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ABSTRACT

Motivation: With advances in sequencing technology, it has become
faster and cheaper to obtain short-read data from which to assemble
genomes. Although there has been considerable progress in the field
of genome assembly, producing high-quality de novo assemblies
from short-reads remains challenging, primarily because of the
complex repeat structures found in the genomes of most higher
organisms. The telomeric regions of many genomes are particularly
difficult to assemble, though much could be gained from the study
of these regions, as their evolution has not been fully characterized
and they have been linked to aging.
Results: In this article, we tackle the problem of assembling highly
repetitive regions by developing a novel algorithm that iteratively
extends long paths through a series of read-overlap graphs and
evaluates them based on a statistical framework. Our algorithm,
Telescoper, uses short- and long-insert libraries in an integrated way
throughout the assembly process. Results on real and simulated data
demonstrate that our approach can effectively resolve much of the
complex repeat structures found in the telomeres of yeast genomes,
especially when longer long-insert libraries are used.
Availability: Telescoper is publicly available for download at
sourceforge.net/p/telescoper.
Contact: yss@eecs.berkeley.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recent advances in high-throughput sequencing (HTS) technologies
have dramatically reduced the cost of producing reference genomes
for new species and characterizing whole-genome variations in
multiple individuals of a population. However, the assemblies
produced by current algorithms are often incomplete. Alkan et al.
(2011) report that a de novo shotgun assembly of the human genome
using short-reads is 16% shorter than the reference assembled using
more laborious means, and that <1% of segmental duplications
are represented. Indeed, it is well recognized that there is room
for better algorithmic use of the data, especially for repetitive
regions, which are one of the primary challenges in assembly.
Telomeres are particularly complex and repetitive, and thus very
difficult to assemble correctly. Not only does each telomere contain
repeats within itself, but often telomeres on different chromosomes
are very similar. Existing assembly algorithms thus frequently fail
to assemble telomeric regions from short-read data. Due to this
lack of complete assembly, telomere evolution has not been fully
characterized, though a great deal is to be gained from it, as telomeres
have been linked to ageing (McEachern et al., 2000). High-quality
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telomere assemblies could help us learn more about the variation
in telomeres within and between species. In addition, characterizing
telomere gene families and their regulation could help us clarify the
function of telomeres and how they change as we age.

Genome assembly is the challenge of piecing together reads to
reconstruct the original genome. Reads are obtained from various
technologies, with varying read length, error rates and coverage.
Sanger-chemistry reads range in length from around 500 to 1000
bases. Newer technologies such as Illumina, Complete Genomics
(Drmanac et al., 2010), Helicos (Harris et al., 2008), 454 Life
Sciences (Margulies et al., 2005), SOLiD (McKernan et al., 2009)
and Ion Torrent (Rothberg et al., 2011) provide reads at vastly lower
costs for greater throughput, but at the expense of length. Initial
improvements in assembly from short-read data focused on how to
process the sheer quantity of data and how to detect overlaps. The de
Bruijn graph proved a useful data structure for this purpose (Pevzner
et al., 2001) and is used by pioneering short-read assemblers such
as Velvet (Zerbino and Birney, 2008) and EULER-USR (Chaisson
et al., 2009), and subsequent assemblers including SOAPdenovo
(Li et al., 2010), ALLPATHS 2 (MacCallum et al., 2009), ABySS
(Simpson et al., 2009) and Cortex (Iqbal et al., 2012).

Many HTS platforms produce paired-end or mate-pair reads,
which we collectively refer to as read-pairs. The paired nature
of these reads constitutes a powerful source of information,
significantly facilitating genome assembly. Improved use of read-
pair information lies at the heart of recent works such asALLPATHS-
LG (Gnerre et al., 2011), the PE-Assembler (Ariyaratne and Sung,
2011) and the Paired de Bruijn Graph (Medvedev et al., 2011),
innovations of which are primarily in earlier use of short-insert
read-pairs.

