26. A system wide analysis of 
the Genome Properties encoded by these variable regions allowed us to accurately classify Pseudomonas strains, 
and to identify new discriminating functional features that may contribute to the plant-associated lifestyle. In 
the discussion section these discriminating features are placed into a biological context.

Results
Based on literature review, the complete genomes of 84 Pseudomonas strains were retrieved from the Pseu-
domonas Genome DB (version 17.2)27 and categorized as encoding either a ‘PGPR’ strain (51 strains) or a ‘EPP’ 
strain (33 strains) (see Supplementary Table S1 for details). This selection was supplemented with the complete 
genomes of seven new or re-sequenced PGPR strains; P. putida P9, P. corrugata IDV1, P. fluorescens R1 and 
WCS374, P. protegens Pf-5, P. chlororaphis Phz24 and P. jessenii RU47. To avoid gene and protein domain annota-
tion inequality, all 91 strains were de novo annotated. Subsequently, the two groups were compared by nucleotide 
sequence similarity, by protein domain presence and by presence and completeness of domain-based GPs (Fig. 1). 
Domain content was subjected to enrichment analysis and the domain based GP content was used to train and 
validate a Random Forest (RF) model for classification purposes and feature selection28. The performance of 
the classification methods was tested using a set of 75 plant associated Pseudomonas genomes obtained from a 
newer version (V20.2) of the Pseudomonas Genome DB.

Sequence similarity.  We first examined the global genomic relatedness between the PGPR and EPP group, 
by calculating the Average Nucleotide Identity (ANI) scores between all possible pairs (Fig. 2). The ANI scores 
showed that corresponding with their phenotypic classification the genome sequences could be divided into two 
groups with Pseudomonas sp. M30-35 being less similar to the rest of the PGPR group. The average sequence 
similarity within the PGPR and EPP group was 79.57 ± 4.27 and 90.01 ± 5.53, respectively. The ANI-score meas-
ures the global similarity between the coding regions of two genomes at nucleotide-level taking into account hits 
that have 70% or more identity and at least 70% coverage of the shorter gene. The ANI score does not consider 
the fraction of coding sequences that contribute to this score and thus provides no insight in strain-specific 
functional adaptations. To study the impact of strain-specific functional adaptations, the protein domain content 
of each strain was considered.

Protein domain content.  The 91 de novo annotated complete Pseudomonas genomes on average code for 
5640 ± 643 protein encoding genes. As many proteins consist of multiple domains, for each genome, 9342 ± 709 
domains could be identified with an average domain copy number of 2.35 ± 0.12 (Supplementary Table S1).

Using domain presence/absence as input, a group-wise enrichment analysis was done and a total of 410 
and 329 protein domains were found to be significantly enriched in respectively PGPR and EPP strains (Sup-
plementary Table S2). PGPR strains were enriched for five domains linked to Type II secretion systems (T2SS), 
ten domains linked to the term “cytochrome”, eight domains linked to, “quinohemoprotein” and six domains 
linked to “biofilm” (Poly-beta-1,6-N-acetyl-D-glucosamine type) biosynthesis. Interestingly, domains related 
to “quinohemoprotein” and “biofilm” were not only enriched but also exclusively found in PGPR strains. EPP 
strains were enriched with domains involved in various types of other secretion systems. Moreover, some of these 
domains were not present in any of the PGPR strains. Eighteen of those in EPP enriched domains are reported 

Figure 1.   Workflow for GPs based functional genomics and classification. Genome sequences are analyzed 
using sequence similarity and protein domain content. (Colocalized) protein domain content is used to infer 
Genome Properties. Enrichment analysis and Random Forest feature selection was used obtain genomic 
features. Classification performance was evaluated using a test set of 75 newly available genomes.
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to be involved in the Type III secretion system and five in the Type IV secretion system. In addition, the EPP list 
showed enrichment of nine different domain involved in phosphonate metabolism. Shared synteny and functional 
clustering of enriched domains was further explored using genome properties.

