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Preoperative MRI is one of the most important clinical results for the diagnosis and treatment of glioma patients.
The objective of this study was to construct a stable and validatable preoperative T2-weighted MRI-based radio-
mics model for predicting the survival of gliomas.
A total of 652 glioma patients across three independent cohorts were covered in this study including their pre-
operative T2-weighted MRI images, RNA-seq and clinical data. Radiomic features (1731) were extracted from pre-
operative T2-weighted MRI images of 167 gliomas (discovery cohort) collected from Beijing Tiantan Hospital and
then used to develop a radiomics prediction model through a machine learning-based method. The performance
of the radiomics prediction model was validated in two independent cohorts including 261 gliomas from the The
Cancer Genomae Atlas database (external validation cohort) and 224 gliomas collected in the prospective study
from Beijing Tiantan Hospital (prospective validation cohort). RNA-seq data of gliomas from discovery and exter-
nal validation cohorts were applied to establish the relationship between biological function and the key radiomics
features, which were further validated by single-cell sequencing and immunohistochemical staining.
The 14 radiomic features-based prediction model was constructed from preoperative T2-weighted MRI images in
the discovery cohort, and showed highly robust predictive power for overall survival of gliomas in external and
prospective validation cohorts. The radiomic features in the prediction model were associated with immune re-
sponse, especially tumour macrophage infiltration.
The preoperative T2-weighted MRI radiomics prediction model can stably predict the survival of glioma patients
and assist in preoperatively assessing the extent of macrophage infiltration in glioma tumours.
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Introduction
Glioma is the most common primary cancer in the CNS and a
highly lethal disease.1,2 Despite the same standardized treat-
ment, the prognosis varies in different patients. Therefore,
evaluation of the prognosis is of great significance for the guid-
ance of postoperative treatment of glioma. Although some mo-
lecular pathological findings, such as isocitrate dehydrogenase 1
(IDH1) mutation and chromosome 1p/19q co-deletion status, are
known to be predictors of prognosis, accurate detection of these
factors requires enough surgical specimens, professional tech-
nical staff, and expensive equipment and materials.3,4 These
shortcomings are the main barriers for wide application of prog-
nosis and chemosensitivity prediction by molecular pathological
factors.

MRI has the highest degree of confidence in glioma diagnosis
and is widely used for identifying the location and size of glioma.
Radiomics, quantitative features extracted from radiographic med-
ical images by data-characterization algorithms, is designed to de-
velop prognostic prediction tools and treatment decision support
tools in cancers.5–7 In addition, the original state of the tumour
and tumour microenvironment are well-reflected by preoperative
radiomic features (RFs), especially T2-weighted MRI-derived RFs,
which allow evaluation of the tumour’s biological characteristics
and microenvironment.8,9 Previous studies have shown that MRI
RFs could potentially be used as prognostic or predictive bio-
markers in glioma.10,11 Although some prognostic biomarkers or
prediction models have yet to be developed in gliomas, a more reli-
able and easy-to-use predictive model is still needed for clinical
practice.

Therefore, the aim of this study was to construct and validate a
radiomics prediction model based on preoperative T2-weighted
MRI of glioma patients. The stability of this radiomics model was
validated in independent and prospective validation cohorts.
Subsequently, biological interpretation of the prognostic RFs was
performed and validated by single-cell sequencing and immuno-
histochemical staining from the prospective cohort. In short, a
radiomics prediction model that incorporated the clinical progno-
sis prediction and tumour immune microenvironment assessment
was established to change the current clinical management of
patients with gliomas.

Materials and methods
Patient enrolment and tumour sequencing

Three independent cohorts of a total of 652 glioma patients with
preoperative T2-weighted MRI image data, tumour transcriptome
sequencing data, clinicopathological characteristics and follow-up
information were included in this study (Supplementary Table 1).
The preoperative imaging data of 167 patients in the discovery co-
hort were collected retrospectively from the imaging system of
Beijing Tiantan Hospital and the corresponding transcriptomic
data of these patients were obtained from the Chinese Glioma
Genome Atlas (CGGA) database (http://www.cgga.org.cn/, accessed
1 December 2021). A total of 261 patients from The Cancer Genome
Atlas (TCGA) database with available baseline preoperative imag-
ing data and corresponding transcriptomic data were used as an
external validation cohort (https://portal.gdc.cancer.gov/, accessed
1 December 2021). In the prospective validation cohort, 438 glioma
patients were consecutively enrolled in this study from November
2016 to August 2019 at Beijing Tiantan Hospital and 214 patients
were excluded according to the exclusion criteria. These patients
(n = 224) were followed-up trimonthly by telephone or clinic for an
average of 709 days (range 254–1232 days). The clinicopathological
information of glioma patients in this study is summarized in
Supplementary Tables 2–4.

