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The identification of various fecal biomarkers has provided insight into the intestinal milieu.
Most of these markers are associated with the innate immune system of the gut, apart from
the more novel M2-pyruvate kinase. The innate immunity of the gut plays a role in main-
taining a fine balance between tolerance to commensal bacteria and immune response
to potential pathogens. It is a complex system, which comprises of multiple elements,
including antimicrobial peptides (e.g., defensins, cathelicidins, lactoferrin, and osteopro-
tegerin), inflammatory proteins (e.g., calprotectin and S100A12), and microbial products
(e.g., short-chain fatty acids). Dysfunction of any component can lead to the development
of intestinal disease, and different diseases have been associated with different fecal lev-
els of these biomarkers. Each fecal biomarker provides information on specific biological
and disease processes.Therefore, stool quantification of these biomarkers provides a non-
invasive method to define potential pathways behind the pathogenesis of diseases and can
assist in the assessment and diagnosis of various gastrointestinal conditions. The above-
mentioned fecal biomarkers and their role in intestinal health and disease will be reviewed
in this paper with a pediatric focus.
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INTRODUCTION
The innate immune system of the gut comprises of multiple ele-
ments (Table 1), each of which contributes to the fine balance
between tolerance to commensal bacteria and response to poten-
tial pathogens (1). The gastrointestinal epithelium in particular,
is constantly exposed to a large amount of intestinal microflora
yet is able to maintain a physical barrier to exogenous stim-
uli while allowing the selective entry of essential nutrients (2).
Its mucosal surface is covered by a mucus layer, which contains
various antimicrobial peptides (AMPs) such as osteoprotegerin
(OPG), defensins, and cathelicidins as well as commensal micro-
biota, together forming the first line of defense against pathogens.
Should this mucosal barrier be breached, circulating immune cells
like neutrophils and macrophages provide a second source of pro-
tection via inflammatory proteins such as lactoferrin and S100
proteins (2).

One mechanism through which the intestinal microbiota plays
a crucial role in intestinal innate immune defense is via the pro-
duction of short-chain fatty acids when colonic bacteria ferment
carbohydrates (3).

Therefore, dysfunction of any of these components of the
innate immune system can lead to impairment of the host’s
mucosal defenses (4), alterations in intestinal microbial compo-
sition, and increase in the frequency and severity of intestinal
infections. It has been widely hypothesized that this resultant dys-
biosis can lead to gradual bacterial invasion, inflammation, and a
loss of tolerance to gut bacteria (5) (Figure 1). There is abundant

evidence that dysbiosis may have multiple effects on the physiol-
ogy and immunology of the host, and has been associated with the
development of a variety of diseases including atopy (6), obesity
(7), types I and II diabetes (8, 9), cardiovascular disease (10), and
inflammatory disorders (11, 12).

The identification of various intestinal AMPs, inflammatory
proteins, and bacterial products has provided investigators poten-
tial insight into the intestinal milieu using non-invasive methods
such as stool quantification. Understanding the role of these bio-
markers in healthy (Table 2) and disease states may help charac-
terize pathways behind disease pathogenesis, and in turn guide the
development of prospective therapies.

Many fecal biomarkers have been identified to date but only
a few have been more extensively studied in children. Hence
in this review, we aim to provide an overview of the roles of
defensins, cathelicidins, lactoferrin, OPG, S100 proteins, SCFA,
and the more novel M2-pyruvate kinase (M2-PK) in health and
various disease states in the pediatric population. The practical
aspects and limitations of fecal biomarkers are also discussed.
We performed a search of the databases Medline, EMBASE, and
PubMed for articles written in English, including review articles,
related to the relevant fecal biomarkers in children, published after
the year 1980.

DEFENSINS
Defensins are AMPs that are divided into two main subfamilies
based on structure: α- and β-defensins (4). To date, 10 human
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defensins have been identified (5), further details of which are
discussed in Table 2.

ROLE IN HEALTH
As AMPs, defensins exhibit microbiocidal activity by forming
micropores in the membrane, causing loss of structural integrity
and eventually cell lysis (13). Via this mechanism, defensins are
microbiocidal against Gram-positive and Gram-negative bacteria,
fungi, viruses, and protozoa (14) thereby protecting the intestinal

Table 1 | Components of the intestinal innate immune system.

Mechanical barriers Mucous layer (2)

Intestinal epithelial cell layer (4)

Intestinal motility (4)

Antimicrobial peptides Defensins

Cathelicidins

Osteoprotegerin

Lactoferrin

Lysozyme (1)

Secretory phospholipase A2 (1)

Angiogenins (4)

Inflammatory proteins Calprotectin (S100A8/S100A9)

S100A12

Microbes and microbial

products

Intestinal microflora (4)
Short-chain fatty acids

Others Gastric acid (3)

Biliary and pancreatic secretions (4)

Immune cells (neutrophils,

monocyte/macrophage lineage) (2)

Secretory IgA (4)

epithelium and stem cells from pathogens as well as regulating the
number and composition of commensal bacteria (5).

