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Abstract 

Brain age, as a correlate of an individual’s chronological age obtained from structural and functional neuroimaging data, enables assess
ing developmental or neurodegenerative pathology relative to the overall population. Accurately inferring brain age from brain magnetic 
resonance imaging (MRI) data requires imaging methods sensitive to tissue health and sophisticated statistical models to identify the un
derlying age-related brain changes. Magnetic resonance elastography (MRE) is a specialized MRI technique which has emerged as a reli
able, non-invasive method to measure the brain’s mechanical properties, such as the viscoelastic shear stiffness and damping ratio. 
These mechanical properties have been shown to change across the life span, reflect neurodegenerative diseases, and are associated with 
individual differences in cognitive function. Here, we aim to develop a machine learning framework to accurately predict a healthy indi
vidual’s chronological age from maps of brain mechanical properties. This framework can later be applied to understand neurostructural 
deviations from normal in individuals with neurodevelopmental or neurodegenerative conditions. Using 3D convolutional networks as 
deep learning models and more traditional statistical models, we relate chronological age as a function of multiple modalities of whole- 
brain measurements: stiffness, damping ratio, and volume. Evaluations on held-out subjects show that combining stiffness and volume 
in a multimodal approach achieves the most accurate predictions. Interpretation of the different models highlights important regions 
that are distinct between the modalities. The results demonstrate the complementary value of MRE measurements in brain age models, 
which, in future studies, could improve model sensitivity to brain integrity differences in individuals with neuropathology.
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Introduction
The brain changes in structural integrity, functional connectivity, 

tissue anisotropy, and synaptic plasticity across the lifespan, with 

tissue degeneration rapidly accelerating in older adults [1–3]. 

Understanding the natural progression of brain changes is critical 

for establishing brain biomarkers of atypical development and de

generation. Advanced neuroimaging techniques capable of mea

suring the structural integrity of neural tissue offer sensitive 

metrics that reflect glial matrix organization, neuronal density, 

and myelination. One such method is magnetic resonance elas

tography (MRE), which is a phase contrast magnetic resonance 

imaging (MRI) technique that has gained notability over the past 

decade as the most robust noninvasive method for quantifying 

brain mechanical properties. MRE creates whole-brain, high-res

olution maps of tissue viscoelastic shear stiffness and damping 

ratio. These properties are sensitive to tissue microstructural 

composition and organization and demonstrate age-related 

changes during both neurodevelopment and neurodegeneration, 
with softening occurring across the life span [4–6]. The age-related 
softening of the brain can be exacerbated by neurodegenerative 
diseases such as Alzheimer’s disease, multiple sclerosis, and 
Parkinson’s disease [6–10].

The sensitivity of mechanical properties to tissue integrity 
makes them strong candidates as metrics for predicting brain 
health from imaging data. Age-related brain tissue softening has 
been well studied with MRE, with previous works reporting that 
the global brain softens with age at a rate of around 0.3%–1% per 
year [11] and that the specific softening rate varies among brain 
regions [4, 12–17]. Similar regional, age-related differences have 
been reported in developing populations, and attributed to syn
aptic pruning and reorganization of myelin and glial cells [18–20]. 
These microstructural changes are of interest across the life 
span as they give rise to changes in cognitive function in both 
healthy individuals and in cases of pathology—reflecting the 
sensitivity of tissue mechanics to tissue health. However, nearly 
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all prior work relating MRE measurements to age have used pre
selected regions-of-interest (ROIs), summarizing the mechanical 
properties in each ROI, and have not taken advantage of the rich, 
whole-brain mechanical property maps that MRE can provide.

The ultimate goal of brain age prediction is to detect 
deviations between chronological age and predicted age as an 
indicator of abnormal brain health, and pinpoint the cause in the 
brain measurements. Imaging modalities including diffusion- 
weighted, functional, and structural MRI have already shown 
promising results for brain age prediction [21–24]. The use of 
supervised machine learning to predict chronological age by 
extracting features from neuroimaging data and correlating 
them to age is well established [25, 26]. To process whole-brain 
maps, deep learning architectures, such as convolutional neural 
networks (CNNs), have become increasingly prevalent in neuro
imaging studies, including those focused on predicting brain age 
[27–32]. Soumya Kumari and Sundarrajan [33], for example, 
reported an evaluation of 32 different brain age prediction mod
els ranging from traditional to deep learning methods. Similarly, 
Tanveer et al. [34] reviewed 35 studies that applied deep learning 
techniques for brain age prediction, with 25 using models, such 
as 3D CNNs, applied to whole brain 3D images (voxel-based), and 
the remaining 10 studies using models for the 2D image slices. 
More generally, 3D CNNs are widely used in medical imaging 
applications, including tumor detection, disease progression pre
diction, image segmentation, and image reconstruction [35–38].

Here, we propose to incorporate whole-brain MRE measure
ments into brain age models through 3D CNNs. The models learn 
to predict a subject’s chronological age from different combina
tions of whole-brain measurements, combining the MRE me
chanical properties and structural volume as a stack of 3D maps 
all registered to a common template. We select network architec
tures already reported in the literature that accept multiple 3D 
brain maps as input (ResNet [39] and SFCN [40]). To better under
stand the benefits of using a 3D CNN, we compared to traditional 
statistical approaches as baseline regression models (ElasticNet 
regularization and Random Forest (RF)). To interpret the net
works, we use a method for computing spatial saliency maps of 
the trained networks’ internal features to understand the spatial 
location of predictive features [41].

Given that MRE is still an emerging neuroimaging technique 
and previously published sample sizes are relatively small, we 
pooled data from multiple studies employing similar imaging 
and processing protocols, as has been previously done by Hiscox 
et al. [42], creating splits to test whether models trained on a sub
set of studies generalize to unseen studies. We include data from 
healthy subjects of varying ages, including children, adolescents, 
young adults, and older adults (Fig. 1). In this healthy population, 
we assume that brain age equals chronological age, and the goal 
is to optimally predict chronological age from maps of brain 
structure and mechanical properties. Ultimately, a well-trained 
model will provide a framework for studying the cause of devia
tions of the brain age from chronological age in individuals with 
neuropathology, potentially leading to early biomarkers or a bet
ter mechanistic understanding of brain integrity in disease.