In the discovery cohort, tumour samples obtained during surgery
were immediately placed in liquid nitrogen for storage.
Transcriptome data of patients were generated by Illumina platform.
The pathological diagnosis of tumour samples was completed by two
neuropathologists. Molecular pathology was performed at the
Molecular Pathology Testing Center of Beijing Neurosurgical Institute.

In the prospective cohort, the acquisition of tumour samples (ab-
normal hyperintense signals of the T2 image) was carefully designed
before surgery and was completed under the guidance of intraopera-
tive neuronavigation. Fresh tumour specimens were collected at the
time of resection and the presence of malignant cells was confirmed
by fast frozen pathology of nearby tissue during operation. The single-
cell RNA-sequencing (scRNA-seq) library was constructed according
to the single-cell tagged reverse transcription sequencing (STRT-seq)
protocol as previously described.12,13 Single-cell sequencing was per-
formed on an Illumina 4000 platform.

G. Li et al.1152 | BRAIN 2022: 145; 1151–1161

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data


Sample collection and data analyses were approved by Beijing
Tiantan Hospital institutional review board and written informed
consent was obtained from each participate.

Radiomic features extraction

The tumour region of interest was segmented on T2-weighted MR
images, because this sequence is well-accepted in the identifica-
tion of regions of gliomas. Regions of interest were manually
delineated by two neuroradiologists (both with more than 10 years
of experience in neuroradiology) using MRIcron software (http://
www.mccauslandcenter.sc.edu/mricro). Regions of interest on the
T2 image were defined as abnormal hyperintense signals and cere-
brospinal fluid signals were avoided. The range of regoin of inter-
est did not refer to signals in other sequences of MRI. For each
patient, a total of 1731 RFs were extracted using the ‘PyRadiomics’
package implemented in Python.14 The extracted features were
divided into four groups: (i) first-order statistics: n = 18; (ii) shape
and size features: n = 13; (iii) textural features derived from texture
matrices including grey-level co-occurrence matrix, grey-level run
length matrix, grey-level size zone matrix, grey-level dependence
matrix: n = 68; and (iv) filter-derived features: filter ‘wavelet’:
n = 688; filter ‘LoG’: n = 258; filter ‘LBP’: n = 258; other filter (‘square’,
‘squareroot’, ‘logarithm’, ‘exponential’, ‘gradient’): n = 86 � 5 = 430.
The detailed calculation formula for each RF is provided on the of-
ficial website (https://pyradiomics.readthedocs.io, accessed 1
December 2021).

Machine learning-based radiomics prediction model
construction

The risk prediction model was constructed based on RFs. To ensure
the stability of the prediction model, the RFs were strictly screened
in the discovery cohort with two steps. First, we randomly used 50%
of the samples as the training set and the remaining 50% of the
samples as the test set. To test the robustness of RFs selection in
building the prediction model, we randomly split the samples in the
discovery cohort into a training set and a test set at a ratio of 3:7, 4:6,
6:4, and 7:3, respectively. On the training set, we first performed a
preselection step to keep the top significant features correlated with
overall survival (univariate Cox model, likelihood ratio test,
P5 0.05). Second, we applied the risk score formulation (risk score =
P

feature values � Cox efficient of feature) using the top significant
features selected in the first step to calculate an RF score value for
each sample in the test set, followed by separating the test set into
high and low groups by the median of the RF score. If the overall sur-
vivals of these two groups were significantly different (Kaplan–
Meier analysis, log rank P50.05), the features used in the RF score
formulation were chosen. We repeated the above procedure 1000
times and selected the features which were chosen in more than
85% of the total of 1000 procedures.