ALLPATHS-LG requires reads of length around 100 bases
sequenced from short fragments of length ≈180 bp so that, on
average, each read-pair overlaps by ∼20 bases. This means that
in general each read-pair can be merged into a single longer read
corresponding to the fragment. A drawback of this approach is
in the very specific type of data required, which differs from the
standard library construction of fragments 300–500 bp in size. The
PE-Assembler builds short stretches in non-repetitive regions first,
similar to unitigs (see Section 2 for a definition) in a de Bruijn
graph, and then extends these iteratively using reads with mates
that map to the increasing already-assembled portion. (A similar
idea is also used in Parrish et al. (2011) for resequencing with a
reference, where insertions are assembled as iterative extensions
of existing sequences.) The Paired de Bruijn Graph method entails
building a so-called A-Bruijn graph in which vertices track pairs of
reads instead of single reads, with two vertices being merged only if
the merging is consistent with the associated pairs of reads. To our
knowledge, this method remains largely theoretical at this time, and
it has been tested only on simulated data with perfect reads.

A theoretical observation from Medvedev et al. (2011) is that
longer long-insert libraries can substantially improve assembly.
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Recent innovations (Peng et al., 2012) in library construction may
bring such libraries into the mainstream, so it is timely to develop
algorithms that take full advantage of such data.

In this article, we describe a new algorithm to improve de novo
assembly of highly repetitive regions. Although the ideas presented
here are applicable to the assembly of any genomic region, our
algorithm was developed with the specific aim of assembling highly
repetitive regions such as telomeres. In our method, which we name
Telescoper, we incorporate the following three algorithmic ideas,
the latter two of which make novel use of read-pairs:

1. Iterative extensions: a seed sequence is extended iteratively
using reads localized to a particular region by their mates,
thus allowing for gradual extension into difficult regions. See
Section 3.1 for details. As mentioned above, this idea is not
new, but it has not yet been fully exploited in a well-used
algorithm, despite several potential advantages.

2. Simultaneous use of short-insert read-pairs in a statistical
framework: rather than using read-pair information pair by
pair to untangle the read-graph, we build extensions through
the graph and simultaneously consider all read-pairs mapping
to each extension to choose the most probable extension. See
Section 3.2.

3. Simultaneous use of long-insert libraries: rather than using
long-insert read-pairs only for scaffolding or for filling in
gaps between easily assembled contigs, our iterative extension
procedure uses long-insert reads during assembly. We look
for support of assembled sequence at all insert sizes, so that
incorrect assembly can result only if the repetitive structure
spans all libraries. See Section 3.3 for further details.

Each of the above ideas helps to resolve repetitive regions.
Implicit throughout our algorithm is the principle that in
order to assemble difficult regions, one cannot make only safe
simplifications, but must also explore several alternative extensions
and use downstream analysis to find and reject false extensions.

We tested the performance of our method on both real
and simulated data from the telomeres of the Saccharomyces
cerevisiae genome, which consists of 16 chromosomes. This
is a particularly challenging problem since all such telomeres
have a core repetitive component called X (≈475 bp long) as
well as several combinatorial repeats and sometimes a larger
repetitive component (see Saccharomyces Genome Database,
www.yeastgenome.org). In addition, because S.cerevisiae
underwent an ancient genome duplication (Kellis et al., 2004),
telomeric regions of different chromosomes typically share highly
similar repetitive regions. We show that Telescoper is capable
of generating more complete and continuous assemblies in the
telomeric regions than other state-of-the-art de novo assembly
algorithms, especially when longer long-insert libraries are used.

2 TERMINOLOGY
We adopt the following terms commonly used to describe the output
of sequencing technologies and the resulting assemblies:

• Read-pair: refers to a pair of sequenced reads from
a fragment. The fragment size determines the distance

between the two reads, often called the ‘insert’ size. The
insert distribution is frequently approximated by a normal
distribution. We use the term read-pair regardless of whether
the insert is short or long.

• Mate: refers to the partner of a read R in a read-pair. When
R is oriented with respect to a sequence, we know its mate’s
relative position and can refer to it as a ‘left-mate’ or ‘right-
mate’ (or, as a ‘left-read’ or ‘right-read’).

• Contig: a sequence, which ideally belongs to the original
genome, produced from assembling a group of reads. The
standard output from an assembly algorithm is a set of contigs.
Contigs are often ordered to produce ‘scaffolds’, which
may contain stretches of unknown sequence between the
contigs.

• Read-overlap graph: also called a read-graph, is a graph
in which each vertex is a read and directed edges between
reads represent overlapping sequence, i.e. in the error-free
case, the last k bases of one read are the same as the first
k bases of its neighbor read, where k is greater than some
threshold.