Materials and methods
Participants
Data were collected from 279 participants aged 5–81 years 
(116 males, 163 females), with a mean chronological age of 31.0 
± 21.3years, corresponding to eight studies with similar MRI 
protocols, which included an MRE scan and a high resolution 

T1-weighted anatomical scan. Scans were performed at the 
University of Delaware (UD) with a Siemens 3T Prisma MRI scan
ner or at the University of Illinois at Urbana-Champaign (UIUC) 
with a Siemens 3T Trio MRI scanner. An overview of the partici
pant demographics and imaging parameters for each study is 
shown in Table 1. Informed written consent was provided prior 
to scanning by all participants and by guardians of participants 
under the age of 18. All study protocols were approved by the 
Institutional Review Boards of the respective institutions. Data 
collected at UIUC was previously pooled and used to create a 
standard-space atlas of brain mechanical properties [42]. 
Additional data included in this work has been reported partially 
in previous publications [7, 19, 43–46]. Readers are referred to 
prior works for additional information.

Imaging data and pre-processing
MRI data included a whole-brain, high-resolution T1-weighted 
magnetization-prepared rapid acquisition gradient echo (MPRAGE) 

Figure 1. Stiffness, damping ratio, and volume map slices (axial with 
z¼ 28) for cognitively normal subjects of different ages. Stiffness 
measurements (left) and volume measurements (middle) show 
decreases in the older subjects.
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with 0.9 mm3 isotropic resolution and a high-resolution MRE 
scan. All MRE data were collected using a pneumatic actuator pil
low system (Resoundant, Rochester, MN) at 50 Hz vibration. MRE 
data acquisitions were taken using either the 3D multislab, mul
tishot spiral sequence [47] or the 3D multiband, multishot spiral 
sequence [48, 49], with resolutions ranging from 1.25 to 2.0 mm 
isotropic, and whole-brain coverage. Images were downsampled 
to 2.0 mm resolution prior to analysis. Each MRE scan had a cor
responding field map of the same resolution and brain coverage, 
which was used during image reconstruction to minimize geo
metric distortion [50]. Displacement images from MRE were con
verted into maps of mechanical properties using the nonlinear 
inversion (NLI) algorithm [51], which returns estimates of the 
complex-valued shear modulus, G? ¼ G0 þ iG00, where G0 is the 
storage modulus and G00 is the loss modulus. Mechanical prop
erty measures of stiffness (μ) and damping ratio (ξ) are 
calculated as μ¼ 2jG? j

2

G0 þ jG? j
and ξ¼ G00

2G0 [52, 53].
The high-resolution T1 image and MRE magnitude data were 

skull stripped using the Brain Extraction Tool (BET) in the FMRIB 
Software Library (FSL) [54]. The MRE images were registered to 
the corresponding T1-weighted anatomical image using FSL 
FLIRT [55], which allows for an affine linear transformation, and 
the transform was similarly applied to the individual mechanical 
property maps. The T1-weighted anatomical scan was registered 
to the standard space MNI152 2-mm template with dimensions 
91 × 109 × 91 using a nonlinear registration with FSL FNIRT [56].

Volume maps were created from the high-resolution T1- 
weighted anatomical images using voxel-based morphometry 
(VBM) in FSL-VBM [57, 58]. Several previous studies have shown 
that VBM measures are sensitive to age-related changes to the 
brain [59–61]. In the VBM pipeline, the T1-weighted anatomical 
images were brain-extracted and grey matter was segmented us
ing FSL FAST [62]. Data were then registered to the MNI152 stan
dard space using the FNIRT non-linear registration. The resulting 
images per study are averaged, including flipping along the x- 
axis, to create a left-right symmetric, study-specific grey matter 
template. Then, all grey matter segmented images were non- 
linearly registered to this study-specific template. The grey mat
ter images were then smoothed with an isotropic Gaussian kernel 
with σ ¼ 2 mm. The resulting images depict the morphometry of 
grey matter regions and are effectively voxel-wise maps of volu
metric measures.

Prior to being input to the CNN, all mechanical property and 
volumetric maps were truncated in the axis z, which is composed 
of 91 slices. Specifically, slices 16–70 are considered to account 

for the top and bottom slices being outside the imaging field-of- 
view for some subjects. After truncation, each brain map then 
had dimensions of 91 × 109 × 55. Maps of each type (stiffness, 
damping ratio, or volume) were separately standardized so that 
the mean of all voxels across the entire sample of subjects was 0 
and the standard deviation was 1. Voxels outside of the brain tis
sue were set to 0.

Dataset splits
Cross-validation is a standard technique for splitting data into 
folds in order to test the variability of models’ prediction perfor
mance on multiple independent subsets of the data. Given that 
the dataset is composed of studies with slightly different data ac
quisition settings, with distinct age distributions per study 
(Table 1), there is the possibility for the model to identify spuri
ous correlations in the data related to the acquisition parameters 
to predict the age. Thus, it is crucial to evaluate the ability of the 
brain-age predictions to generalize to not only held-out subjects 
but also held-out studies.

We performed a stratified strategy to create 5-folds fDkg
5
k¼1 

for cross-validation from the eight studies fSjg
8
j¼1, where Dk and 

Si denote the set of subjects in the kth fold and the ith study, re
spectively. More specifically, Si ¼ fðxt;ytÞjt 2 f1; . . . ;Nigg, where 
xt 2 R91 × 109 × 55 is the brain image, yt 2 Rþ is the corresponding 
chronological age, and Ni 2 N is the total number of subjects in 
study Si. The five smaller studies S1, S2, S4, S5, and S8, which 
each contain fewer than 50 subjects, were wholly allocated to 
folds 1, 2, 3, 4, 5, respectively. Subjects from the larger studies 
(S3, S4, and S7) were randomly sampled without replacement to 
complete the folds, such that each fold contains roughly 56 sub
jects (20% of the data set). Given these folds, cross-validation of 
the kth model used subjects in Dk for testing after using 
the union of all the remaining folds (around 224 subjects) for 
model training and internal validation to select model hyper- 
parameters. Figure 2 shows the age distributions for each of the 
resulting splits.