Genome properties.  Genome properties (GP) represent a collection of currently 1286 common biologi-
cal pathways. Each GP consists of a precomputed cluster of essential core protein domains which are used as 
evidences for the presence of the biological pathway23. Genome derived protein domains were used to construct 
for each strain a list of GPs with two possible evidence values: ‘COMPLETE’ indicating that the complete set 
of precomputed evidences had been detected and ‘PARTIAL’, indicating a likely presence of the corresponding 
GP due to the presence of an incomplete set of evidences above a per GP specified minimal threshold. In addi-
tion, we considered that the bacterial genes encoding domains that function in the same biological pathway 
are often arranged in operonic structures corresponding to syntenic blocks. For each strain GPs were therefore 
reconstructed not only based on protein domain presence (GP-PA) but also on protein domain colocalization 
(GP-SND; non-directional) and on domain colocalization and being encoded on the same strand (GP-SD; direc-
tional). To study domain colocalization a nearest neighbor approach was applied using a sliding window of 20 
protein domains. Table 1 summarizes the results obtained. A total of 438 GPs were not present in any of the 
investigated Pseudomonas strains. The majority of these GPs represent functions and processes typically found 
in eukaryotic species (Supplementary Table S3). Conversely, using the GP-PA method, a functional GP core of 
154 complete GPs was present in all strains. When domain colocalization was used as an additional constraint a 
functional core of 37 complete, likely operonic, GPs was found with both domain colocalization methods. Note 
that overall, the GP-SND and GP-SD generated very similar output underpinning a strong linkage between 
operonic structures and functional genome properties in bacterial species (Table 1). Both approaches require 
domain colocalization which increases the certainty in annotation of the corresponding GP. We recommend 
using GP-SND as the annotation method as the results obtained are similar to GP-SD method but does not 
require strand specific information.

Next, a principal component analysis (PCA) was applied to the GP data. For all three data sets a clear separa-
tion between the two groups were obtained (Supplementary Fig. S1). Figure 3 shows the results obtained with 
the GP-SND approach. To further understand the contribution of each GP to the separation, we performed an 
enrichment analysis on the results obtained with the three clustering approaches (Supplementary Table S3). The 
enrichment analysis was performed on the binary data of presence and absence of the properties by considering 
“PARTIAL” as presence or absence separately, creating two enriched sets per approach. Subsequently, the two 

Figure 2.   Pairwise Average Nucleotide Identity (ANI) scores between coding regions. Scores were calculated 
from alignments that have 70% or more identity and at least 70% coverage of the shorter gene.

Table 1.   Average number of strain specific Genome Property classes per approach. a Number of genome 
properties not presented in any of strains.

Approach Complete Partial Not detected Not presenta

GP-PA 440 ± 22 256 ± 14 590 ± 14 438

GP-SND 161 ± 11 362 ± 6 763 ± 12 596

GP-SD 158 ± 10 365 ± 7 763 ± 13 602
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enriched sets were intersected to create the enriched set for that approach. Lastly, an overall enriched set was 
constructed by considering only the GPs that were enriched in the GP-SD and GP-SND approaches (Table 2).

To extend our analysis utilizing the full information of the classes and to capture feature importance, a 
Random Forest (RF) classifier was built using the annotation results of GP-SND as training-validation set. For 
99% of the strains, the RF classifier correctly predicted the lifestyle (EPP or PGPR). The only exception was 
Pseudomonas cichorii JBC1, a causal agent of leaf spot on soybeans but classified by RF-classifier as PGPR. The 

Figure 3.   Principal component analysis based on GP-SND content as variables. The fraction of the variance is 
given in parentheses. P. cichorii JBC1 and two strains of P. cerasi are outside 95% confidence ellipse of the EPP 
group.

Table 2.   Genome properties related to the plant-associated lifestyle: enrichment analysis. a These Genome 
Properties are also important random forest features (Table 3).

