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A B S T R A C T   

Microbes can produce valuable natural products widely applied in medicine, food and other important fields. 
Nevertheless, it is usually challenging to achieve ideal industrial yields due to low production rate and poor 
toxicity tolerance. Evolution is a constant mutation and adaptation process used to improve strain performance. 
Generally speaking, the synthesis of natural products in microbes is often intricate, involving multiple enzymes 
or multiple pathways. Individual evolution of a certain enzyme often fails to achieve the desired results, and may 
lead to new rate-limiting nodes that affect the growth of microbes. Therefore, it is inevitable to evolve the 
biosynthetic pathways or the whole genome. Here, we reviewed the pathway-level evolution including multi- 
enzyme evolution, regulatory elements engineering, and computer-aided engineering, as well as the genome- 
level evolution based on several tools, such as genome shuffling and CRISPR/Cas systems. Finally, we also 
discussed the major challenges faced by in vivo evolution strategies and proposed some potential solutions.   

1. Introduction 

The complex metabolic network in microbes can produce a variety of 
valuable natural products, such as terpenes, flavonoids, and alkaloids 
[1]. To improve the yield of these microbial natural products, numerous 
evolution methods, including random mutagenesis, error-prone PCR, 
site-directed mutagenesis and site-saturation mutagenesis, have been 
implemented [2,3]. However, since most of these strategies can only be 
applied in the evolution of a single enzyme, optimized phenotypes may 
not be easily obtained [4]. Therefore, a great number of creative solu-
tions have been inspired, including adaptive laboratory evolution (ALE), 
and synthetic biology mediated pathway and genome evolution (Fig. 1). 
ALE helps to screen beneficial mutants through long-term cultivation 
under special pressures, mostly physical or chemical factors [5–7]. It 
may generate mutations in the pathway or the whole genome randomly. 
However, ALE is usually time-consuming and laborious as several 
rounds of repetitive work are needed [8,9]. In recent years, with the 
development of synthetic biology, new tools have been exploited in 
pathway and genome evolution, including CRISPR-Cas9-and homo-
logy-directed-repair (HDR)-assisted genome-scale engineering 

(CHAnGE) [10], synthetic chromosome rearrangement and modifica-
tion by LoxP-mediated evolution (SCRaMBLE), etc. [11]. In particular, 
synthetic biology mediated pathway and genome evolution are mostly 
rational designed engineering strategies, which makes it possible to 
rapidly evolve the target microbial biosynthetic pathways or the whole 
genomes [12–14]. 

Here, we briefly summarized the latest advances in evolution stra-
tegies based on pathway-level evolution and genome-level evolution, as 
well as their applications within the recent five years. At the same time, 
the drawbacks and challenges of these evolutionary strategies in 
screening optimal strains are also discussed. 

2. Pathway-level evolution strategies 

The synthesis of natural or unnatural products in microbes usually 
requires a synergistic network of multiple metabolic pathways. Tradi-
tionally, biologists tend to deal with each step of the biosynthetic 
pathway in an isolated way [15]. Recently, assisted by synthetic biology, 
pathway-level evolution becomes popular (Fig. 2). 
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2.1. Pathway-level evolution based on multi-enzyme evolution 

In the vast majority of biosynthetic pathways, there are often more 
than one rate-limiting enzymes. Individual enzyme evolution may 
introduce new rate-limiting nodes, causing flux imbalance in the 
biosynthetic pathway [16]. Collaborative evolution of multiple enzymes 
may provide an effective solution to avoid this dilemma. 

Traditional enzyme evolution mostly relies on DNA shuffling and 
error-prone PCR techniques, which are constantly used for multi- 
enzyme evolution [17]. For example, Lv et al. partitioned the isoprene 
biosynthetic pathway by using DMAPP as the connection node: the 
upstream module including the native methylerythritol-phosphate 
(MEP) pathway and the downstream module consisting of isoprene 
synthase (ISPS) (Fig. 3A). Since isoprene and lycopene biosynthetic 
pathways shared the same upstream module, lycopene was used as the 
colorimetric reporter for high-throughput screening. The optimization 
of upstream module, inculding the co-evolution of three rate-limiting 
enzymes DXS/DXR/IDI by error-prone PCR, increased the yield of 
isoprene by 60% (Fig. 3B) [18]. In another case, phenylpyruvate 
decarboxylase (ARO10) and phenylacetaldehyde dehydrogenase (FeaB) 
are important in 4-hydroxyphenylacetic acid (4-HPAA) biosynthesis. 
Error-prone PCR was also applied to generate mutants of ARO10 and 
FeaB simultaneously, and the yield of 4-HPAA increased 1.13-fold [19]. 