LASSO-based feature selection

A standard multivariate approach, Cox-LASSO (least absolute
shrinkage and selection operator), was also applied for RFs selec-
tion in building the prediction models (Supplementary Fig. 1).
First, univariate Cox regression analysis was applied to extract
the features that were statistically significantly associated with
survival (adjusted P-value 5 0.01). For the prognostic features, a
Cox proportional hazards model (iteration = 1000) with a LASSO
penalty was used to find the best RF model utilizing an R package
called ‘glmnet’. A total of nine features were obtained.

Random survival forests–variable hunting feature
selection

A random forest survival analysis was performed to screen RFs for
predictive model building. Specifically, univariate Cox proportional
hazards regression analysis was performed to screen out those RFs
with a significant relationship with patients’ overall survival in the
discovery cohort (adjusted P-value 5 0.01). Then, the random sur-
vival forests–variable hunting (RSFVH) algorithm was applied to
filter prognostic RFs. Finally, we obtained nine features.

Deep learning models

Three widely used deep learning models were built and trained in
discovery cohort, followed by independent evaluation in the TCGA
cohort and the prospective cohort. Specifically, a stringent criter-
ion was adopted to select the prognostic RFs with the use of uni-
variate Cox proportional hazards regression analysis in the
discovery cohort (adjusted P-value 5 0.005). A total of 25 prognos-
tic RFs were extracted. The grouping results derived from hierarch-
ical k-means clustering using prognostic RFs were labelled as 0
and 1, respectively. The prognostic RFs in the discovery cohort
were used as training data to train the deep learning model. The
input data were Z-score-transformed RFs to avoid a gradient dis-
appearance problem. The first deep learning model (deep learning
model 1) was built with one hidden layer including eight nodes.
The second one (deep learning model 2) was built with two hidden
layers with each containing 16 and 8 nodes, respectively. The third
one (deep learning model 3), the LSTM (long short-term memory)
deep learning model, was built with two hidden layers, including
two LSTM layers, each layer containing 16 and 4 nodes, respective-
ly. Sigmoid function was chosen as neuron activation function,
mean squared error as the loss function and Adam (adaptive
movement estimation algorithm) as the iterative optimizer. The
maximum number of iterations was set as 1000. The initial con-
nection weights and biases of each layer were randomly generated
and end up reaching stable parameters through training iterations.
After determining the framework of the model, cross-validation
was a necessary step. The training data were separated into two
sections randomly with the proportion of training and testing sets
as 6 to 4. The training set was used to train the model to determine
the unknown parameters, while the test set was used to validate
the effect of the predicted parameters. To obtain the optimal
model, the above process was carried out 300 times. Kaplan–Meier
survival analysis was operated each time to see if the model can
divide the samples into two groups with a statistically significant
survival difference. Only groups with a P-value lower than or equal
to the threshold of 0.05 were regarded as statistically significant.
Among 300 times trials, the more significant stratifications, the
more stable our model is. The model with fixed parameters corre-
sponding to the lowest P-value was selected as the optimal model.
To test the performance of the optimal model, the TCGA cohort
and prospective cohort were used as external test data, respective-
ly. The optimal model divided patients in each cohort into long-
and short-term survival clusters. Kaplan–Meier analysis was con-
ducted between the long- and short-term survival clusters in each
cohort to test the predictive performance of the optimal model for
glioma.

Functional annotation of radiomic features

Functional annotation of RFs was performed by Gene Set Variation
Analysis (GSVA) and Pearson correlation analysis. First, the bio-
logical process and pathway activation scores of each patient were
calculated by GSVA analysis based on tumour transcriptome
sequencing data. The gene sets of Gene Ontology (GO) and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) were downloaded
from Gene Set Enrichment Analysis (GSEA) web portals (http://soft
ware.broadinstitute.org/gsea/index.jsp, accessed 1 December
2021). Second, the correlation between biological process and path-
way activation scores and RF values was calculated by Pearson cor-
relation analysis. Functions and pathways, significantly correlated
with RF values (P5 0.05), were used to annotate RFs. Classification
of biological functions was performed according to the classifica-
tion in the AmiGO 2 portal (http://amigo.geneontology.org/amigo,
accessed 1 December 2021).