Genome property Description
Adjusted
P-value

GPs enriched in PGPR strains

GenProp0238a 2-Aminoethylphosphonate catabolism to acetaldehyde < 10–6

GenProp0721a 2-Aminoethylphosphonate (AEP) ABC transporter, type II < 10–6

GenProp0613a Cytochrome c reductase < 10–6

GenProp0907 Poly-beta-1,6 N-acetyl-D-glucosamine system, PgaABCD type < 10–6

GenProp0271 Trehalose utilization < 10–6

GenProp1745 GA12 biosynthesis < 10–6

GenProp1189 MqsRA toxin-antitoxin complex < 10–6

GenProp1645 Zeaxanthin biosynthesis < 10–6

GenProp0659 Tryptophan degradation to anthranilate 7.96 × 10–5

GenProp0895 Alcohol ABC transporter, PedABC-type 7.01 × 10–4

GenProp0902 Quinohemoprotein amine dehydrogenase 1.40 × 10–3

GenProp1516 Phosphatidylcholine biosynthesis V 5.37 × 10–3

GPs enriched in EPP strains

GenProp0908a 2,3-Diaminopropionic acid biosynthesis < 10–6

GenProp0813a Pyrimidine utilization < 10–6

GenProp1165a PhnGHIJKL complex < 10–6

GenProp1381 Methylphosphonate degradation I < 10–6

GenProp0236 Phosphonates ABC transport 2.62 × 10–3

GenProp0710 Generic phosphonates utilization 2.62 × 10–3

GenProp1193 RelBE toxin-antitoxin complex 3.19 × 10–2

GenProp1566 d-Galactonate degradation 3.64 × 10–2
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performance of the RF model was validated using 90% of the data through 100 iterations. First, the ROC curve 
compared between the best and the worst prediction of the default RF model settings (ntree = 500 and mtry = 20). 
The AUC shows the identical results of 0.985. Next, we tuned the ntree parameter with the parameter range 
from 500 to 5000 with 500 steps. The mean of the error rate stabilized at 1.09 ± 0.01% across all number of ntree. 
However, the variations are lower as the number of ntree increases. Lastly, we tuned the mtry parameter with 
the parameter range from 1 to 50. The error rate drastically dropped from mtry = 1 to mtry = 2 and stabilized 
after mtry = 10. The results show the robustness of the default RF settings and indicated that the models are not 
overfitted (Supplementary Fig. S2).

To study the discriminating variables further, variable selection from RF was implemented (Table 3 and 
Supplementary Table S3). These variables were integrated with the list of enriched GPs to generate a compre-
hensive list of key genomic features associated with the plant-associated lifestyle (Fig. 4). A total of 28 variable 
GPs (Tables 2 and 3) were selected as the discriminating features by the combination of methods. Subsequently, 
the predictive power of the selection was re-validated by training a RF classifier with only these features. The 
classification results were consistent with the previously observed groupings.

Prediction validation.  Two test sets of newly retrieved Pseudomonas genome sequences were analyzed 
for the presence of GPs using the GP-SND approach and used in RF performance evaluation (Supplementary 
Table S1). The first test set consisted of 25 new strains and was a combination of known beneficial and saprobic 
strains and a strong pathogen. The results confirmed the capability of GP content to predict the plant-associated 
lifestyle. A PCA of the full dataset (training-validation and test set1) indicated that the separation between two 
lifestyles was retained (Fig. 5a). Furthermore, we were able to distinguish the strong pathogenic P. marginalis 
ICMP 11,289, recently reclassified as a P. viridiflava strain29 from the other P. marginalis strains which were clas-
sified as saprotrophic strains (Fig. 5a)29. The second set of 50 strains set was composed of phenotypically unclas-
sified and bioremediation strains. We observed clustering of bioremediation and known PGPR strains (Fig. 5b). 
Unclassified strain Pseudomonas sp. KBS0707 was positioned within the EPP group. As all P. syringae are con-
sidered to be EPP, the unclassified P. syringae isolate inb918 was of interest as it appeared to be a plant beneficial 
strain. The ANI score suggests that strain inb918 might have been taxonomically misclassified as among the P. 
syringae strains the pair-wise score between this strain and the others remained below 79% (Fig. 5c). Lastly, the 
RF classifier was applied to the test set yielding the same predictions as the PCA.

Discussion
Plants live in symbiotic interactions with microbial communities, which are complex networks of interact-
ing nodes. The sum of these interactions can be beneficial for plant growth and development, detrimental 
or neutral. Many important plant growths promoting bacteria as well as plant pathogens belong to the genus 
Pseudomonas. The genomic diversity observed at species and strain level suggests that Pseudomonas spp. have 
a broad potential for evolutionary adaptation to different environments. Consequently, the plant-associated 
lifestyle of a Pseudomonas strain is likely to be the result of a combinatorial accumulation and emergence of a 
diverse set of contributing traits.