However, the evolutionary efficiency of error-prone PCR is usually 
low [17]. Recently, new enzyme evolution tools based on CRISPR 
techniques have also been developed [20–22]. Hao et al. developed a 
base editor by fusing nCas with a cytidine deaminase in Bacillus subtilis. 
This base editor could introduce approximately 100% of cytidine 
thymidine mutations across a 5 nt editable window, which was much 
higher than that of other base editors. Based on this base editor, 
co-evolution of secE and secG was realized and the transportation ability 
of SecE(V36I)/SecG(A62T/V63I) mutant was increased by 3.6 times 
[23]. Although CRISPR/Cas system has been widely used, it still has 
limitations, including the limited availability of PAM sites, and cyto-
toxicity [24]. Thus, Ho et al. optimized the pyrrolysine biosynthetic 

pathway by phage assisted non-continuous directed evolution (PANCE) 
in Escherichia coli, which can accommodate toxicity of Pyl biosynthetic 
genes by alternating mutagenic and selective phage growth. As a result, 
PylBCD genes were optimized simultaneously and the yield of pyrroly-
sine was increased by 32 times than the rationally engineered ancestors 
[25]. 

Pathway reconstruction is also a commonly used strategy to optimize 
the biosynthesis process. For instance, one-step fermentation of L-the-
anine was optimized in wild-type E. coli, through the introduction of a 
novel γ-glutamylmethylamide synthetase (GMAS) from Paracoccus 
aminovorans [26]. The glutamate dehydrogenase and the pyruvate 
carboxylase of Corynebacterium glutamicum were introduced, interrupt-
ing the tricarboxylic acid cycle to facilitate theanine production. In the 
meanwhile, the introduction of energy-saving phosphoenolpyruvate 
carboxykinase from Mannheimia succiniciproducens further increased the 
ATP yield for theanine synthesis. As a result, the theanine production of 
the recombinant strain was 70.6 g/L. Moreover, the complete biosyn-
thesis of carminic acid from glucose was reconstructed in engineered E. 
coli. In this pathway, Type II PKS from Photorhabdus luminescens was 
introduced. A recombinant strain with high intermediate production 
was obtained through the co-expression of the Type II PKS and cyclase 
genes ZhuI and ZhuJ. Aklavinone 12-hydroxylase (DnrF) from Strepto-
myces peucetius and C-glucosyltransferase (GtCGT) from Gentiana triflora 
were also introduced. Then, in silico homology modeling and docking 
simulations were employed to enhance the activities of these two en-
zymes. In consequence, the yield of carminic acid from glucose was 
achieved 0.63 ± 0.02 mg/L in E. coli [27]. 

2.2. Pathway-level evolution based on regulatory elements engineering 

When scientists study the biosynthesis process from the perspective 
of the whole pathway, not the individual genes, the evolutionary targets 
could be expanded. As the expression of targeted genes is often 
controlled by regulatory elements [28,29], engineering of these regu-
latory elements may drive the evolution of the whole pathway. 

Fig. 1. Overview of pathway and genome evolution strategies. A. Adaptive laboratory evolution: The strain grew under a certain environmental pressure through 
chemical and physical factors; B. Pathway-level evolution strategies: Pathway evolution was realized by multi-enzyme evolution, regulatory elements engineering 
and pathway reconstruction; C. Genome-level evolution strategies: By protoplast fusion or evolutionary tools that rely on synthetic biology, the evolution can be 
achieved on a genomic scale including deletion of large fragments, mutation of multiple sites, or genome shuffling; D. Evolutionary phenotype: Evolved strains could 
increase natural product yield, antibiotic resistance, acid tolerance, etc. 
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Precise control of gene expression through promoter engineering is 
the key to optimizing biosynthetic pathways [30]. The synthetic nar 
promoters (dissolved oxygen-dependent promoters) were divided into 
three groups based on their strength: strong, intermediate and weak. 
They were used to control the expression of enzymes in the D-lactate and 
2,3-butanediol (BDO) biosynthetic pathways in E. coli [31]. The 
D-lactate and 2,3-BDO production of the recombinant strains were 34% 
and 72% higher than those using the native promoters, respectively. 
Except engineering individual promoters, promoter substitution is also a 
commonly applied strategy [30]. In the isoprene biosynthesis example 
mentioned in the previous section, the pathway was optimized through 
modular engineering in addition to the co-evolution of three 
rate-limiting enzymes of the MEP pathway. By tuning the metabolic flux 
between the upstream and downstream modules by promoter replace-
ment (PT7, PTrc, PAra) and inducer adjustment, the final production of 
isoprene was improved by 4.7-fold (Fig. 3C) [18]. 