• Unitig: a path through the read-graph that can be
unambiguously merged into a single sequence. A ‘unitig
graph’is an extension of the read-overlap graph idea (similarly
for a unitig path), where the vertices are now unitigs.

3 METHODS
We have two main aims in our algorithm: (i) rather than performing a
greedy read-by-read assembly procedure, we build a number of alternative
extensions, and score them according to the alignment of read-pairs to each
extension and (ii) we use long-insert read-pairs not only for scaffolding or
gap filling but also as part of the assembly itself, to check that the local
assembly is consistent on a longer scale.

Our algorithm begins with a set of non-repetitive ‘seed strings’, as could
be taken from a reference genome, if it exists, or be assembled from a de
Bruijn graph. At present, we use seeds of length 500 bp from the reference, at
position 40 kb from the end of the chromosome, although contigs produced
from any other algorithm could be used. The goal is to then independently
extend each contig to produce a more complete assembly.

A high-level overview of the algorithm is illustrated in Figure 1. The
algorithm proceeds by extending the end of the contig iteratively by a fixed
amount, Nnew, per iteration, as detailed in Section 3.1. We fix the extension
length (usually a few hundred bases) as a conservative measure. Because
multiple extensions are frequently possible, the result is an ‘extension graph’
(e-graph) in which each extension node (e-node) contains Nnew bases of new
sequence that serve as a possible extension for that e-node’s parent. A path
from the root (the seed string) to a leaf represents a series of extensions
that form a single lengthened contig. The aim is for the e-graph to contain a
path corresponding to the true sequence, ideally terminating close to the
end of the desired chromosome, and for this path to be identifiable as
the best.

Our algorithm will be most tractable if the e-graph is sparse, so at each
iteration, there are as few extensions as possible (and the true extension
is among them). The criteria for pruning and terminating the e-graph are
discussed in Section 3.4. We first explain our methods for (i) listing possible
extensions for a given e-node in the e-graph, (ii) scoring each extension based
on the alignment of short-insert read-pairs and (iii) scoring each extension
based on the alignment of long-insert read-pairs.
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Fig. 1. High-level description of the algorithm. Beginning with the seed
string S0, the algorithm iteratively performs the steps described to construct
an e-graph data structure, from which a contig or contigs can be read. For
simplicity, only a few example arcs are shown; in reality, red arcs are present
between each consecutive pair of e-nodes, and orange arcs can be present
between a given e-node and any of its preceding e-nodes

Fig. 2. Illustration of Step 1 of Figure 1, finding an e-node S’s possible
extensions. (a) A read ‘cloud’ consists of those right-reads with left-mates
that map to S. (b) The reads in the cloud are then error corrected and organized
into a read-graph, which is in turn converted into a unitig graph. (c) Paths
through the unitig graph correspond to possible extensions

In the following description, we assume without loss of generality that
we are extending to the right.

3.1 Iterative extension of assembly
The extension step consists of finding possible extensions of a given e-node;
the extensions will in turn become e-nodes themselves. We fix the length
of each e-node so that most right-reads in the new extension will have left-
mates mapping to the e-node rather than behind it. In our implementation,
we choose this length, denoted Ntot, to be the mean insert length plus the
standard deviation of the short-insert library. In the case of multiple short-
insert libraries, one can use the largest short-insert length for computing Ntot.

The extension step is depicted in Figure 2. It begins by mapping all the
left-reads to the e-node to obtain right-mates extending off the right end
of the e-node into unknown region yet to be assembled, i.e. the left-mate
maps to the e-node and the right-mate dangles off the end, as illustrated in
Figure 2a. We say that these right-mates form a read ‘cloud’.

The reads in the read cloud are error-corrected, then used to construct a
read-overlap graph, which is transformed into a unitig graph as depicted
in Figure 2b. More details on error-correction and read-overlap graph
construction are provided in the Supplementary Material. The unitig graph
encodes a list of candidate extensions for the contig, as illustrated in
Figure 2c. Each new e-node consists of Nnew bases of new extension plus
(Ntot −Nnew) bases from the end of the previous e-node.