Differences between PGPR and EPP strains emerged at all levels of analysis. At genome sequence similarity 
level, a separation between the two groups was prominent. As most of the described phytopathogenic genomes 
in the scientific literature are obtained from P. syringae strains isolated from above ground plant tissue, a high 
degree of sequence similarity was observed within the EPP group. The ANI score, however, does not consider 
strain-specific genetic diversity observed within many bacterial species. Strain level diversity has been studied 

Table 3.   Random Forest features importance of Genome properties related to the plant-associated lifestyle. 
a GP also found in the enrichment analysis. b Numbers were obtained using recursive feature elimination (500 
iterations).

Genome property Description Predictive powerb

GenProp0813a Pyrimidine utilization 500

GenProp0908a 2,3-Diaminopropionic acid biosynthesis 500

GenProp0721a 2-Aminoethylphosphonate (AEP) ABC transporter, type II 329

GenProp0238a 2-Aminoethylphosphonate catabolism to acetaldehyde 328

GenProp0615 Cytochrome c based oxygen reduction and quinone re-oxidation 251

GenProp0613a Cytochrome c reductase 243

GenProp1629 Propanoyl-CoA degradation I 215

GenProp1572 l-Carnitine degradation I 145

GenProp1562 Fatty acid salvage 53

GenProp1717 Fatty acid beta-oxidationI(GenProp1308, GenProp1510 and GenProp1544) 53

GenProp1165a PhnGHIJKL complex 2

GenProp1251 l-Tyrosine biosynthesis I 2

GenProp1281 Hydrogen sulfide biosynthesis I 1

GenProp1681 l-Cysteine degradation III 1
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with machine learning techniques for the identification of novel bacterial virulence factors at both DNA and 
protein domain level25,30. In this study machine learning was applied to identify genome wide functional differ-
ences between Pseudomonas PGPR and EPP strains.

The main limitation of this study is the lack of phenotypic information. To describe the differences between 
the lifestyles, the strain specific phenotypic information required need to be as complete as possible but available 
phenotypic data is often unbalanced and hidden in multiple unstructured textual literature sources, seriously 
hampering information accessibility. In addition, we screened for plant associated Pseudomonas strains with 
a ‘complete’ genome. As a result, the strains selected by these criteria were isolated from two main locations 
PGPR from soil, and EPP from above ground plant tissues. The functional differences observed in this study are 
therefore assumed to be derived from both environmental adaptations and virulence factors. Decoupling these 
factors is difficult as many virulence factors primarily serve general adaptation purposes, and it is their associa-
tion that promote pathogenesis of susceptible hosts. In addition, strains of P. syringae have also been isolated 
from soil, water, and snow31,32.

By focusing on the reconstruction of domain-based GPs, random forest feature independence is promoted, 
and the complexity of the RF-model is reduced. In total 848 different domain-based GPs were annotated to be 
(likely) present in one or more of the here studied Pseudomonas strain. Underpinning the genomic diversity 
of the Pseudomonas spp. used in this study, in contrast a functional core of only 154 complete and persistently 
present GPs was obtained. While for obvious reasons by far most of the typical eukaryotic GPs were not detected, 
a limited number of the Pseudomonas GPs have domain overlap with GPs of similar function typically found 
in eukaryotic species. An example is the domain overlap between GenProp1717 and the “peroxisomal” GPs 
GenProp1308, GenProp1510 and GenProp1544 all involved in fatty acid beta-oxidation which we treated as one.