Since ribosomal binding sites (RBSs) are critical for enzyme activity 
regulation at the translational level, RBS engineering is also a commonly 
used evolution approach. Li et al. constructed a rationally designed RBS 
library in one-pot reaction through oligo linker mediated assembly 
(OLMA) and optimized the biosynthetic pathway of poly (3-hydroxy-
butyric acid) (PHB) in E. coli. Applying this method, strains accumu-
lating 0%–92% PHB contents in cell dry weight (CDW) were obtained. 
PHB with various weight-average molecular weights (MW) of 2.7- 
6.8 × 106 were also efficiently produced in relatively high contents [32]. 
Besides, the Wood-Werkman cycle, which generated the propionate and 
1-propanol in E. coli, was optimized through operon rearrangement, RBS 
adjustment, expression system optimization and adaptive laboratory 
evolution. As a result, nearly 30% of total carbon was redirected and the 
titers of propionic acid and propanol reached 9 mM and 5 mM, 
respectively [33]. 

In addition, there are cases of optimizing biosynthesis pathway 
through promoter-engineering and RBS-engineering in non-model bac-
teria as well. For instance, ecumicin biosynthesis was enhanced in the 
rare actinomycete Nonomuraea sp. MJM5123 by knocking into kasO*p 
upstream of the ecuE gene. Since there were two potential start codons 
(ATG/GTG) among the initial region of ecuE, four different sites were 
engineered: (1) the one before the first start codon, (2) the RBS of the 
first start codon, (3) the one before the second start codon, and (4) the 
RBS of the second start codon. By comparison, engineered strain 

integrating the kasO*p together with its own RBS before the first start 
codon had a higher ecumicin production. Importantly, production of a 
more active component EcuH16 was considerably increased in the 
double RBSs engineered strain, reaching 310 mg/L [34]. 

2.3. Pathway-level evolution based on computer-aided engineering 

Although pathway-level evolution provides a good scheme for 
biosynthesis optimization, the metabolic engineering of target strains 
often requires a good understanding of the cell metabolism. However, 
sometimes the enzymes involved in the target biosynthetic pathways are 
still unknown, which poses a key challenge to their production. Con-
structing new biosynthetic pathways based on computer-aided engi-
neering can partly overcome this challenge [35]. With the continuous 
increase of biological data in recent years, data-driven approaches have 
gradually become popular. For the design of metabolic pathways, pre-
vious studies used computer-aided inverse synthesis strategy to explore 
the huge chemical space that was difficult to navigate through manual 
inspection [36,37]. 

The biosynthesis pathway with multiple-gene can be designed 
through computer-aided engineering. Ferreira et al. described the in 
silico driven design of butanol producing E. coli strains. Seven catalytic 
steps and nine heterologous genes from various sources were required. 
The recombinant strain was selected from an initial set of 105,954 
different routes, which had the maximum butanol titer of 85 ± 1 mg/L 
[38]. Further, simulation tools can be used to optimize biosynthetic 
pathways as well. For example, genome scale metabolic model (GSM) 
simulation was used to design and develop metabolic pathways of B. 
subtilis. In a published GSM model of B. subtilis, iYO844, flux balance 
analysis (FBA) simulation was used to evaluate the effect of stepwise 
gene knockout to improve the 2,3-BDO yield in B. subtilis. As the result, 
Vikromvarasiri et al. found that lctE knockout led to a substantial in-
crease in 2,3-BDO production and the improvement by mmgA knockout 
had never been investigated [39]. 