CNN model architectures
We selected the ResNet Model [39] and Simple Fully 
Convolutional Network (SFCN) [40] as deep learning architectures 
as they show a strong performance when using voxel-based 
inputs [34]. Specifically, we implemented the ResNet-34 architec
ture with pre-activation Residual Units [63] and a regression head. 
The SFCN was mostly implemented as described in the original 
protocol [40], but the last head was modified for a regression 
head. The brain map(s) input is denoted x 2 X � RP × 91× 109× 55, 

Table 1. Summary of study characteristics and data acquisition settings.

Study S1 S2 S3 S4 S5 S6 S7 S8

N 9 29 61 19 22 53 76 10
# M/F 1/8 1/28 27/34 12/7 14/8 23/30 34/42 4/6
Age range (years) 20–60 18–32 18–35 12–15 5–8 14–73 23–81 12–14
Site UIUC UIUC UIUC UD UD UD UD UD
Scanner model Trio Trio Trio Prisma Prisma Prisma Prisma Prisma
Head Coil (channels) 32 32 32 64 64 64 64 64
T1 MPRAGE
TE (ms) 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
TR (ms) 1900 1900 1900 2300 2300 2300 2300 2300
Resolution (mm) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
MRE
Frequency (Hz) 50 50 50 50 50 50 50 50
Sequence Spiral Spiral Spiral Spiral Spiral Spiral Spiral Spiral
Resolution (mm) 1.6 2.0 1.6 1.5 1.5 1.5 1.25 1.5
Number of slices 60 60 60 80 64 80 96 80
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where the first dimension is P¼ 1 if only a single modality is used 
and P>1 if multiple modalities are used. If the input was multi
modal, the architecture was repeated for each input and 
concatenated at the regression head. Complete code is available 
at https://github.com/cesar-claros/MRE_MRI_BrainAge.

CNN model training and hyperparameter tuning
To form a prediction model for the kth fold, we optimized the 
model parameters θk and selected the hyperparameters ϕk that 
minimized the mean squared error (MSE) as the loss function, 
that is, we computed θ?k;ϕ

?
k ¼ argminθk ;ϕk

E½ðy − fθk ðx; ϕkÞÞ
2
�, where 

fθk : X ! Ŷ is the model trained using the kth split (all folds but 
the kth), ϕk are the hyperparameters, y 2 Y � Rþ is the true tar
get, and fθk ðxÞ ¼ ŷ 2 Ŷ � Rþ is the predicted output. For both mod
els, the optimization of the model parameters θ used stochastic 
gradient descent with momentum and weight decay for a maxi
mum of 100 epochs. Additionally, a learning rate scheduler re
duced the learning rate by a factor of 10 if there was no loss 
reduction after 10 consecutive epochs and stopped training early 
if the loss did not decrease after 50 consecutive epochs. The 
hyperparameters consisted of the batch size B 2 f4;8;12;16;20g, 
momentum μ 2 f0:99;0:9;0:5g, weight decay λ 2 f10;1;1e− 1;1e− 2;

1e− 3g, and learning rate γ 2 ½1e− 5;1e− 4�. To optimize the hyper
parameters ϕ, we ran a hyperparameter search using the Tree- 
structured Parzen Estimator (TPE) [64] that iteratively selects a 
hyperparameter configuration based on performance of previous 
configurations. The best model configuration for each data split 
was selected based on the mean-squared (MSE) error loss in the 
validation set across 100 configurations, where the first 10 con
figurations were selected randomly and TPE selected the remain
ing 90.

Baseline models
To compare the performance of the CNNs to more traditional 
statistical models, we employed two models as baselines: a linear 
regression model with ElasticNet regularization [65] and a RF 
model [66], which is a non-linear model formed as an ensemble 
of decision trees. These baselines cannot exploit the 3D arrange
ment of the brain maps and cannot operate directly on the vec
torized brain maps due to their high number of voxels. 
Therefore, we tested a range of different methods for preprocess
ing inputs to these models, described in more detail below, and 
identified the method-model combination that resulted in the 
lowest MAE.

First, we considered summarizing the brain maps into ROIs 
through parcellation using functional and anatomical atlases. 
ROI-based feature extraction is widely used to obtain lower- 

dimensional vectors suitable for model training [67–73]. 

However, the optimal choice of brain atlas can significantly im

pact the model’s ability to reveal or obscure brain-age associa

tions [69]. To mitigate this, we trained models based on multiple 

anatomical and functional atlases, including those from 

Neuroparc [74] and Neurovault [75]. The best-performing atlas 

was selected based on the validation sets’ MAE performance for 

each brain modality. For atlases lacking full brain coverage, com

plementary atlases were incorporated to ensure whole-brain rep

resentation, resulting in a complete feature set for training 

regression models.
We also considered unsupervised dimensionality reduction 

techniques that exploit the covariance among voxels across sub

jects. Specifically, we applied Principal Component Analysis 

(PCA) [76], Non-negative Matrix Factorization (NMF) [77], and 

Orthogonal Projective NMF (OPNMF) [78, 79]. Unsupervised di

mensionality reduction techniques are multivariate approaches 

that capture the covariance among features. Previous research 

[71, 73, 80–85] suggests that dimensionality reduction techniques 

often outperform ROI-based approaches. In particular, NMF and 

OPNMF provide spatially compact features that have been shown 

to improve the prediction of brain-related traits. We optimized 

the number of components for each technique through valida

tion set MAE in each data split.
Lastly, we considered multi-modal models that combine the 

best representation of each brain modality to train our baseline 

models. For combined modalities of ROI summarization, we 

concatenated the features generated by the best-performing 

atlas for each modality. The best atlas was determined by how 

frequently it was chosen across the five data splits. For dimen

sionality reduction, we followed a similar process where we 

concatenated the components that achieved the lowest MAE 

for each data split and modality, and then trained the model 

that performed the best in the validation set using this combined 

representation.