Three different approaches were used to determine the domain-based GP content of each strain. Implementa-
tion of domain colocalization as a constraint mirrors the operonic structures common in bacterial genomes33. 
For the domain colocalization methods a sliding window of 20 domains was chosen as it would covers 1255 
of the 1286 GPs (98%) with the most abundant group of GPs being GPs requiring two evidences (396 GPs) 
(Supplementary Fig. S3). The average copy number of a single domain is 2.3, indicating that the same domain 
could be assigned to multiple functions across the genome. Inclusion of protein domain colocalization in GP 

Figure 4.   Representative list of discriminating Genome Properties obtained with the GP-SND approach. Left 
panel: enrichment analysis, right panel: Random Forest feature selection. Red lines indicate the PGPR strains 
(vertical) and enriched traits (horizontal). Blue lines indicate the EPP strains (vertical) and enriched traits 
(horizontal). Newly sequenced strains are highlighted in yellow. Enriched GPs that were also highlighted in the 
RF feature importance analysis are indicated in green.
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Figure 5.   Analysis of the validation set. (a) Principal component analysis of the test set 1 composed of PGPR 
strains (red squares), saprotroph strains (green squares), and EPP (orange square). (b) Principal component 
analysis of the test set 2 composed of bioremediation strains (orange squares) and unclassified strains (purple 
squares). Variance is indicated in brackets. Previously analyzed Pseudomonas strains and previous obtained 95% 
confidence ellipses are in gray. (c) Average Nucleotide Identity (ANI) score among P. syringae strains. P. syringae 
isolate inb918 is at the top left.
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reconstruction therefore also increases the prediction certainty of those GPs and further promotes the selection 
of accessory traits, some of which may be acquired by lateral transfer, as RF-variables in RF training. Very similar 
results were obtained with GP-SND and the strain specific GP-SD method, suggesting that domain clustering 
most likely exposes operonic structures.

As various Pseudomonas species in our list are represented by both pathogenic and non-pathogenic strains, 
we assumed that the variable genomic regions contributing to these phenotypes will also be variably present 
between strains of these species. Other variable regions may be important for the specific growth environment 
(soil or epiphytic) or due to phylogenetic differences between the various groups. To capture the functions 
encoded by such variable genomic regions we specifically focused on operonic GPs with all required evidences 
clustered within a defined genomic region. We assumed that a number of the variable operonic functions would 
correlate with the plant-associated lifestyle (EPP or PGPR). Overall, we detected a common core of only 37 
operonic GPs and a set of more than 640 variable operonic GPs (Table 1). Initial analysis showed that none of 
these variable operonic GPs can single handedly be used to separate between the two groups. Subsequently, we 
used a RF classifier to identify within this large pool of variable GPs discriminating features that may contribute 
to the plant-associated lifestyle.

To explore the performance of the RF classifier, 75 new soil derived Pseudomonas genomes were selected for 
testing. For most, the RF classifier firmly supported the discrimination between the beneficial and the patho-
genic strains. P. cichorii JBC1 was classified as non-pathogenic. However, that does not directly translate into 
it being beneficial. Figure 4 shows that P. cichorii JBC1 still contains three GPs associated with pathogenicity: 
‘2,3-diaminopropionic acid biosynthesis’ (GenProp0908), ‘RelBE toxin-antitoxin complex’ (GenProp1193) and 
‘D-galactonate degradation’ (GenProp1566). P. cichorii JBC1 has already been reported to be quite different to 
other pathogenic Pseudomonas at the genome level34 and our results confirm this finding suggesting that there 
may be other mechanisms for pathogenicity associated with this strain.

RF recursive feature elimination and GP enrichment analysis was used to select a minimal set of GP-variables 
needed for a good prediction of the predefined plant-associated lifestyle (PGPR or EPP). GenProp0238 and 
GenProp0721 are two of those important RF-variables (Table 3) and are shown to be enriched in PGPR strains 
(Table 2). The two GPs are related to mechanisms of phosphonate utilization, which have been shown to occur 
in Pseudomonas and also in other microorganisms35. Phosphonate is a form of phosphorus, which is essential 
for biological processes, for example the synthesis of nucleic acids and phospholipids36. However, both groups 
show differences in the usable form of phosphonate. Most PGPR strains appear to be able to utilize only 2-ami-
noethylphosphonate (AEP) via the genome properties: ‘2-aminoethylphosphonate catabolism to acetaldehyde’ 
(GenProp0238) and ‘2-aminoethylphosphonate (AEP) ABC transporter, type II’ (GenProp0721), whereas the 
EPP strains appear to be able to access broader forms of phosphonates, as also shown by the enriched protein 
domain, via ‘phosphonates ABC transport’ (GenProp0236), ‘generic phosphonates utilization’ (GenProp0710), 
‘PhnGHIJKL complex’ (GenProp1165) and ‘methylphosphonate degradation I’ (GenProp1381)37. AEP is the 
most abundant C-P compound in nature while other phosphonates and their derivatives are substances used 
in agriculture (herbicides, fungicides and insecticides) and pharmacy (antibiotics)38. It has been reported that 
the virulence of pathogenic species was enhanced under conditions of orthophosphate limitation39. Thus, we 
hypothesize this could be due to the presence of genome traits that enable them to access a wider set of phos-
phate sources.