The establishment and enrichment of biosynthetic route databases 
are also a major application of computer-aided engineering. The Sensi-
Path web server, which can screen multi-step enzymatic transformation 
of non-detectable compounds into detectable compounds, expands the 
potential applications of biosensors in synthetic biology [40]. Duigou 
et al. provided a complete set for RetroRules, which is a database of 

Fig. 2. Pathway-level evolutionary strategies. A. Multi-enzyme evolution: (a) The co-evolution of multiple enzymes; (b) Pathway reconstruction. B. Regulatory 
elements engineering: (a) Promoter engineering; (b) Ribosome engineering; (c) Combination of promoter engineering and ribosome engineering. 
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reaction rules for metabolic engineering, including more than 40,000 
stereochemical perception reaction rules extracted from the public da-
tabases and expressed in the community standard SMARTS (SMIRKS) 
format [41]. 

The way to capture information from the databases can be optimized 
by computer-aided engineering as well. When computers design multi- 
step synthesis, they can rely on expert knowledge or information ma-
chines extracted from large reaction bases. However, both methods have 
insufficiencies to evaluate reaction choices: expert function is a heuristic 
based on chemical intuition, while machine learning relying on neural 
networks can only make meaningful predictions of popular reaction 
types [42,43]. Badowski et al. showed that the expert method and ma-
chine learning method could cooperate by training the neural network 
with the literature data matched to high-quality and expert coded re-
action rules. After that, they can obtain higher synthesis accuracy. More 
importantly, they can also deal with rare and special reaction types [44]. 

3. Genome-level evolution strategies 

Pathway-level evolution has succeeded in the generation of desired 
phenotypes. However, due to the complexity of cellular metabolic net-
works, beneficial modifications are non-intuitive and not limited to the 
pathway level. In this case, genome-level evolutionary strategies may 
offer a better outcome [45,46]. 

3.1. Genome-level evolution based on genome shuffling 

In microbes, the complex interactions of metabolic networks are 
often poorly understood. Therefore, evolutionary strategies that don’t 
consider strain genetic background and metabolic networks are urgently 
needed. Genome shuffling uses protoplast fusion to generate genomic 
diversity and screens the mutants under a special environmental stress, 
which is an effective way to evolve strains on the genome scale [47,48]. 
Importantly, genome shuffling breaks the restriction among species and 
has been widely applied in various fields, especially in improving 
desired product yield [13,49]. Genome shuffling was applied for the first 
time to improve tylosin yield based on recursive protoplast fusion. In 

2002, Zhang et al. used the recursive protoplast to shuffle the genome of 
Streptomyces fradiae. As a result, the mutant strain exhibited 5 times 
higher tylosin yield [48]. The applications of surfactin, a promising 
natural product, was limited by its low yield. Recently, the recursive 
protoplast fusion was used to increase the production of surfactin in 
Bacillus velezensis LM3403. After three rounds of genome shuffling, the 
production of surfacin increased by about 679 mg/L [50]. Besides, 
genome shuffling has been widely used to improve strain tolerance, 
enhance substrates utilization, expand substrates scopes and other fields 
[51–56]. 

However, genome shuffling through protoplast fusion tends to have 
low mutant diversity and low fusion rate [57]. A newly developed tool 
called SCRaMbLE could generate mutant diversity such as random 
deletion, duplication, and translocation at the genome level efficiently. 
It relies on the Cre recombinase that could recognize and cut the LoxP 
sites (Fig. 4) [11]. SCRaMbLE has been widely used in yeast [58,59]. Jia 
et al. used SCRaMbLE to evolve the haploid yeast genome, which 
increased the carotenoids production by 1.5 times. In order to quickly 
accumulate a large number of beneficial mutations that further 
improved carotenoids yield in yeast, the Multiple SCRaMbLE Iterative 
Cycle (MuSIC) was developed, which continuously increased the yield of 
carotenoids by 38.8 times after five iterative cycles of SCRaMbLE [60]. 
Chassis engineering and pathway optimization are usually carried out 
separately for expressing heterologous pathways, which is 
time-consuming and inefficient. SCRaMbLE-in was designed to rapidly 
evolve strains and improve the expression of heterologous pathways 
[61]. SCRaMbLE-in consists of two steps. First, regulatory elements were 
integrated into the targeted pathway by purified recombinant enzymes 
(Cre/VCre/Dre) in vitro. Then, the assembled pathway was integrated 
into the yeast chromosome, leading to genome shuffling. However, this 
approach might result in low integration rates due to re-excision of the 
integrated elements. In order to increase the integration rates, the 
mutated LoxP pairs (loxJT15 and loxJTZ17) were chosen. The strategy 
was applied to evolve violacein and β-carotene pathways with yields of 
10 mg/L and 500 μg/L, respectively. 