There are several advantages to this localized assembly. First, it reduces
ambiguities caused by repeats. For a read-pair from another location to
interfere with the area under construction, its left-read must map to the
previous e-node while the right-read must overlap with another read in the

Fig. 3. Computing the expected number of left-reads mapping back from a
unitig U2 to the previous e-node S. (a) MU2 denotes the set of reads mapping
from unitig U2 to the previous e-node S. (b) For a right-read Rr located at
position t in unitig U2, the probability of its left-mate Rl mapping to S at a
distance x behind U2 is h(x+t), where h(·) is the expected insert distribution.
(c) The expected number of reads at position x behind unitig U2 is given by
fU (x) defined in Equation (1)

read cloud. Second, because it restricts assembly to a small region, there is
ample memory to store complicated information about the reads and their
relationships. This information can be thrown out as we move to other regions
of the graph. This local use of information enables more complex use of
read-pairs, as described in Sections 3.2 and 3.3.

3.2 Simultaneous use of short-insert read-pairs in
statistical scoring of extensions

Although existing assembly algorithms make use of read-pairs in various
ways, the information contained in read-pairs has not yet been fully exploited.
In other assemblers, read-pairs are used primarily to connect unitigs with
expected insert sizes. We can obtain additional power by scoring potential
extensions according to the features derived from the aligned read-pairs.

We first evaluate extensions based on the likelihood of gaps in short-
insert read-pair coverage. Each extension consists of an ordered sequence
of unitigs, as in Figure 2c. Each right-read in an assembled unitig will have
a left-mate mapping to earlier sequence in the previous e-node. The set of
left-mates associated with reads in unitig U is denoted MU (Fig. 3a).

In our model, we make the simplifying assumption of a uniform coverage
distribution. Let x denote the distance from the right end of a left read
relative to the start of unitig U , as pictured in Figure 3b. We denote by
fU (x) the expected number of left-reads in MU spanning position x (Fig. 3c).
We compute fU (x) by convolving the expected insert distribution h(·) with
the uniform distribution over the stretch of U on which right mates can begin:

fU (x)=
L(U )−�∑

t=0

λ·h(x+ t), (1)

where L(U ) is the length of U , � is the read length and λ is the probability
of a read arriving at position t; note that λ is equal to C/(2�), where C is the
coverage. False unitigs will typically have gaps in the empirical distribution
f̂U (x), as illustrated in Figure 4b. Let Gap(U ) denote the set of such gaps
associated with U . For a gap g ∈Gap(U ) of length ≥�/2, we compute a
penalty equal to the number of mates expected in g, obtained by summing
fU (x) over g’s coordinates. The preliminary score for an extension is then
the sum of these penalties over all gaps and all unitigs in the extension:

pext =
∑

U∈extension

∑

g∈Gap(U )

∑

x∈g

fU (x). (2)

To produce a final score Pext for each possible extension, we add pext to a
‘contig gap penalty’, equal to λ times the largest gap size (denoted by gc in
Fig. 4c) between two adjacent unitigs, i.e. the expected number of reads to
fall in that gap. The best extensions (i.e. those with the lowest Pext scores)
are kept, as described in more detail in Section 3.4.
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Fig. 4. Illustration of Step 2 of Figure 1, scoring an e-node’s possible
extensions using short-insert read-pairs. (a) The penalty for unitig U2 is
0 because no gaps of size ≥�/2 exist (where � is the read length). (b) The
penalty for unitig U3 is >0 because a gap, denoted g, of size ≥�/2 exists.
(c) The size of contig gap gc is the distance between the reads that define the
end and start of two adjacent unitigs

3.3 Simultaneous use of long-insert libraries
Telescoper uses all libraries simultaneously during assembly, rather than
using long-insert libraries only during scaffolding or gap-filling, as is typical
in other assembly algorithms. The main idea is that once long paths have been
formed in the e-graph, any further extension can be evaluated on the basis
of its agreement with the current e-graph according to each library. Having
produced and pruned a set of extensions using just the short-insert library in
Steps 1 and 2 of our algorithm (Fig. 1), the third step aims to confirm that
a proposed extension is supported by read-pair information from all other
libraries simultaneously. For there to be ambiguity in extension choice, there
must be repeats at lengths corresponding to all library sizes.

To test for long-insert read-pair support of a potential extension, we first
gather all read-pairs of which right reads map to the extension and left-reads
map to the previous e-nodes in the path up the e-graph. Then, if the right
reads fully cover the proposed extension, even possibly without overlaps, we
consider the extension to be fully supported. Partial support is computed as
a linear function of the fraction of the extension that is covered by the right
reads. This support measure is then multiplied by the short-insert score Pext

to obtain a single final score.