GenProp0908 is another important RF-variable. This GP was found to be enriched in EPP strains and is 
involved in 2,3-diaminopropionic acid biosynthesis (DAP). DAP is a precursor of several secondary metabolites, 
such as siderophores, neurotoxins and antibiotics40. Pyoverdine, the principal siderophores, from the beneficial 
P. fluorescens C7R12 have been reported to reduce Arabidopsis immunity in exchange with the growth under 
iron deficiency condition41. The vulnerability caused may be one of the offense mechanism for other pyoverdine 
producing pathogenic Pseudomonas, such as P. syringae and P. cichorii42. Siderophores are important metabolites 
involved in iron acquisition43. Iron is crucial to many metabolic processes and is therefore required to maintain 
cells in a healthy state44. The stronger ability to scavenge for iron, and the phosphonate previously mentioned, 
will increase the fitness of the pathogens.

Two GPs strongly enriched among the PGPR strains are GenProp0907, and GenProp0902 (Table 2). Gen-
Prop0907 represents a cluster of four genes involved in the synthesis, modification and export of the biofilm 
adhesin poly-beta-1,6-N-acetyl-d-glucosamine and the four domain evidences represent the four genes required. 
The GP is not present in the EPP group and found to be complete as likely operonic structures in 39 PGPR strains. 
Biofilms of the PgaABCD type have been studied in Escherichia coli45 but not in Pseudomonas species. Gen-
Prop0902 represents quinohemoprotein amine dehydrogenase (QHNDH). QHNDH is a three-subunit enzyme 
located in the periplasmic space of P. putida and part of the amine oxidation respiratory chain. QHNDH catalyzes 
the oxidative deamination of primary amines when used as a sole carbon and energy source46. The GP consists 
of four evidences, three domains representing the alpha-, beta- and gamma-subunit of the enzyme and one rep-
resenting the QHNDH maturation protein. This likely operonic GP was found to be complete in 24 biocontrol 
strains and is not present in the EPP group. As these GPs are only present in subset of the PGPR strains, they 
did not emerge as important RF-variables in recursive feature elimination.

Protein domains associated with Type II secretion system (T2SS) were found to be enriched among the PGPR 
strains while domains involved in the type III secretion system (T3SS) were found to be enriched among the EPP 
strains. T2SS is captured by GenProp0053 and consists of 10 non-optional evidences and 3 optional domains. GP 
results however, indicated for both groups a “PARTIAL” status for this GP. Similarly, the type III secretion system, 
represented by GenProp0052 is considered to be a key virulence factor and has been considered as evidence for 
pathogenicity in many genome studies19,47,48. GenProp0052 is a complex GP consisting of 14 evidences and 28 
optional domains. Due to the set zero threshold for “PARTIAL” for this specific GP, a single evidence domain 
will already result in a “PARTIAL” status. Eighteen protein domains enriched in EPP are described to be involved 
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in Type III secretion systems. Eleven of those enriched domains are used as evidences for GenProp0052. One 
other, TIGR02551, did also occur in the pathogen set but was considered not to be enriched after the Bonferroni 
adjustment. In contrast, the two missing evidences, TIGR02105 and TIGR02546 are only present in five PGPR 
genomes. Thus, amongst the tested 91 Pseudomonas strains all of the 14 required evidences are present, but none 
of the strains used in this study have the complete set.