The SCRaMbLE system provides a powerful genomic evolution tool 
that could be applied to generate a variety of genomic diversities. In the 

Fig. 3. Combinatorial pathway optimization of isoprene production in E. coli. A. The isoprene biosynthetic pathway was divided into the upstream module and the 
downstream module using DMAPP as the connection node. Since the biosynthetic pathways of lycopene and isoprene shared the same upstream module, lycopene 
was used as the colorimetric reporter for high-throughput screening. B. The co-evolution of DXS/DXR/IDI. The mutant library was constructed by error-prone PCR. 
Recombinant strains with optimized upstream module were obtained by plate screening. The isoprene yield of the positive mutants was confirmed by GC analysis. C. 
Inter-module engineering of the isoprene biosynthetic pathway. The metabolic flux between the upstream and downstream modules was regulated by promoter 
replacement (PT7, PTrc, PAra) and inducer adjustment. 
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meantime, SCRaMbLE also plays an important role in improving strain 
tolerance [62] and chromosome number variation [63]. However, there 
are still some limitations. For example, the expression of Cre recombi-
nase is difficult to control. At present, strategies have been developed to 
strictly regulate the expression of Cre recombinase [64,65]. In addition, 
SCRaMbLE evolution strategy requires the construction of a genome 
sequence with LoxPsym locus in advance, thus the application of 
SCRaMbLE is mostly limited to synthetic yeasts. 

3.2. Genome-level evolution based on CRISPR/Cas system 

The CRISPR/Cas system, which is an adaptive immune system from 
bacteria or archaea, has been applied in genome editing [66–71]. The 
evolutionary tools based on CRISPR/Cas system may overcome the 
blindness of genome shuffling and reduce the workload. 

In recent years, researchers have made great progress in genome 
evolution using the CRISPR/Cas system. For example, CHAnGE could 
quickly generate tens of thousands of mutations at specific sites at the 
genome-level, with the assembly of gRNA and homology-directed-repair 
donors in the RNA expression cassette. CHAnGE improved the furfural 
tolerance of yeast to a high concentration (10 mM) [10]. Several other 
related genomic evolution tools have also been developed based on 
CRISPR/Cas system, including CRISPR-Enabled Trackable Genome En-
gineering (CREATE) [72], CRISPR/Cas9 (dCas9), the activation-induced 

cytidine deaminase (Target-AID) [73–75] and multiplexed accurate 
genome editing with short, trackable, integrated cellular barcodes 
(MAGESTIC) [76]. The common feature of the above methods is the 
requirement of RNA donors in vitro. In 2021, CRISPR- and RNA-assisted 
in vivo directed evolution (CRAIDE) strategy is the first example of an 
RNA-based directed evolution system in vivo (Fig. 5). Error-prone T7 
RNA polymerase was used to continuously evolve the gRNA. CRAIDE 
was validated by evolving a new function of a nutrient deficiency 
marker gene and conferred with Saccharomyces cerevisiae. resistance for 
toxic amino acid analogues with the mutation rate >3,000 times [77]. 

These applications are mainly focused on the class II CRISPR/Cas 
system that requires only a single Cas protein. However, the class II 
CRISPR/Cas system accounts for about only 10% of the bacteria and 
archaea CRISPR/Cas systems [78,79]. Thus, the class I CRISPR/Cas 
systems that widely present in microbes have been considered as well. 
Xu et al. developed a transferable system, which could stably integrate 
and express highly active I–F Cascade in a heterologous host [80]. The 
system relied on the mini-CTX-lacZ vector containing the integrated 
gene Int, the attachment site attP, strong promoter Ptat and λ-Red 
recombination system introduced to compensate for the defects of bac-
terial homologous recombination. By targeting the integrated regions 
Ps1, Ps2, Ps3 into genome, it was confirmed that the integration effi-
ciency of I–F Cascade was about 6 times than Cas9. This work proves the 
application and potential of type I CRISPR/Cas system in genome 

Fig. 4. The experiment flow of SCRaMbLE. The LoxPsym locus needs to be inserted in yeast genomes in advance (Sc2.0). When the Cre enzyme was induced to 
express, it could recognize the LoxPsym locus and cut the yeast chromosome to achieve genetic diversity. 