3.4 Choosing extensions for continuation
For a given e-node, upon finding all its possible extensions, at most B
top scoring (the lower the better) extensions are retained for computational
tractability. In our analysis, we use B=4. We create a new e-node for each
of these top scoring extensions and assign a running score equal to the sum
of its extension score and its parent e-node’s running score. Then, at each
depth in the e-node graph, the B top scoring e-nodes are marked for pursuit.

An e-node is terminated if it cannot be lengthened by the extension
operation, if its extension score plus the scores of two previous ancestral
extensions exceeds a threshold, or if a specified maximum depth is reached.

To track the parallel success of alternative e-node paths and keep their
number in check, we use breadth first search to explore the e-graph. If two
different sequences of e-nodes end with equivalent e-nodes at a particular
depth, we allow the two e-nodes to merge. This kind of merging of e-nodes
reduces the computational burden.

4 EMPIRICAL RESULTS
In this section, we compare Telescoper’s performance with that of
other short-read assembly algorithms, including ABySS (Simpson
et al., 2009), ALLPATHS 2 (MacCallum et al., 2009), SGA
(Simpson and Durbin, 2012), SOAPdenovo (Li et al., 2010) and
Velvet (Zerbino and Birney, 2008).

Because of limited space, we focus on short-read data in the
ensuing discussion. However, as detailed in the Supplementary
Material, we also considered a combination of short-insert short-read
data and long-insert Sanger read data, and observed that Telescoper
compares favourably with other algorithms, including Celera (Myers
et al., 2000), which was designed for Sanger reads.

4.1 Data and experiment setup
We studied the performance on both simulated and real data from
strain S288C of S. cerevisiae. We obtained a reference genome from
Saccharomyces Genome Database (www.yeastgenome.org),
which was created through extensive, systematic sequencing to
produce a very accurate assembly, including the telomeric regions.
As mentioned earlier, because of ancient genome duplication
and complex yeast telomere structure, the telomeres of different
chromosomes typically share highly similar repetitive regions,
which poses challenges to assembly.

We considered different types of data to test the robustness of
the algorithms and to study the effect of insert distributions on
performance:

Simulated Data D1 consisted of read-pairs with two insert
distributions, one short and one long. The read length was 101 bp
for both types. The short-insert reads had coverage depth 100× and
an insert distribution with mean 400 bp and variance 75 bp. The
long-insert reads had coverage depth 20× and an insert distribution
with mean 10 kb and variance 1 kb. Simulation details are provided
in the Supplementary Material.

Simulated Data D2 consisted of two read-pair datasets with the
same insert distributions and coverages as D1, but with a reduced
read length of 50 bp.

Real Data D3 consisted of Illumina read-pairs from a sequencing
library preparation using Cre-Lox recombination. The reads, as
described in Van Nieuwerburgh et al. (2012), were sorted using
DeLoxer into reads categorized as short-insert (0–400 bp fragments,
mean 220 bases) or long-insert (1–5 kb, mean 2.3 kb). The reads
varied in length from 30–100 bp. We truncated reads to 50 bases in
order to provide algorithms with high-quality, uniform-length reads.
We used coverage 120× for the short-insert data and 40× for the
long-insert data. The performance of Telescoper does not degrade
with higher coverage data.

We sought to assess assembly for the 40-kb telomeric regions at
the ends of each of S. cerevisiae’s 16 chromosomes. To this end,
we simulated data only from this region. For the real data, we used
the full dataset, but restricted evaluation statistics of the produced
contigs to those alignable to the 32 telomeres, each of length 40 kb.

Details of running the various algorithms, including parameter
settings and runtimes, can be found in the Supplementary
Material. To optimize the performance of the other algorithms,
insert distribution and coverage parameters were provided where
appropriate. We did not include SGA for D2 and D3 since it was
designed for reads of at least 100 bp.