Due to the ‘Partial’ status of GenProp0053 (T2SS) and GenProp0052 (T3SS) for both lifestyles these GPs 
were not enriched, nor were they selected as discriminating variables in RF classification. We further examined 
the distribution of the GenProp0053 and of GenProp0052 evidences over all strains (Supplementary Fig. S4). 
The distribution showed that protein domains linked to GenProp0052 more consistently occurred in the EPP 
group with more variation in the PGPR group. The result suggests that the abundance of T3SS related domain 
content could be sufficient for an indication of the pathogenicity. However, due to the missing evidences, there 
is no guarantee that the feature is functional. Moreover, P. syringae naturally lacking the canonical T3SS can still 
be pathogenic49,50, while some strains contain multiple T3SSs of which the role is still unknown51.

Specifically, for the PGPR group a number of enriched GPs suggested a role for pathways involved in the 
degradation and utilization of trehalose (GenProp0271), tryptophan (GenProp0659) (Table 2), tyrosine (Gen-
Prop1251) and carnitine (GenProp1572) (Table 3). On the other hand, EPP strains appears to be more special-
ized in the degradation of galactonate (GenProp1566) and cysteine (GenProp1681). Carbon sources that were 
predicted to be degradable by preferably the PGPR group could contribute to the agricultural industry. These 
substrates could be used as fertilizers, growth promotors, or as additives to alternate the microbial composition52. 
Similar to elicitors, which directly enhance plant defense and resistance, this indirect approach could be applied 
to the existing microbial community to select for the beneficial strains and potentially increase the productivity 
of the crop53. On the other hand, carbon sources that might prolong saprobic growth and survival of pathogens 
should be avoided.

Other GPs found in the PGPR group are linked to four ‘human hormones’, which are ‘mineralocorticoid 
biosynthesis’ (GenProp1644), ‘estradiol biosynthesis II’ (GenProp1417), ‘glucocorticoid biosynthesis’ (Gen-
Prop1666) and ‘pregnenolone biosynthesis’ (GenProp1740). The evidence shared by these hormones, domain 
PF00067 (cytochrome P450), is the same as for ‘GA12 biosynthesis’ (GenProp1745). Hence, only GA will be 
further discussed. Gibberellin 12 (GA12), is the common precursor of all gibberellins (GA)54. GA phytohormones 
play important roles in influencing the growth and development of the host plants55 and GA from Pseudomonas 
could increase seed germination56.

Not all known virulence traits are represented by a GP. Many of those are found in plant pathogens such as, 
coronatine, cytokinin and auxin, conserved effector locus (CEL) and exchangeable effector locus (EEL)57–59. We 
examined the presence of the protein domains associated to these traits in our dataset (Supplementary Fig. S5). 
The results showed that the associated protein domains are generally present in both groups. Among these 
domains, only PF08659 and PF16197 were enriched in the EPP group. This suggests that the occurrence of these, 
known to be, plant pathogenic traits may not be sufficient as a genetic marker to identify the pathogenicity of 
a strain.

In conclusion, domain-based Genome Properties appear to be robust computational features to differentiate 
between PGPR and EPP Pseudomonas strains and our analysis shows that incorporation of domain colocation 
further increases their relevance. By combining traditional statistical analysis (enrichment analysis) and machine 
learning methods (random forest) we were able to identify new discriminating genome properties that can be 
used to identify species that promote plant growth. These could be applied in strategies to develop synthetic 
PGPR communities and to formulate soil additives to improve plant health and performance.