CNN and baseline model performance metrics
Model quality was assessed using the root mean squared error 

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðyi − ŷiÞ

2
q

, the mean absolute error MAE¼

1
n

Pn
i¼1 jyi − ŷij, and the coefficient of determination R2 ¼

1 −
Pn

i¼1
ðyi − ŷ iÞ

2

Pn

i¼1
ðyi − �yÞ2

, where �y ¼ 1
n

Pn
i¼1 yi is the mean of the true ages and 

the true-prediction pairs ðyi; ŷiÞ are taken from the set T , either 

T k ¼ fðy; fθ?k ðxÞjðx;yÞ 2 Dkg for the kth fold or T all ¼ [5
k¼1T k for 

all folds.

Figure 2. Age distributions for the training, validation, and test groups in each data split. These histograms show a similar age distribution in the 
training and validation sets across splits. However, due to the five smaller studies each wholly assigned to a single fold, the age distribution of test sets 
differ. The contribution of the five smaller studies to the age distribution of the fold is outlined in each split.
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Statistical analysis of CNN performance
Wilcoxon signed-rank tests were used to test for significant differ
ences in model performance for different sets of brain map mo
dalities. Given two models, based on the same architecture, with 
modality sets A and B, respectively, the null hypothesis evaluated 
if the population median m of paired differences di ¼ jeA

i j− je
B
i j is 0, 

where jeC
i j ¼ jyi − ŷij is the absolute error for the ith subject made 

by a model trained for modality set C, ðyi; ŷiÞ 2 T
all. If the null hy

pothesis H0 : m¼ 0 held, then the performances of models opti
mized for two modality sets cannot be distinguished. Given that 
we tested multiple hypotheses, we applied the Holm–Bonferroni 
method to evaluate statistical significance with correction for 
multiple comparisons. Two-sided tests were conducted between 
the models with unimodal input, and one-sided tests were con
ducted to compare a multimodal model with a unimodal model.

CNN prediction correlation and ensembled 
predictions
Models with uncorrelated errors indicate independent sources of 
noise; thus, models with correlated errors are expected when the 
model input is shared. To investigate how prediction errors are 
correlated between different models with the same or different 
input, we computed the Pearson correlation for every pair of 
models. Ultimately, this could provide insights into whether stiff
ness and volume contain similar sources of noise, which would 
suggest that they are influenced by the same underlying factors.

Pooling model predictions, also known as ensembling, is 
known to improve performance [86, 87], as an ensemble average 
prediction reduces the error from independent noise sources. 
The multimodal model architecture we used combines features 
extracted from each of the input maps at the regression head, 
which allows the feature extraction to specialize for each given 
the other. However, if the input maps are truly complementary, 
then the extracted features will not depend on each other. In this 
case, unimodal models’ predictions could be directly combined 
(by averaging) to improve prediction performance. To test this, 
we evaluated predictions formed by averaging pairs of model 
predictions.

CNN interpretation via salient activation maps
The spatial maps of the most salient activations in deep learning 
models provide a visual way of understanding which brain 
regions are driving model predictions [88–90]. Applied to unregis
tered images, these salient activation maps, or saliency maps, 
are typically visualized for each instance separately. However, 
since the brain maps are registered to a standard template, we 
computed Regression Activation Maps (RAMs) [41] for each sub
ject in an age range and visualize the averages of the saliency 
maps for different age ranges. Individual RAMs are a weighted 
sum of the feature activation maps at the last convolutional layer 
of a model, where the weights are based on the connections be
tween the feature map and the output. Importantly, the convolu
tional layer’s spatial dimensions correspond to subsampled 
versions of the input data.

Mathematically, the input x 2 X � RP × W × H× D
þ is passed to a 

trained model f : X ! Y � Rþ , which acts as the composition of 
two functions fðxÞ ¼ gðhðxÞÞ: h : X ! T � RP × C × D1 × D2 × D3 is the 
mapping between the input and the convolutional layer’s activa
tions and g : T ! Y is the mapping from the convolutional layer’s 
activations to the target domain. For unimodal models P¼ 1, but 
for multimodal models, namely P¼ 2, we analyzed the salience 
of the activations of the inputs separately, which is possible since 
they are concatenated at the prediction head. The 3D saliency 

map LRAM
i;p 2 RD1 × D2 × D3 , which highlights the regions predictive of 

the age of subject i for input p, is computed as 

LRAMðxi;pÞ ¼
XC

c¼1

½αðxiÞ�p;c½hðxiÞ�p;c; (1) 

where ½hðxiÞ�p;c is the cth feature map in the convolutional layer’s 
output to input p, the weight associated to the cth feature map is 
½αðxiÞ�p;c ¼

1
Z

P
d1

P
d2

P
d3

oŷ
o½hðxiÞ�pcd1d2d3

, and Z¼ D1 �D2 �D3 is the nor
malization factor. It should be noted that the voxels in the saliency 
map can have positive or negative values, which indicate that some 
voxels will highlight regions that contribute to the age prediction 
being higher or lower, respectively. We upsampled the saliency 
map LRAMðxi;pÞ to the same dimensions of the input for visualization 
purposes. The upsampled version is denoted by LRAMð"Þðxi;pÞ.