Single-cell RNA sequencing data analysis

Raw read counts were obtained from scRNA-seq data. Cells with
an abundance of reads count 4 1000 were kept for further ana-
lysis. The imputation of single cells was applied to scRNA-seq data
by Markov affinity-based graph imputation of cells.15 Then,
ComBat16 was performed to remove the batch effect of single-cell
data. Seurat was used to analyse the single-cell sequencing data
with default options (normalized with LogNormalize, variable

features found with vst, and 5000 high variable features kept).
Canonical cluster analysis as implemented in the Seurat package
was then performed on the 5000 common genes identified in this
manner. Non-linear dimensional reduction t-distributed stochas-
tic neighbour embedding (tSNE) was applied on the scale data to
visualize and explore these datasets. Lastly, we used the cell
markers previously reported to determine the identification of the
cell types. Specifically, CD45 + was used to separate immune cells
from non-immune cells. Immune cells with CD11b + , CD14 + ,
CD16 + , CD68 + , CD86 + and CD163 + were macrophages. Immune
cells with CD14 + , CD16 + and CD163– were monocytes. Immune
cells with CD8 + , CD3 + and GZMA + were CD8 + T cells. Immune
cells with CD3 + were CD3 T cells.

Normalized enrichment score of immune cell
signatures

We curated a total of 295 different gene signatures for immune
cells and CNS from literature.17–21 To evaluate the enrichment of
each immune cell type in each sample, we used the normalized

Figure 1 Work flow and radiomic feature screening. (A) Work flow of the machine learning method. (B) A total of 1293 RFs showed high intraclass cor-
relation coefficient (ICC) between tumours sketched by radiologist or neurosurgeon. (C) The frequency of RFs chosen (univariate Cox model, likeli-
hood ratio test, P5 0.05, both in the feature value and the median of RF score) in the prediction models. (The peaks are in the 850 times.) (D) The RFs
of Kaplan–Meier P-values in the test groups and frequency. OS = overall survival; ROIs = regions of interest.
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enrichment score of the Mann-Whitney Gene Set test.22,23 The
normalized enrichment score (NES) was determined as follows:

NES ¼ 1� U
mn

(1)

U ¼ nmþm mþ 1ð Þ
2

� T (2)

where m is the number of genes in a gene set, n is the number of
genes outside the gene set, and T is the sum of the ranks of the
genes in the gene set. Given a gene signature, the gene expression
data of a sample were separated into two sections comprising
genes expressed in the gene signature and the rest of the genes, re-
spectively. The Wilcoxon rank-sum test was then applied to calcu-
late the normalized enrichment score.

Immunohistochemical staining for macrophage
markers

Tumour samples for immunohistochemical staining were obtained
from patients in the discovery cohort (n = 62). The surgically removed
tumour tissues were stored in formalin immediately and embedded
in paraffin within 3 days. The immunohistochemical staining and

image capture were performed as previously described.24 The pri-
mary antibody for the detection of macrophage markers were as fol-
lows: MS4A4A (Sigma-Aldrich, HPA029323), STAB1 (Abcam, ab101035)
and COLEC12 (Invitrogen, PA5-30835). Immunohistochemical stain-
ing was performed as per the manufacturer’s protocol with recom-
mended concentration. The proportion of positive cells was counted
using ImageJ (v1.52) software.

Statistical analyses

Statistical analyses and drawings were performed by software en-
vironment R (v3.5.0), SPSS software (v25.0, IBM) and Office 2016
(Microsoft). The Mann-Whitney U-test was used to validate differ-
ences between two variables. The chi-square test was used to as-
sess the composition ratio differences between two groups. The
log-rank test was used to assess the statistical significance be-
tween survival groups in Kaplan–Meier survival analysis. P-values
less than 0.05 were considered statistically significant.