Methods
Genome retrieval and annotation.  Pseudomonas genomes were downloaded from Pseudomonas 
Genome DB version 17.2. The test set was obtained from database version 20.2 (https://​www.​pseud​omonas.​
com)27. Genomes were manually categorized according to their lifestyles using literature data (Supplemen-
tary Table S1). Additionally, 7 genome sequences were (re)sequenced from phytobeneficial strains P. putida P9 
(accession ERS6670306), P. Corrugata IDV1 (accession ERS6652532), P. fluorescens R1 (accession ERS6670181), 
P. protegens Pf-5 (accession ERS6652530), P. chlororaphis Phz24 (accession ERS6670416), P. jessenii RU47 (acces-
sion ERS6670307) and P. fluorescens WCS374 (accession ERS6652531). DNA was extracted using the Epicenter 
Masterpure kit (Epicentre Technologies, USA) according to the manufacturer’s protocol and quantified with the 
Infinite® 200 PRO (Tecan, Männedorf, Switzerland) using the Quant-iT™ PicoGreen™ dsDNA Assay Kit (Ther-
moFisher, Waltham, USA) according to the manufacturer’s protocol. The strains were sequenced on the PacBio 
Platform (Pacific BioSciences, Menlo Park, USA). A total of 4 µg DNA was sheared to 7 Kb and two SMRT bell 
libraries were prepared using the kit Barcoded Adapters for Multiplex SMRT sequencing in combination with 
the Sequel Binding Kit V2.0 and the Sequel Polymerase 2.0 Kit. Per library, a pool with sheared DNA of all strains 
was used as input according to the manufacturer’s protocol. Sequencing was done on a Sequel system operated 
at the services of Business Unit Bioscience, Wageningen Plant Research (Wageningen, The Netherlands). Subse-
quently, de-multiplexing was performed by aligning the barcodes to the sub-reads with pyPaSWAS version 3.060. 
Canu version 1.661 was used to assemble the PacBio reads.

The SAPP semantic annotation framework62 was used to systematically (re)annotated the genomes. Briefly, 
protein encoding genes were de novo predicted using Prodigal 2.6.363 using the gene caller.jar module with 
the following arguments: -prodigal and -codon 11. The protein domains were characterized with InterProScan 
5.36–75.0 using the Pfam and TIGRFAMs databases64–66 using the InterProScan.jar module with the following 
arguments: -a PFAM,TIGRFAM. Annotation data and meta-data was stored in a semantic database using the 
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GBOL ontology67,68. SPARQL queries were used to extract protein domain identifiers, and the location and 
direction of the corresponding gene.

Data processing.  OrthoANI version 1.40 was used to calculate the Average Nucleotide Identity (ANI) score 
for all genomes69. PygenProp, was used to infer from each genome domain-based GPs70. Three criteria were 
applied; “PA”, considering only domain presence as evidence, “SND”, synteny-non-directional, requiring the 
genome location of the corresponding domains to be in close proximity and “SD” that in addition to gene loca-
tion also considers strandness. For SND and SD a nearest neighbor approach and a sliding window of 20 protein 
domains was applied. Each GP was classified as either ‘YES’, or ‘PARTIAL’ according to the completeness of the 
set of evidences.

Statistical analysis.  The natural grouping of the data was visualized using principal component analysis 
(prcomp package). Then, with R packages; fisher.test and p.adjust, Fisher Exact Test with Bonferroni correction 
was applied to protein domains and the genome properties to test for enrichment. This analysis identified the 
over- and under-represented features. GP data was reassessed twice by considering ‘PARTIAL’ as either ‘YES’ 
or ‘NO’. The enriched list was created by intersecting the two cases of ‘PARTIAL’. Enrichments were considered 
significant if the adjusted p-value after Bonferroni correction of the GP is below 0.05.

The Random Forest classifier was created using R package randomForest v4.6-1471 using the default settings. 
Labelled data were divided into training, validation, and test sets. The training-validation set was used to access 
the performance of the model using 90% of the data with 100 iterations. The performances were measured using 
the ROC curve of the default parameters and parameters tuning with both ntree and mtry respectively. A tenfold 
cross validation was used. The unbiased training set was created with equal numbers per group determined by 
using 75% of the smaller group, the EPP group, resulting in 25 strains chosen at random per group. Therefore, 
the validation set remains with 33 PGPRs and 8 EPPs. The Variable Selection from Random Forests v 0.7-8 (var-
SelRF) package in R was used to determine variable importance. We used 5000 trees for the first forest and 2000 
trees for all additional forests during the iteration. Vars.drop.frac, the portion of the variable that is excluded on 
each iteration, was set to 0.2. For testing purposes two sets of strains were used, one was composed of 17 PGPR 
strains, 7 saprotrophic strains and 1 plant pathogen. The second set was composed of 34 bioremediation strains 
and 16 unclassified strains.

Data availability
The input files and code are available at: https://​gitlab.​com/​wurssb/​pseud​omonas-​genome-​prope​rties.
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