4.2 Assembly performance
Several standard metrics exist for measuring assembly performance
in the absence of a reference genome. They include the length of
the largest contig, the total length of all contigs, and N50 (which is
equal to the longest contig length such that the sum of the lengths
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Table 1. Summary of assembly results based on simulated data from 32 telomeric regions each of length 40 kb. ‘%Aligned’ is the ratio of Total Aligned to
Total Produced, while ‘%Covered’ is the fraction of the telomeric regions covered by contigs

Results for simulated data D1 (read length = 101 bp)

Produced (kb) Aligned (kb)

Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered

Telescoper 40.0 40.0 41.0 1208 40.0 40.0 40.0 1172 97.0 90.4
ABySS 31.0 31.0 39.0 1296 31.8 31.8 39.3 1244 95.9 84.7
ALLPATHS2 35.2 33.0 39.0 1047 35.2 33.4 40.0 1032 98.5 80.6
SOAPdenovo 25.0 24.0 39.0 1149 28.6 24.6 40.0 1068 92.9 82.3
Velvet 13.9 9.0 31.0 964 13.9 9.5 31.6 947 98.2 73.7
SGA 31.2 27.0 39.0 1110 31.6 27.2 40.0 1075 96.8 82.0

Results for simulated data D2 (read length = 50 bp)

Produced (kb) Aligned (kb)

Assembler N50 NG50 Max Total N50 NG50 Max Total %Aligned %Covered

Telescoper 39.0 38.0 39.0 1162 38.8 38.3 39.8 1155 99.4 90.3
ABySS 12.1 8.0 31.0 1097 13.7 8.9 31.6 966 88.0 75.0
ALLPATHS2 32.0 27.0 39.0 968 32.8 27.7 40.0 950 98.2 74.3
SOAPdenovo 25.0 21.0 39.0 988 24.6 20.8 40.0 954 96.5 74.3
Velvet 14.0 9.0 31.0 955 14.2 9.5 31.9 939 98.3 73.2

of all longer contigs is half the total output assembly). An additional
metric is NG50 (Earl et al., 2011), which is similar to N50 but more
comparable across assembly algorithms. When the genome length
is known, then rather than using each algorithm’s estimate of the
genome size, which can fluctuate widely depending on the threshold
at which small contigs are output, one can use the true genome size.
Thus NG50 is defined as the length of the longest contig such that the
sum of all longer contigs is half the total genome size. We considered
the above-mentioned metrics in our study.

To investigate assembly accuracy, we mapped each contig to the
reference genome using NUCmer from the MUMMER package
(Delcher et al., 2002). For each contig, we determined to which
telomere it maps best according to the total number of aligned bases.
The number of aligned bases in each contig forms a more useful
foundation for accuracy-informed continuity statistics than the direct
number of bases in each contig. Therefore, we also computed the
aforementioned metrics using these aligned lengths.

The results of our study for simulated data are summarized in
Table 1, while the results for the real data are shown in Table 2.
These results are for the 32 telomeric regions, each of length 40 kb.
As the tables show, Telescoper exhibited the best performance under
most metrics, with notable margins from the second best method. As
shown in Table 1, reducing the read length from 101 to 50 bp while
keeping all other parameters the same worsened the performance of
most algorithms, with ABySS being the most affected.

Figure 5 provides a more detailed picture of contig length
distribution. These plots show the cumulative proportion for all
aligned contigs exceeding the contig size indicated on the x-axis.
NG50 can be read from the plots as the x-coordinates at which each
curve hits the 50% mark of bases output relative to the reference.

Table 2. Summary of results for real data D3. The contigs produced by each
algorithm were aligned to the 32 telomeric regions each of length 40 kb.
As before, ‘%Covered’ is the fraction of the telomeric regions covered by
contigs

Aligned (kb)

Assembler N50 NG50 Max Total %Covered

Telescoper 34.5 32.8 39.2 980 75.8
ABySS 12.0 8.3 31.3 971 75.3
ALLPATHS2 26.3 16.5 40.0 923 70.1
SOAPdenovo 21.4 16.2 39.3 879 68.6
Velvet 11.8 6.9 31.3 928 72.2

The best possible curve is the constant function y=1, so the closer
a curve is to that line, the better the performance. Note that for any
given minimum contig size (the x-axis value), Telescoper produced
more alignable bases than all other methods compared, for all three
datasets. Furthermore, Figures 5a and b illustrate that Telescoper is
more robust to a decrease in read length than are the other algorithms.

For Telescoper, the observed difference between the
corresponding curve in Figure 5b and that in Figure 5c is
largely attributable to the difference in the insert-size distribution.
On simulated 50 bp data with long inserts with mean length
2.2 kb and short inserts with mean length 400 bp, the performance
of Telescoper was similar to that shown in Figure 5c (see
Supplementary Material), suggesting that Telescoper is robust the
complications of real data and that the observed good performance
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of Telescoper in Figure 5b is due to its improved ability to
take advantage of a longer (10 kb instead of 2.2 kb) long-insert
distribution.