Data availability

All datasets used and/or analysed in this study have been uploaded.
The sequencing data, clinical and follow-up information of glioma
patients were uploaded to the CGGA portal (http://cgga.org.cn/,

Figure 2 Clinicopathological and survival differences in different risk subgroups. (A and C) The differences of survival and clinical molecular path-
ology in patients in different risk groups are shown in heat maps. Patients in the discovery and external validation cohorts are arranged in ascending
order of RF scores of RFs. (B and D) Kaplan–Meier curves show the overall survival of patients in low-risk and high-risk groups. Overall survival of
patients in the high-risk group is significantly shorter in both discovery and external validation cohorts.
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accessed 1 December 2021). The method has been uploaded to GitHub
(https://github.com/zhangjbig/RadioML, accessed 1 December 2021).

Results
Clinical characteristics

Patient clinical characteristics in the discovery (Tiantan), external
validation (TCGA) and prospective validation (Beijing Tiantan
Hospital) cohorts are shown in Supplementary Table 1. The com-
position of patients (especially age, IDH1 and 1p/19q status) was
significantly distinct among different cohorts and the main reason
for this inconsistency was the difference in tumour grade. The dis-
tribution of tumour grade was similar between the discovery co-
hort and the prospective validation cohort, while the majority of
tumours in the external validation cohort were grade IV gliomas.
As the radiomics prediction model was constructed from pre-
operative T2-weighted MRI images independent of tumour grade
and molecular features, the prediction efficiency might not be sig-
nificantly affected by the difference between the discovery and
validation cohorts.

MRI radiomic features extraction and prediction
model construction

Two neuroradiologists independently reviewed the T2-weighted
MRI images and then delineated the tumour contour with mutual
concordance. Then, 1731 RFs were retrieved for the tumour area
from the T2-weighted MRI images, among which 1293 RFs with
high intraclass correlation coefficient (40.9) were retained in the
downstream analysis. A permutation-based machine learning
method was applied to screen RFs associated with overall survival
of gliomas from 167 glioma patients in the discovery cohort
(Tiantan; Fig. 1A and B). Fourteen RFs were identified as signifi-
cantly associated with overall survival of gliomas (Fig. 1C and D).
To test the robustness of RFs selection in building the prediction
model, we randomly split the samples in the discovery cohort into
a training set and a test set at different ratios of 4:6, 3:7, 7:3, and
6:4, respectively. We discovered that the features selected at differ-
ent scenarios were highly consistent (Supplementary Fig. 1A–C). A
risk prediction model was constructed based on the 14 prognostic
RFs. The predictive power of the risk prediction model was vali-
dated in an external data cohort consisting of 261 glioma patients
from the TCGA database. Two hundred and twenty-four glioma
patients were recruited in the prospective cohort from Beijing
Tiantan Hospital for further validating the performance of the RF-
based risk prediction model. The association between biological
functions and the RF-based model was established through GSEA,
followed by experimental validation through single-cell sequenc-
ing of 1733 cells from four gliomas and immunohistochemical
staining of 62 samples in the discovery set.

Performance of the radiomics prediction model in
prognosis prediction in the retrospective analysis

The relationship between the RF scores of radiomics prediction
model and the clinicopathological features of patients is shown
in the heat maps (Fig. 2A and C). Patients were ranked in ascend-
ing order of RF scores in the discovery and external validation
cohorts. The median RF score (36.12) in the discovery cohort was
used as the cut-off value of risk subgroups in this study. Patients
with an RF score greater than 36.12 were classified into the high-
risk subgroup and those with lower than 36.12 were classified
into the low-risk subgroup. WHO tumour grade and IDH1 muta-
tion status in the discovery cohort and external validation cohortT
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showed asymmetry distribution in different risk subgroups.
However, age, gender and 1p/19q status did not differ significant-
ly between the two subgroups (Supplementary Tables 2 and 3).
Subsequently, Kaplan–Meier survival analysis in the discovery
and external validation cohorts showed that patients in the high-
risk subgroup had shorter overall survival than those in the low-
risk subgroup (Fig. 2B and D). Univariate and multivariate Cox
regression analysis demonstrated that RF score was an inde-
pendent prognostic factor after adjusting for other prognostic

factors in patients of both the Tiantan discovery cohort and the
TCGA validation cohort (Table 1).