Considering that the participants in our studies ranged in age 
from 5 to 81, we visualized brain regions that contribute to the 
brain age prediction in different age ranges by averaging the sa
liency maps for participants that belong to a given age bin across 
all folds. Note that even though we trained a separate model for 
each fold, we averaged the saliency maps of individuals from dif
ferent trained models of the same architecture. More concretely, 
from the age bin Bt ¼ ½at;bt� with limits at<bt, we averaged the 
saliency maps for input p over the set of subjects pooling across 
folds Rt ¼ fxijðxi;yiÞ 2 D

test
k ;yi 2 Bt;k 2 f1; . . . ;5gg, yielding �LRAMð"Þ

Rt ;p ¼
1
n

Pn
i¼1 LRAMð"Þðxi;pÞ; 8xi 2 Rt and n¼ cardðRtÞ. The binned aggrega

tions highlight the spatial locations of features consistently used 
in a range bin. Additionally, we computed the Spearman correla
tion rs for each voxel of the saliency map to the true age to identify 
regions whose activations have a monotonic relationship with age.

To concretely associate the saliency maps with specific brain 
regions, we used the Harvard-Oxford atlas [91–94] to parcellate 
the maps into 48 cortical brain regions. For each region, we com
puted the proportion of voxels (out of the total number of voxels 
in the region) where strong saliency is present. Strong saliency, in 
our case, is defined as saliency magnitudes in the averaged sa
liency map �LRAMð"Þ

Rt ;p that are greater than their 90th percentile. 
Strong saliencies were computed for each age bin Bt for a given 
input p and model architecture.

Results
Performance of CNN and baseline models
Table 2 details the brain age prediction performance for various 
brain map measurements (stiffness, volume, damping ratio, and 

Table 2. Performance metrics for model-input pairs.

Model Input RMSE R2 MAE

ResNet Stiffness 7.7 0.87 5.8
Volume 7.8 0.86 5.4
Damping Ratio 13.4 0.60 9.7
[Stiffness, Volume] 6.6 0.90 4.8

SFCN Stiffness 8.3 0.84 6.0
Volume 9.0 0.82 6.5
Damping Ratio 10.7 0.74 8.3
[Stiffness, Volume] 7.8 0.86 5.8

RF (Baseline) Stiffness (OPNMF) 8.0 0.84 5.6
Volume (NMF) 10.0 0.76 7.0
Damping Ratio (OPNMF) 12.00 0.63 8.3
[Stiffness, Volume] 7.6 0.86 5.6

Bolded numbers highlight the input that produced the best performance for 
each model. For both deep neural network architectures and baseline, using 
the multimodal input ‘[Stiffness-Volume]’ produced the best results.
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a combination of stiffness and volume) for the deep neural net
works and the best baseline model, which was chosen from RF 
and ElasticNet models that used either atlas-based ROI summari
zation or dimensionality reduction techniques (PCA, NMF, 
OPNMF). The best baseline model across all possible inputs was 
the RF model; for stiffness and damping ratio, applying dimen
sionality reduction using OPNMF performed the best, and for vol
ume, applying dimensionality reduction using NMF performed 
the best. Overall, the multimodal models that combined stiffness 
and volume achieved the lowest MAE and RMSE values and high
est R2 values across both deep neural network architectures and 
the baseline approaches: ResNet achieve an MAE of 4.8 and an R2 

of 0.90, SFCN achieve an MAE of 5.8 and an R2 of 0.86, and as the 
best baseline RF achieved an MAE of 5.6 and R2 of 0.86. Using 
stiffness had the next highest R2 values (0.87, 0.84, and 0.84 for 
ResNet, SFCN, and RF, respectively). There was a larger gap in 
performance between the deep neural networks and baseline 
when using volume alone, with R2 values of 0.86, 0.84, and 0.76, 
for ResNet, SFCN, and RF, respectively. Finally, models using 
damping ratio had the lowest performance and thus are excluded 
from further analyses.

In Supplementary Appendix, Figs A2a and A2b show the corre
spondence between the true age and predictions for each of the 
splits and input types for SFCN and ResNet models. The baseline 
results are further expanded in Supplementary Appendices B 
and C and detailed in Tables A1–A4.

Statistical significance of CNN performance
We conducted paired Wilcoxon rank-sign tests between the abso
lute error of the test set predictions across all subjects for the 
deep neural network models of the same architecture but trained 
on different inputs (l¼ 6 different pairs of models). Two-tailed 
tests are used between unimodal models, and one-tailed tests 
are used for testing whether multimodal models have lower ab
solute errors than unimomdal models. We selected a significance 
level of α¼ 0:1, and applied the Holm-Bonferroni procedure to ac
count for multiple tests. Table 3 encapsulates the results of the 
tests. For both architectures, the multimodal model that com
bines stiffness and volume maps outperforms a unimodal 
volume-only model. Additionally, for the ResNet architecture, 
the multimodal model outperforms the unimodal stiffness- 
only model.

Correlation of CNN predictions for 
different modalities
To investigate whether prediction errors are correlated between 
different deep neural network models with the same or different 
input, we computed the Pearson correlation for every pair and re
port the resulting matrix in Fig. 3. Models with the same input 
but different architecture are the most correlated. An exception 
is the SFCN multimodal model that is correlated with the SFCN 
unimodal models. Models using damping ratio are the least cor
related. Notably, the unimodal models for stiffness and volume 
are relatively uncorrelated (0.32 for ResNet and 0.52 for SFCN).