Fig. 5. The experiment flow of CRAIDE: CRISPR- and RNA-assisted in vivo directed evolution. This tool relies on the error-prone T7 RNA polymerase to evolve gRNA, 
which was introduced directly into genomic targets as RNA repair donors under the guidance of Cas9 or dCas9. 
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evolution. 
In addition, the CRISPR/Cas system could also be used to rapidly 

screen beneficial genes on the genome-level [81]. However, these 
methods have limitations, including specific microbes, or narrow 
mutant window. EvolvR combined an error-prone, Nick-translating DNA 
polymerase with nCas9 could enlarge the mutation window and increase 
the mutation rate by polymerase mutants [82]. The yEvolvR system was 
established in yeast. The polymerase mutant PolI-5M increased the 
mutation rate of the target sites by 12434 times [83]. Besides, new Cas 
proteins have gradually been discovered and may be used to develop 
genomic evolutionary strategies in the future [84–86]. 

3.3. Genome-level evolution based on other synthetic biology tools 

With the development of genome sequencing and genome editing 
technology, more and more genome evolution tools have been devel-
oped and gradually improved. 

Multiplex automated genome engineering (MAGE) is a multi-site 
evolution tool based on single-strand DNA (ssDNA) oligonucleotides, 
which is able to modify chromosomes at different positions [87]. The 
traditional MAGE tool requires optimization of model strains and 
genome modification in advance, resulting in unnecessary modifications 
and off-target accumulation. A plasmid-based evolutionary tool called 
pORTMAGE could effectively modify multiple sites without any 
off-target mutations and the optimization of strains [88]. In particular, 
pORTMAGE could be applied in Salmonella Enterica, expanding the host 
range of MAGE. To further improve the MAGE technology, CRISPR 
optimized MAGE (CRMAGE) was developed by combining MAGE with λ 
Red and CRISPR/Cas9. Single-site mutation and double-site mutation 
increased by 93% and 90% than using MAGE alone, respectively [89]. 
Since MAGE is limited to E. coli and some related enterobacteria [90]. A 
tool that could work in eukaryotes is urgently needed. The yeast 
oligo-mediated genome engineering (YOGE) was developed in S. cer-
evisiae [91]. Allele replacement efficiency was only 2% by YOGE, which 
was not enough for multi-site genome evolution. eMAGE relied on the 
annealing of ssDNA oligodeoxynucleotides (ssODNs) instead of the re-
combinant protein Rad51 during DNA replication [92]. The efficiency of 
chromosome modification was greater than 40%, including single-base 
mismatch, insertion, and deletion. In the meanwhile, eMAGE could 
achieve 105 genetic diversities through iterative transformation. How-
ever, when the number of target sites increases, the use of MAGE tech-
nology to carry out genome mutations will become difficult [93]. 
Bacterial retroelements (retron) has been used for genome editing and 
evolution. Using mutagenic T7 RNA polymerase-retron system to evolve 
antibiotic resistance genes, the mutation rate increased by 190 times. 
The tool has the potential to dynamically and continuously evolve in the 
selection of phenotypes. However, its mutational efficiency requires 
further improvement and is impossible to track the mutation sites except 
for the one-by-one amplification of the editing sites. The tool that could 
traceably, scarlessly introduce efficient mutations in E. coli are required. 
The CRISPR/retron system could introduce mutations into the E. coli 
genome with high throughput. The mutations could be tracked by 
analyzing reverse transcription plasmids [94]. 

Transposons are the DNA sequences that are able to move on the 
genome [95]. Therefore, transposons are also widely applied for genome 
perturbation [96]. A highly active transposon, Tn5, was used in Strep-
tomyces coelicolor 51,443 transposition insertions were identified at the 
genome level. In the mutation library, 724 mutants changed the yield of 
tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in 
the RED biosynthetic gene cluster. The yield of RED was increased by 
more than 30 times [97]. In addition, transposons can be used to create 
expression libraries that are fine-tuned to take advantage of different 
transcriptional environments at each random integration site, resulting 
in library diversity. Hermes Transposon (HTn) together with the G-SA-U 
(GFP-SA-URA3) fragment, was introduced into a non-replicable circular 
DNA molecule. The strains that experienced completed transposition 

process could be screened by URA3. The biosynthetic pathway of 
(S)-norcoclaurine was divided into two modules to construct circular 
molecule, respectively, which were transferred into the strains Tyr-1 and 
Tyr-2. 73% and 46% positive colonies were obtained respectively. 
Finally, a strain capable of producing 97 μg/L (S)-norcoclaurine was 
obtained after fermentation for 120 h [98]. 