Performance of the radiomics prediction model in
prognosis prediction in the prospective analysis

To further validate the concordance and reproducibility of the
radiomics prediction model, a single-institutional prospective

Figure 3 The stability of the radiomics prediction models was validated in the prospective validation cohort. (A) Flow diagram of glioma patients in
the prospective group. A total of 224 glioma patients eligible for the study were screened from the sample of 438 glioma patients from November 2016

(C) Kaplan–Meier curves show the overall survival of patients in the high-risk group is significantly shorter than those in low-risk group in the
prospective validation cohort.

Table 2 Cox regression analysis of prognostic factors in prospective cohort

Variable Univariate analysis Multivariate analysis

HR (95% CL) P-value HR (95% CL) P-value

RF scorea 1.110 (1.046–1.178) 5.93 � 10–4 1.088 (1.010–1.173) 0.0271
Agea 1.039 (1.011–1.069) 7.18 � 10–3 1.020 (0.989–1.053) 0.2122
WHO gradeb 4.52 � 10–5 0.2390

III versus II 1.751 (0.503–6.096) 0.3788 0.900 (0.215–3.759) 0.8847
IV versus II 6.949 (2.624–18.397) 9.53 � 10–5 2.158 (0.600–7.766) 0.2390

IDH1 statusb

Mutant versus wild-type
0.115 (0.050–0.269) 5.71 � 10–7 0.209 (0.079–0.553) 0.0016

1p/19q statusb

Cod versus Non-Cod
0.020 (3.69 � 10–4–1.038) 0.0522

Cod = co-deletion
aNumerical variables.
bCategorical variables.
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analysis was performed at Beijing Tiantan Hospital. Two hundred
and twenty-four of 438 glioma patients from November 2016 to
August 2019 were enrolled in the prospective cohort (Fig. 3A).
Based on the RF score of the radiomics prediction model, patients
were also divided into high- and low-risk subgroups by the same
method and cut-off value from the discovery cohort. The clinico-
pathological features of patients in different risk subgroups are
presented in Fig. 3B. The difference analysis of clinicopathological
factors found that there are significant differences between age,
WHO tumour grade and IDH1 mutation status in the high- and
low-risk groups (Supplementary Table 4). Survival analysis indi-
cated that patients in the high-risk subgroup showed significantly
shorter overall survival than those in the low-risk subgroup
(Fig. 3C). In addition, the radiomics prediction model particularly
proved to be an independent prognostic risk factor in patients
from the prospective cohort by multivariate Cox regression ana-
lysis (Table 2).

The prognostic radiomic features were in close
correlation with tumour-infiltrating macrophages

To understand the relationship between the 14 prognostic RFs and
the biological functions, we calculated the enrichment score of
each biological function for each patient in the discovery cohort.
Pearson correlation analysis demonstrated that the immune sys-
tem process was significantly related to the 14 RFs (Fig. 4A). The
GO terms of the immune system process were also highly shared
among the 14 RFs (Fig. 4B). To identify which immune cells may be
associated with the RFs, we curated the gene signatures for 295 im-
mune cells from the literature. We then performed normalized en-
richment score analysis on tumour transcriptome data to predict
the enrichment of immune cells in each patient, and found that
macrophages showed a distinct and strong correlation with the

prognostic RFs (Fig. 4C and D). Even if there were disparities in
demographic and tumour-grade distribution between Tiantan and
TCGA databases, we still observed a weak but non-negligible asso-
ciation between RFs and macrophages in the TCGA validation co-
hort (Supplementary Fig. 2). In conclusion, the radiomics
prediction model from preoperative T2-weighted MRI images could
help assess the tumour-infiltrating macrophages in glioma
patients.

Verification of the relationship between radiomic
features and tumour macrophage infiltration

To further validate the biological annotations of the prognostic
RFs, scRNA-seq and immunohistochemical staining were per-
formed in representative patients of the prospective and discovery
cohort, respectively (Fig. 5A). Specifically, we performed scRNA-
seq on isolated cells of surgical specimens from four glioma
patients (named as PDC1, PDC7, PDC12, and PDC14) and a total of
1733 cell gene expression profiles were included in the analysis
(Fig. 5B).