CNN prediction pooling improves performance
We hypothesized that pooling the predictions from the volume 
and stiffness deep neural network models would lower the pre
diction error. The relatively low correlation between prediction 
errors for the ResNet volume and stiffness models suggests that 
these measures may be independent and provides some support 
for this hypothesis. To further test this hypothesis, we reported 
the MAEs of the predictions of the pooled models (excluding 

damping ratio models) and showed that the errors of the pooled 

predictions (off-diagonal entries) are generally lower than the 

single model (diagonal entries) (Fig. 4). For ResNet, pooled and 

multimodal models both yield an MAE of 4.8 years, which is 

0.6 years better than the volume-only model and 1 year better 

than the stiffness-only model. For SFCN, the pooled model yields 

an MAE of 5.4 years, which is 1.1 years better than the volume- 

only model, 0.6 years better than the stiffness-only model, and 

0.4 years better than the multimodal model. Together, these 

results confirm our hypothesis that pooling predictions from 

stiffness and volume deep neural network models lowers the pre

diction error and suggests that stiffness and volume are comple

mentary measures.
The two lowest MAEs are achieved by pooling the multimodal 

ResNet model with unimodal ResNet models: pooling the 

stiffness-volume model with the stiffness-only model achieves 

an MAE error of 4.6 years and pooling the stiffness-volume model 

with the volume-only achieves an MAE of 4.4 years. This means 

that while the multimodal model is able to extract information 

from both, it may be overfitting to just one modality and missing 

valuable information captured in the unimodal predictions.

CNN model interpretation through saliency maps
We computed saliency maps via RAM [41] to compare and con

trast the average saliency for predicting age across different 

Table 3. Statistical significance of differences in model 
performance.

Input Model

A B ResNet SFCN

Stiffness Volume 0.1777 0.0980
[Stiffness, Volume] Stiffness 0.0002 0.2682
[Stiffness, Volume] Volume 0.0137 0.0109

Bolded P-values denote significant difference in the absolute errors between 
models with input A versus input B.

Figure 3. Correlation of brain age predictions errors between pairs of 
models. Models with the same input, but different architecture are the 
most correlated (besides the SFCN multimodal model that is correlated 
with the SFCN unimodal models).
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inputs and architectures. Figure 5 show the axial view of the 
ResNet model activations overlaid on top of an MNI152 brain 
template, and Supplementary Appendix Fig. A3 shows the same 
for the SFCN.

Once the saliency maps were computed for each input, we 
used the Harvard-Oxford parcellation to identify relevant brain 
regions used by the models. In the Supplementary Appendix, 
Tables A6–A9 detail the proportions of strong saliency for the 
models we considered in this analysis, and Fig. A4 visualizes the 
saliency across bin ages and ROIs. Overall, we observe that the 
strong saliency derived from the both stiffness and volume input 
maps overlap very little. In particular, volume measurements in 
brain regions 7 and 26 (precentral gyrus and juxtapositional lob
ule cortex, respectively) produce consistently strong saliency for 
both models. For stiffness measurements, brain regions 1, 3, 4, 
and 28 (frontal pole, superior frontal gyrus, middle frontal gyrus, 
and paracingulate gyrus) appear to be important in the last two 
age ranges (50–65 years and 65–81 years).

Discussion
On the predictive power of structural and 
mechanical brain measurements
We sought to investigate the performance of models that use 
measurements of the brain’s mechanical properties (stiffness 
and damping ratio) for predicting brain age with or without brain 
volume measurements. Brain volume is a well-studied structural 
measure for understanding brain age and has previously been 
found to predict chronological age with a high level of accuracy 
[34]. Over the past decade, MRE measures of tissue stiffness and 
damping ratio have revealed notable aging-related changes [12, 
13, 16], with tissue softening occurring during development pre
sumably due to synaptic prunning, and softening occurring 
across later life due to age-related neurodegeneration. However, 
the use of whole-brain maps of mechanical properties to predict 
age had not been investigated.

The results from both baseline models and the deep neural 
network models confirm that stiffness measurements match or 
exceed cortical volume measurements in their utility for 

predicting brain age. Furthermore, stiffness and volume maps 
provide complementary information, which significantly enhan
ces predictive accuracy when combined in a multimodal 
approach. Both deep learning models and the baseline RF model 
that use stiffness and volume together achieve higher perfor
mance than the models that use only a single measurement 
type. Our finding that stiffness and volume are complementary 
measures for predicting brain age echos previous findings by 
Hiscox et al. [4], which shows that stiffness measurements carry 
age-related information even after accounting for the volumes of 
the ROIs. This synergy between stiffness and volume reflects the 
distinct yet complementary aspects of brain structure and tissue 
integrity captured by each modality. While volume reflects 
macroscale structural changes, stiffness offers insights into 
microstructural health, and together they provide a more com
prehensive picture of brain aging. This highlights the importance 
of leveraging multiple brain imaging modalities to improve the 
accuracy of age prediction models.

In contrast, the models that used maps of tissue damping 
ratio were not as accurate. Stiffness and damping ratio are inde
pendent measures, and it is expected that damping ratio reflects 
an organizational aspect of the tissue while stiffness reflects a 
compositional aspect of the tissue [95]. Differences in brain 
damping ratio with age are less commonly reported [11], 
but have been observed in brain maturation [18, 19] and in aging 
[13]. Hiscox et al. [4] reported a 21% difference in hippocampal 
damping ratio between younger and older adults, but other brain 
regions did not significantly differ in damping ratio. Our experi
ments showed that damping ratio as the only input is less 
accurate than volume and stiffness maps, but still correlates 
with age with an R2 value in range of 0.60–0.74. This may be 
because damping ratio reflects more individual differences in tis
sue structure. For instance, damping ratio of specific brain 
regions has been related to differences in cognitive function 
across several different types of behavioral assessments [11, 96, 
97]. Thus, the features of damping ratio maps are not as strongly 
influenced by age, leading to heightened error, especially from a 
small training set.

On the choice of deep over shallow networks for 
predicting brain age
In our study, we leveraged deep CNNs, namely ResNet and SFCN, 
to model high-dimensional brain imaging data (MRI and MRE) in 
a healthy population. While the “no free lunch” theorems [98– 
100] suggests that no single model class is universally superior, 
domain-specific inductive biases—like those present in deep net
works—can provide a distinct advantage in specific tasks involv
ing spatial patterns. Practically, the relationship modeled here is 
very similar to those in various medical imaging applications 
[101–105]. In particular, deep CNNs have previously been applied 
to whole-brain neuroimaging data for image preprocessing, diag
nostic classification, regression, disease prediction, and disease 
and aging characterization [106–114]. CNNs are particularly ad
vantageous in whole-brain neuroimaging as they can 
extract spatial patterns without relying on spatial priors or pre
defined structures such as ROIs. In contrast to ROI-based analy
sis, CNNs can examine the entirety of the input image without 
breaking the spatial information, allowing them to detect subtle 
changes with age, such as those that occur with different rates 
or spatial extent and that an vary at different stages of aging. 
This flexibility is crucial given the heterogeneous nature of brain 
aging, which varies temporally and spatially, and encompasses a 
wide range of what is considered ‘healthy’ variation [115–119].