α-Defensins
The microbiocidal activity of α-defensins was demonstrated in
a cohort study of African adults, which showed that low Paneth
cell α-defensin-gene expression was associated with a higher risk
of diarrheal infections (15). Interestingly, although human α-
defensins (HD) 5 and 6 are largely confined to the small intestine,
they are also secreted in the colon of patients with ulcerative col-
itis (UC) due to the presence of metaplastic Paneth cells. This is
thought to provide an alternative “on-demand” mechanism that
provides antimicrobial expression and protection of the gut (14).

Apart from their microbiocidal role in the innate immune sys-
tem, α-defensins are chemotactic for monocytes, dendritic, and
T cells, thereby providing regulation of adaptive immunity via
activation and recruitment of adaptive immune cells (4). Further-
more, α-defensins 1–4, known also as human neutrophil peptides
(HNPs), enhance the expression of TNF-α and IL-1β in activated
human monocytes and reduce the expression of vascular cell adhe-
sion molecule (VCAM)-1 in human endothelial cells activated by
TNF-α. This regulation of cytokine production and adhesion mol-
ecule expression indicates a potential role of HNPs in modulating
inflammatory responses (16).

β-Defensins
The antimicrobial function of β-defensins has also been well
established. During health, the constitutive expression of human
β-defensin (HBD) 1 by epithelial cells prevents microbial invasion
by strengthening the intestinal mucosal barrier. The induction of
HBD2, 3, and 4 during inflammation or infection may prevent
further bacterial entry into an already compromised epithelium
and contribute to antimicrobial defense during inflammation

FIGURE 1 | An overview of the main sources and potential uses of the various fecal biomarkers reviewed in this article. OPG, osteoprotegerin; SCFA,
short-chain fatty acids; M2-PK, M2-pyruvate kinase. Adapted from Ref. (12).
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Table 2 |The expression and function of defensins, cathelicidins, lactoferrin, OPG, S100 proteins, M2-pyruvate kinase (M2-PK), and short-chain

fatty acids (SCFA).

Fecal marker Main source and expression Function in intestinal health

Defensins

α-Defensins

HNP1, 2, 3, 4 Primary granules of neutrophils (5)

HD5, 6 Paneth cells located at base of the crypts of Lieberkühn in small

intestine (constitutive expression) (15)

Antimicrobial peptides with microbiocidal activity (13) and

chemotactic activity for immune cells (4, 17)

β-Defensins

HBD1 Colonic epithelial cells (constitutive) (4)

HBD2, 3, 4 Colonic epithelial cells (inducible) (15)

Neutrophils, keratinocytes, epithelial cells of respiratory, urogenital,

and gastrointestinal tract (37)

Cathelicidins Especially lower small intestine and colon (15)

Expression in colon is constitutive. Remains unclear if expression is

determined by differentiation of colonocytes (30, 37)

Antimicrobial peptides with microbiocidal activity (13) and

chemotactic activity for immune cells (4, 17)

Lactoferrin

Mucosal epithelial cells and secondary granules of neutrophils (45)
Multiple roles including antimicrobial (42) and

immunomodulatory activity (45)
Constitutive expression by mucosal epithelial cells (45)

Inducible during inflammation (45)

Osteoprotegerin

Intestinal epithelial cells, osteoblasts, dendritic cells, macrophages,

B-lymphocytes, bone marrow stromal cells (52)
Anti-inflammatory effects when bound to RANKL (51)

Constitutive expression by colonic epithelial cells (51) Pro-inflammatory effects when bound to TRAIL (54)

Inducible during inflammation (51)

S100 proteins

S100A8/S100A9

(calprotectin)

Cytoplasm of neutrophils, monocytes and epithelial cells

(inducible) (58)

Pro-inflammatory role in innate immunity by acting as

DAMPs (60)

S100A12 Cytoplasm of neutrophils (inducible) (65)

M2-PK Expressed by all rapidly dividing cells (83) Key enzyme in the glycolytic pathway (83)

SCFA Produced upon fermentation of complex carbohydrates by anaerobic

microflora in the colon (91)

Multiple roles including: energy source for colonocytes (91).

Regulation of fluid and electrolyte uptake (91). Colonic

microbiota homeostasis (3)

HNP, human neutrophil peptide; HD, human defensin; HBD, human β-defensin; RANKL, receptor activator of NF-κB ligand;TRAIL, tumor necrosis factor (TNF)-related

apoptosis-inducing ligand; DAMPs, damage-associated molecular pattern molecules.

at this site (14). Like the α-defensins, β-defensins also exhibit
chemotactic activity for immature dendritic cells (DCs) and mem-
ory T cells through the CC chemokine receptor type 6 (CCR6),
thus promoting adaptive immune responses by recruiting these
cells to the site of microbial invasion (17).