To characterize the cell identity of the obtained clusters, we
applied the immune cell marker curated from the literature. More
concretely, CD45 + cells were immune cells and CD45– cells were
non-immune cells. Immune cells include macrophages (CD11b + ,
CD14 + , CD16 + , CD68 + , CD86 + , CD163 + ), CD8 T cells (CD8 + ,
CD3 + , GZMA + ), CD3 + T cells and monocytes (CD14 + , CD16 + ,
CD68–, CD163–). We confirmed that there were more tumour-infil-
trating macrophages in patients with higher RF scores through im-
putation for scRNA-seq data (Supplementary Figs 3–6). It was
further indicated that tumour samples harbouring a high macro-
phage cell gene signature conferred a poorer survival than those
with low macrophage signature (Supplementary Fig. 7A and B).
The high-risk patients, PDC7 and PDC12, have more abundance of

Figure 4 The relationship between prognostic RFs and tumour cell functions in the discovery cohort. (A) The Pearson correlation between RFs and tu-
mour biological processes. (B) The networks among the features on the immune system process: the nodes are features and the edges are the counts
of immune system process overlap between the features. (C) The top 10 significant correlation between RFs and cell fractions. (D) The Pearson correl-
ation between RFs and macrophage cell signatures.

G. Li et al.1158 | BRAIN 2022: 145; 1151–1161

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab340#supplementary-data


macrophage cell fractions compared with low-risk patients, PDC1
and PDC14 (Fig. 5B). In addition, the selected markers of MS4A4A,
STAB1 and COLEC12 reflecting tumour-infiltrating macrophages
were detected by immunohistochemical staining in the discovery
cohort. The results reconfirmed that tumour-infiltrating macro-
phages were highly enriched in patients with higher RF scores and
the increased expression of these macrophage-specific markers

were also indicators of poor prognosis in patients with gliomas
(Fig. 5C and Supplementary Fig. 7C–E). Furthermore, the patients
were divided into lower grade glioma (WHO II and III) and glio-
blastoma (WHO IV) groups according to the tumour grade. The
results showed that tumour-infiltrating macrophages were
enriched in the high-risk group in both lower grade glioma and
glioblastoma patients (Supplementary Figs 8 and 9).

Figure 5 Experimental validation of RF-related tumour macrophage infiltration. (A) Scheme of the experimental workflow. (B) t-Distributed stochastic
neighbour embedding (tSNE) plot shows clustering of each patient’s cells based on gene expression. Point coordinates are based on tSNE dimensionality
reduction of the top principal components calculated from the 5000 most informative genes. Cell colour specifies assignment of cells to these clusters
inferred using shared nearest neighbour clustering. Pie charts demonstrate the distribution of the identified cell types across samples in each patient
and histograms show the macrophage cell abundance between high-risk and low-risk patients. (C) Immunohistochemical staining displays the RF-
related macrophage markers MS4A4A, STAB1 and COLEC12. The scatter diagram shows the expression level of these markers in high-risk and low-risk
samples. Kaplan–Meier survival analysis was performed between the samples with high and low expression of macrophage markers.
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Discussion
MRI is one of the most important clinical data for patients with glio-
mas. Preoperative MRI plays a central role in glioma diagnosis and
intraoperative neuronavigation-guided tumour resection. With the
development of radiomics analysis, some studies have found that
MRI can be used to predict the biological and genomic features of
tumours, such as therapeutic response,25 tumour recurrence,26 p53
mutation27 and other molecular markers.28–30 However, a radiomics
prediction model for the tumour microenvironment of gliomas is
still in development at present. Among the clinical routinely used
MRI sequences, the T2-weighted sequence is superior in identifying
the tumour boundary and detecting tumours and the surrounding
tumour microenvironment.10,27,30,31 In our previous studies and
other imaging studies, the identification of tumour regions of inter-
est was mostly based on T2-weighted sequences, even in multi-
modal and glioblastoma imaging studies.32–34 In this study, we
constructed and prospectively validated a prognostic radiomics
model based on preoperative T2-weighted MRI images of glioma
patients for potential clinical application. Importantly, this predic-
tion model was in close relationship with tumour-infiltrating macro-
phages, providing an explanation for patient survival benefit from
the current clinical management.