Figure 4. Mean absolute error for pooling between pairs of models (lower 
is better). Original model performance is along the diagonal. Pooling 
generally improves performance.

Brain age from elastography and volumetric measurements  | 7  

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae086#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae086#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae086#supplementary-data


Theoretical support for using a deep CNN like ResNet, despite 
the limitations of sample size (approximately 224 subjects per 
split in our study), is found in the architecture’s inherent advan
tages over shallow networks. For example, deep CNNs efficiently 
model spatial hierarchies through weight sharing and locality, 
greatly reducing the number of parameters compared to fully 
connected shallow networks [120]. In contrast, the initial layer of 
a fully-connected shallow network has parameters on the order 
of the number of voxels. Training this large number of weights in 
the initial layer will lead to trivial overfitting [105], without strong 
regularization and randomization methods like drop-out.

Specifically, CNNs efficiently extract information from spatial 
patterns in a hierarchical manner due to inductive biases 

inherent in CNNs, namely, weight sharing and locality [121], and 
for deep CNNs like ResNet, the complexity of functional families 
grows more rapidly with additional layers through the composi
tion of functions. In a convolution layer, the weights defining 
each filter are applied across space, greatly reducing the number 
of parameters. Furthermore, the use of small filters ensures spa
tially local features, which capture finer-grain structures in MRI 
and MRE data critical for accurate age prediction. A spatial hier
archy of these local features, necessary to capture long-range 
correlations, are created by CNN-specific operations like down
sampling and multichanneling [121]. Downsampling expands 
the receptive field exponentially, making it possible to learn 
long-range dependencies with fewer layers. Multichanneling 

Figure 5. Multimodal ResNet model activations. This plot shows axial views of averaged RAMs for different age bins using the trained multimodal 
ResNet model overlaid on slices of an MNI152 skullstripped T1 brain template with the front facing the right and superior slice (z¼55) at the top and 
inferior (z¼5) at the bottom. Each column corresponds to the averaged RAM for participants who belong to age bin Bt. The last column shows the 
Spearman correlation of each voxel’s salience to the chronological age.
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supports storing information across reduced spatial dimensions, 
preserving essential features throughout the network’s layers. 
Furthermore, compositionality is enhanced by ResNet’s skip con
nections, which ensure the functional family realized by deeper 
networks subsumes shallower networks [122]. The skip connec
tions enable efficient gradient propagation, reducing the risk of 
vanishing gradients and enabling smoother training conver
gence. Overall, deep CNNs provide a smooth optimization land
scape, enhancing the likelihood of achieving a near-global 
minimum, while shallow networks often face rugged loss surfa
ces, which can trap the optimizer in suboptimal minima. The 
synergy between downsampling, multichanneling, and residual 
connections in deep CNNs is fundamental to architectures like 
ResNet, which we used in our experiments to achieve superior 
performance (4.8 MAE).

On the interpretability of deep neural network 
predictions
Beyond the performance quantification, the saliency maps of 
each model revealed which brain regions were most implicated 
in predicting age. One noteworthy cluster encompassed the sup
plemental motor cortex, subcallosal cortex, paracingulate gyrus, 
and cingulate gyrus. Both the ResNet and the SFCN showed volu
metric changes in these regions across the entire lifespan, with 
stiffness contributing to age predictions more prominently in 
later stages of life. These regions are in the medial frontal lobe 
and extend into the limbic system, and they play a central role in 
motor planning, emotional regulation, decision-making, and cog
nitive control [123]. The changing natures of these functions 
across the life span is well documented, making it easily under
standable why structure of these regions contribute most to pre
dictions of age [124, 125].

Likewise, we found that frontal lobe volume played a large 
role in age determination across the lifespan. This was particu
larly true of the superior frontal gyrus. Interestingly, in all mod
els, only volume was notable predictor in earlier life, while 
stiffness became a more dominant factor from age 50 onward. 
This aligns with research on the developmental and degenerative 
trajectory of the frontal lobe, where volume loss begins in early 
life with the phenomenon of synaptic pruning [126] and contin
ues into later life with neurodegeneration [127], while age-relate 
stiffness change in this region is stronger in older age than early 
life [16, 19].

Notably, subcortical gray matter structures were influential in 
predicting age in children ages 5–10 but became less relevant be
yond childhood. These structures, such as the thalamus and cau
date, are essential in early brain development as they support 
fundamental processes like motor control, memory, and emo
tional regulation [128]. Volumetric changes to these regions 
occur mainly before age 5 and slow rapidly thereafter [129], 
but stiffness continues to mature across this time frame, likely 
because stiffness reflects microstructural organization, and 
volume reflects macroscale changes, and the later occurs prior to 
our window of study [19]. Finally, the ResNet model highlighted 
parietal lobe regions, such as the supramarginal and angular 
gyri, as important for age prediction. The parietal lobe is neces
sary for integrating sensory information and cognitive functions, 
which decline with age [130].