Transposons have also been applied to insert heterologous pathways 
into the genome in non-model microbes, achieving horizontal gene 
transfer. For example, chassis-independent recombinase-assisted 
genome engineering (CRAGE), which integrates biosynthetic gene 
clusters (BGCs) into the chromosomes randomly, consists of transposon 
Tn5 and Cre-lox site-specific recombination system [99]. Non-ribosomal 
peptide synthetase (NRPS) and NRPS-polyketide synthase (PKS) hybrid 
BGCs from Photorhabdus luminescens were integrated into 25 different 
γ-Proteobacteria species. 22 products were identified that their yields 
were higher than those in the native strains. However, some strains were 
resistant to the CRAGE technology, probably due to transposon in-
adequacy. A system with gene transfer and genome integration abilities 
was developed in Clostridium Ljungdahlii. The system was based on the 
conjugation and transfer of a donor plasmid and Himar transposons 
[100]. By regulating transposase in Clostridium Ljungdahlii, the produc-
tion of acetone and isopropanol reached 0.6 mM and 2.4 mM 
respectively. 

Those tools have opened up broad prospects for rapid genome edit-
ing and automation of genome-scale engineering. We summarized the 
research related to genome evolution tools in recent 5 years (Table 1). 
However, improvements are still needed. Most of them are limited to the 
evolution of specific strains. In the future, it is still necessary to ratio-
nally design and develop new methods to efficiently generate genetic 
diversity on a genome scale for different strains. 

4. Summary and outlook 

Although various evolutionary tools have been developed for 
pathway or genome evolution in recent years, high-throughput 
screening still seriously restricts the development of evolution strate-
gies. Biosensors that could generate special signals provide a promising 
solution [109–112]. Gwon et al. used ALE strategy assisted with 
tryptophan-responsive biosensor to improve the yield of violacein in E. 
coli [113]. The yield of violacein was 2.7 times higher than that of the 
native strain. In order to screen effectively, high sensitivity sensors are 
necessary. The biosensor of pentalactam and caprolactam from Pseu-
domonas putida KT2440 was 1,000 times more sensitive compared to 
previously reported biosensors [114]. In another study, a 
high-throughput screening method based on droplet microfluidic plat-
form with a screening rate up to 10,000 strains/hour was proposed 
[115]. This technology has been used to screen constitutive promoter 
mutation libraries. The strength of ermE*p and gapdh(EL)p was increased 
by 347.9% and 94.6%, respectively. Furthermore, the droplet micro-
fluidic technology quickly screened out strains with a 69.2–111.4% in-
crease in cellulase production. In recent years, with the development of 
automation and computer technology, the construction of automation 
platforms has provided a promising method for high-throughput 
screening [116]. 

In summary, pathway and genome level evolution have effectively 
promoted the improvement of strain phenotypes. Different evolution 
strategies exhibit their own advantages and disadvantages. To overcome 
difficulties, a combination of different evolutionary strategies may be 
able to compensate for their limitations. In the meantime, evolution 
strategies used in humans or mammals may also be applied in microbes, 
like transposon piggyBac [117]. In addition, developing evolutionary 
tools for non-model microbes may overcome the problem that could not 
be solved in the mode microbes. However, it may be difficult to develop 
evolutionary tools in non-model strains. On the one hand, the genomic 
information of non-model strains and metabolic pathway are not thor-
oughly studied. The techniques such as plasmid transformation and base 
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editing are difficult to apply. On the other hand, most of non-model 
strains are resistant to be engineered [118]. Destroying or inhibiting 
the strain’s own repair mechanism may break this limitation. In the 
meantime, a transient suppression system may be needed. Besides, 
CRISPR/Cas9 system that has been widely applied in genome editing of 
non-model strains, like Halomonas [119], Lactobacillus plantarum [120], 
has the potential to be used in genome evolution. With the development 
of synthetic biology, evolutionary strategies and screening methods that 
can be applied in multiple strains simultaneously will also be updated. 
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