Radiomics analysis underwent remarkable progress along with
advances in radiological imaging, most notably in CNS tumours,
which would be a promising direction to advance personalized
medicine. In previous studies by us and others, some radiomic-
based glioma prediction models have been established.10,35,36 Our
analysis builds on these studies in that we performed a rigorous
screening of RFs and a comprehensive validation of the prediction
model. A valuable prediction model was usually based on crucial
predictors, and variable factors were excluded by two steps in our
study. The first step excluded the influence of variations between
neuroradiologists on the extraction of RFs. The second step ensured
the reproductivity of the prediction model in different populations
and different image resources (Tiantan and TCGA databases). In the
verification of our prediction model, we not only set up an inde-
pendent external validation cohort but also designed a prospective
validation cohort. All above results demonstrated that the radiomics
prediction model is a prognostic factor independent of traditional
prognostic factors (patient age, WHO tumour grade, IDH1 and 1p/19q
status), and can be used together with these factors to predict the
prognosis of glioma patients. Furthermore, the radiomics prediction
model has the advantages of non-invasive, economical and can
guide the clinical treatment of glioma before surgery. With the wide
clinical application, this easy and feasible model is a supplement to
the existing classic markers.

Many methods have been tried for the construction of the radio-
mics prediction model. We applied a standard multivariate ap-
proach, Cox-LASSO, to select RFS to construct a prediction model.
We also evaluated RSFVH to select RFs for model building. We found
the RFs selected by Cox-LASSO and RSFVH were quite different from
those selected by our prediction model. We barely found an associ-
ation between macrophage enrichment and RFs derived from Cox-
LASSO or RSFVH (Supplementary Fig. 1A–C). In addition to tradition-
al algorithms, deep learning algorithms have also been used to build
predictive models. Based on 25 RFs with prognostic value, three pre-
dictive models have been built by deep learning methods in the dis-
covery cohort. The prediction results of the deep learning prediction
models consistently show that risk group is an independent prog-
nostic factor in discovery and TCGA cohorts, but not in the prospect-
ive cohorts (Supplementary Figs 10–12), suggesting deep learning
models fit data with a larger sample size.

At present, functional annotation of RFs is still a scientific chal-
lenge in the current radiomics research. Sun et al.6 have

constructed a prediction model to assess tumour-infiltrating CD8
cells and immunotherapy response in cancers by conjoint analysis
of CT images and RNA-seq genomic data. Grossmann et al.37 have
examined the correlation between RFs and pathway scores,
obtained from GSEA, to define radiomic–pathway–clinical relation-
ships. Combining the advantages of reported algorithms, function-
al annotation of the 14 predictive RFs was performed based on the
enrichment scores of 5917 biological processes and pathways
obtained from RNA-seq data. Consistent with previous reports in
other tumours,6,37,38 the predictive RFs were closely related to
immune response, especially tumour macrophage infiltration in
gliomas. There were significant differences in patient compos-
ition between Tiantan and TCGA databases and a weak but non-
negligible association between RF model and macrophage was
observed in the TCGA database. In addition, tumour samples
from patients of the prospective and retrospective cohort were,
respectively, collected for single-cell sequencing and immuno-
histochemical staining, and the RFs-related macrophage infiltra-
tion could be reconfirmed in patient-derived cells and surgical
specimens. Most interestingly, the correlation between predict-
ive RFs and tumour macrophage infiltration was identified for
the first time in glioma patients. This result indicated that the
distinct survival benefits in glioma patients with the same
diagnosis and treatment may be due to the various tumour
microenvironments. The close relationship between tumour
microenvironments and RFs was most likely to be an intrinsic
mechanism by which the radiomics prediction model could ac-
curately predict prognosis in glioma patients. T2-weighted MRI of
gliomas usually reflects the features of the tumours and sur-
rounding areas, which is the most commonly used non-invasive
tool to exhibit the diversity of tumour microenvironment, while
the underlying mechanisms need to be further elucidated. Most
importantly, our finding suggested that the radiomics prediction
model might also provide potential clinical guidance for future
immunotherapy of gliomas.

In conclusion, we constructed an MRI radiomics model by ma-
chine learning to predict clinical outcomes in glioma patients. This
prediction model has great potential to guide clinical prognosis
prediction and decision-making for immunotherapy in the future.
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