On the associations of mechanical 
measurements and aging
The specific mechanism that causes brain stiffness to be highly 
sensitive to age-related changes in brain tissue integrity is an 

area of ongoing research. It is well established that large scale 
structural brain changes occur across the lifespan, which in turn 
are likely to manifest as brain mechanical properties. During de
velopment, synaptic pruning of neural connections can cause a 
decline in grey matter volume [131], which occurs while myelina
tion in the brain is increasing [132]. Interestingly, it has been re
cently reported that brain stiffness appears to decrease from 
childhood to early adulthood [19]. During normal adult aging, the 
brain undergoes a variety of degenerative changes, including 
decreases in the density of neurons, breakdown of myelin integ
rity, and the appearance of white matter lesions [133–135]. The 
impact of many of these microstructural effects on brain stiff
ness has been studied through preclinical MRE of animal disease 
models, where a breakdown or loss of tissue components results 
in softening [136–138]. This is consistent with age-related soften
ing seen in the human brain, with different regions of the 
brain having different rates of softening likely reflecting different 
microstructural degradation of those regions [12].

Age-related softening can be exacerbated by neurological dis
orders. The purpose of brain age prediction is to build a frame
work for using whole brain maps of mechanical properties to 
better understand neurodegeneration through deviations in 
brain age from chronological age. Past work has demonstrated 
that MRE is very sensitive to tissue changes in a number of neu
rological conditions. For instance, stiffness has been shown to be 
sensitive to demyelination caused by multiple sclerosis (MS); one 
study found a 13% decrease in cerebral viscoelasticity in MS 
patients compared to healthy volunteers [10]. Stiffness has also 
been shown to be sensitive to changes caused by Parkinson’s dis
ease, including a significant reduction in lentiform nucleus stiff
ness between patients and healthy, age-matched controls [9]. 
Alzheimer’s disease has been most studied with MRE, and studies 
have shown lower stiffness in regions particularly affected by the 
disease [6, 8, 139, 140]. Recent studies have shown that stiffness 
of specific brain regions can serve as effective biomarkers for dif
ferentiating between Alzheimer’s and other forms of dementia 
[141, 142]. This heightened softening in disease in patterns 
reflecting the distribution of pathology in the brain point to the 
utility of using brain MRE metrics to predict brain age in neurode
generative conditions including Alzheimer’s disease and 
Parkinson’s disease. We expect that the sensitivity of MRE, com
bined with the spatial pattern learning capabilities of machine 
learning, allow us to characterize neurodegenerative pathology 
even in subtle conditions like mild cognitive impairment. As the 
field of brain MRE grows, we hope to further expand this work to 
describe the degree of severity of neurodevelopmental delays like 
autism, fetal alcohol syndrome, and other general intellectual 
disabilities, by characterizing brain age as different from chrono
logical age, ultimately providing an accessible metric that is 
representative of condition severity.

Limitations
Data for our experiments were combined from multiple studies 
with slightly different imaging protocols and scanner hardware. 
Some of the studies had different MRE image resolutions, and 
even though the data are all registered to a standard 2 mm 
resolution template, differences in the imagery may remain. 
However, Hiscox et al. [42] took a similar approach in pooling 
data between multiple studies and sites, including those with 
different resolutions, and still observed consistent regional char
acteristics in brain properties across all subjects regardless of 
slight differences in specific acquisition details.
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There is also an uneven distribution of age in some of the 
study datasets that were pooled for this project. Given that most 
of the studies were concentrated around certain ages and that 
the studies had different acquisition parameters, the model 
could have used patterns related to the acquisition parameters 
to predict brain age. To robustly evaluate whether this was oc
curring, we formed folds that held out studies and assessed the 
ability of the model to generalize to new studies not seen during 
training. Additionally, since the overall subject age distribution 
skewed towards younger adults and children, it may have been 
difficult for the model to learn the specific patterns of aging seen 
in older adults that are not strongly reflected in younger people. 
As the field of brain MRE expands, new models should be 
retrained with larger datasets to form even more robust predic
tions of brain age.

While the deep learning models used in this study can learn 
both intra-region and inter-region relationships in brain maps, 
their interpretation is not trivial. The saliency-based approach 
[41] we adopted is a step towards understanding these models, 
which can be combined with standard atlases to provide inter
pretation of brain regions. However, further analysis to better un
derstand the changes in salient regions is necessary. We 
acknowledge that selection of a framework can have a large ef
fect on the interpretation of results. While we have focused on 
ResNet as a deep convolutional neural network, which is theoret
ically justified and well-motivated based on success on other 
similar tasks, it is possible that a shallower network or other ar
chitecture with appropriate training could provide an equally, or 
better, performing model. Future work is needed to examine the 
advantages and disadvantages of deep and shallow networks for 
age prediction with brain mechanical property images.

While not examined in this study, the interpretation of the 
baseline ROI-based models is arguably easier in terms of the rele
vancy of the predefined regions. However, even if they are more 
interpretable, ROI-based summarization loses intra-region varia
tion present in the images, which can result in lower model per
formance. This is particularly problematic when working with 
MRE data since stiffness is not homogeneous across brain regions 
[42, 143], and thus averaging stiffness values within a region can 
also lead to a loss of information. In contrast, unsupervised di
mensionality reduction techniques, in particular, non-negative 
matrix factorization, yield lower-dimensional features without 
predefined ROIs that can be still be interpreted by the spatial ex
tent of underlying factor. However, even though these features 
may be understandable, accurate predictions were only achieved 
with the non-linear Random Forest models, which combine these 
features in an ensemble of decision trees, creating difficulties in 
direct interpretation. Thus, post-hoc model interpretation would 
still be necessary to understand how a non-linear model relates 
the features corresponding to these spatial patterns to brain age.

Conclusion
This is the first study to use deep learning models to predict brain 
age from whole-brain MRE measures of brain stiffness. We found 
that the models using brain stiffness maps performed on par or 
better than volume maps and the combination of brain stiffness 
and volume maps give a better prediction accuracy than volume 
maps individually. The findings of this study suggest that 
MRE measures provide additional information about the brain 
maturation and tissue degradation process which complement 
structural imaging metrics for brain age prediction. Given the 
high sensitivity of brain stiffness to age, future research should 

consider adding mechanical property maps to brain age predic
tion models. This will become more feasible as more sites collect 
MRE and in larger sample sizes.
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