Of further importance is the extent to which an algorithm produces
false bases or contigs. Because we forced each contig to align to
a single telomere, chimeric contigs created by joining portions of
different telomeres were penalized as having bases that do not align.
As shown in the ‘% Aligned’ column of Table 1, Telescoper was the
top performer in this regard for D2, and followed ALLPATHS 2 and
Velvet closely for D1.

Finally, we considered visually examining the alignments of
contigs onto each telomeric region. Figure 6 shows the results
for two chromosomes, with contigs from each assembly algorithm
aligned to them. For each algorithm, each contig is represented by
a different colour, so more colours per method indicates a larger
number of contigs. For each telomeric region shown, Telescoper
produced a single contig for almost the entire region, while other
algorithms often produced many small contigs.

5 CONCLUSION
We have introduced several new ideas for de novo genome assembly,
geared towards highly repetitive regions. Our preliminary assembler,
Telescoper, proceeds by iteratively extending paths and selecting
between them using the empirical distributions formed by both long-
insert and short-insert paired-end reads.

The utility of Telescoper was validated in a study on both real and
simulated data from the 40 kb telomeric regions of each chromosome
of S.cerevisiae. For all three datasets tested, Telescoper produced
more continuous assemblies than the other algorithms considered.
In our evaluations, we tried to include the strongest and most
popular algorithms with available implementation. Unfortunately,
ALLPATHS-LG (Gnerre et al., 2011) could not be included, because
of its small-fragment library requirement mentioned in Section 1. We
considered several standard metrics for comparing assemblies, but
we note that the task of comparing genome assemblies is a large
one, with several papers exclusively devoted to it (Earl et al., 2011;
Salzberg et al., 2012).

Other researchers are currently working on algorithms for
identifying assembly errors using features derived from read
mapping. Rather than having this be a downstream process, we
believe that it would help to incorporate such features directly into
an assembly algorithm. Here, we make an effort in this direction by
scoring assembly extensions according to read-mapping statistics.
Although the scoring scheme used in this article may not be optimal,
we have demonstrated that the idea of simultaneously pursuing
multiple extensions, and concurrently using multiple libraries to
score and select among them is promising.

The current implementation of Telescoper can be used as a
finishing algorithm to extend contigs into repetitive regions and
produce better assemblies for telomeres. Other applications include
targeted de novo assembly of structural variants and highly variant
regions such as human leukocyte antigen. Future work will include
extending the ideas presented here to whole-genome assembly,
improving error correction, producing more exhaustive listings
of potential paths and more thorough evaluation of the alternate
paths. Also, additional validation metrics such as those explored by
Salzberg et al. (2012) can be incorporated as well.

Simulated data D1: 101 bp reads, 10 kb long-insert mean

Simulated data D2: 50 bp reads, 10 kb long-insert mean

Real data D3: 50 bp reads, 2.3 kb long-insert mean

(a)

(b)

(c)

Fig. 5. The cumulative proportion of all aligned contigs exceeding the
contig size indicated on the x-axis. These plots illustrate the continuity and
completeness of different assemblies. For any given minimum contig length,
Telescoper produced more aligned bases. NG50 can be read from this graph
as the x-coordinates at which each curve hits the 50% mark of bases output
relative to the reference. (a) Results on simulated data D1. (b) Results on
simulated data D2. (c) Results on real data D3
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Telescoper

Fig. 6. Contig continuity results for real data D3. The left and right telomeric
regions (separated by the dotted line) for two different chromosomes are
shown, with the aligned contigs displayed for each assembly algorithm.
Different colours represent different contigs in the produced assembly, so
more colours per method indicates a larger number of contigs. For each
telomeric region shown, Telescoper produced a single contig for almost the
entire region, while other algorithms often produced many small contigs

We often see cases where, if we took the union of all assemblies,
we could produce a much better final product. This suggests
that assembly is not a solved problem, and that the strengths
of different algorithms can potentially be combined to produce
better assemblies. We believe the ideas behind Telescoper have the
potential to improve de novo assembly significantly and provide a
comprehensive picture of previously unresolved repetitive regions.
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