ROLE IN INTESTINAL DISEASE
Inflammatory bowel disease
The expression of defensins in intestinal inflammation has been
extensively studied, especially in the setting of inflammatory bowel
disease (IBD) and its two main subsets, UC and Crohn’s dis-
ease (CD). There is a consensus in the literature that in UC,
which involves superficial inflammation confined to the colonic
mucosa, increased HBD2 and Paneth cell α-defensin expressions
are characteristic (18). HBD2 levels were elevated in stool col-
lected from children with active UC (median 356 ng/g, range

40–527) compared to healthy controls (median 13 ng/g, range
3–56; P = 0.0002) (19).

In colonic CD, there is attenuated induction of β-defensins as
measured by mucosal mRNA (20). In ileal CD however, reduced
Paneth cell α-defensin expression was observed in ileal biopsies
(21). Kapel and colleagues (19) found only a three- to fourfold
increase in fecal HBD2 levels in children with CD as opposed to the
abovementioned >10-fold increase in fecal HBD2 levels for UC.
This impaired induction of β-defensins in colonic CD has been
attributed to low β-defensin-gene copy number (22), while other
studies have suggested an association between CARD15/NOD2
mutations and HBD2 deficiency (23). The α-defensin deficiency in
ileal CD has also been linked to NOD2 mutations (5). An impor-
tant finding from the study by Kapel et al. (19) was a positive
correlation between fecal calprotectin and HBD2, suggesting that
fecal HBD2 is associated with intestinal inflammation.
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Irritable bowel syndrome
Irritable bowel syndrome (IBS) is a very common functional bowel
disorder in the absence of macroscopic and histologic inflamma-
tion, characterized by abdominal pain and altered bowel habits
(24). According to the ROME III criteria, IBS can be subtyped into
diarrhea predominant (IBS-D), constipation predominant (IBS-
C), mixed diarrhea and constipation (IBS-M), and unsubtyped IBS
(IBS-U) (25). There is mounting evidence that microbial dysbio-
sis is associated with IBS, with the implication of small intestinal
bacterial overgrowth (SIBO) in its pathogenesis (26). This alter-
ation in gut microbiota is hypothesized to lead to activation of
the mucosal innate immune response (26), which has been sup-
ported by various studies. In particular, a study by Langhorst and
co-workers comparing fecal HBD2 in patients with IBS, active
UC, and healthy controls, found that fecal HBD2 was significantly
elevated in the IBS group (mean± SD: 76.0± 67.9 ng/g) in com-
parison to controls (29.9± 16.1 ng/g; P < 0.001), although to a
lesser extent than patients with active UC (106.9± 91.5 ng/g).
Their findings support the hypothesis of an activation of the
mucosal innate defense in IBS toward low-grade mucosal inflam-
matory activity (24), which is in turn supported by studies that
have found increased mast cells (27) and colonic lamina propria
immune cells in patients with IBS (28).

Necrotizing enterocolitis
Necrotizing enterocolitis (NEC) is one of the most common gas-
trointestinal emergencies in neonates (29). Its main risk factors are
prematurity and low birthweight (29). The pathogenesis of NEC
remains elusive but there is strong evidence that inappropriate bac-
terial colonization of the neonatal gut plays a role (30). This has
been supported by various studies showing that probiotic supple-
mentation in preterm neonates of very low birthweight (<1500 g)
reduces the risk and mortality of NEC (31). Like IBS, this aberrant
postnatal bacterial colonization may lead to an activation of the
innate immune system of the gut.

A study by Jenke and colleagues aimed to assess this intestinal
mucosal innate response via HBD2 expression in extremely low-
birth-weight (ELBW) infants with NEC (32). They found that
infants with moderate NEC had elevated fecal HBD2 concentra-
tions before onset of symptoms, probably reflecting an adequate
immune response (32). However, infants with severe NEC showed
no increase in fecal HBD2 concentrations before and during the
disease. This finding together with a lack of increase in fecal cal-
protectin concentration and normal villin expression, the latter of
which is reduced with epithelial cell loss, suggests a specific defi-
ciency of innate defense activation in ELBW infants rather than
an impaired intestinal epithelial barrier, leading to a more severe
course of NEC (32).

CATHELICIDINS
Cathelicidins are a family of precursor proteins with a well-
conserved cathelin pro-region, followed by a highly variable C-
terminal antimicrobial domain (33). Human cationic antimicro-
bial protein 18 (hCAP18) is the only human cathelicidin precursor
protein, which is cleaved from the cathelin pro-region to pro-
duce the mature cathelicidin peptide LL-37 (33). The expression
of cathelicidin is summarized in Table 2.

ROLE IN HEALTH
Proteolytic cleavage of hCAP18 into LL-37 is required for bac-
tericidal activity. Like defensins and other AMPs, cathelicidin
exhibits microbiocidal activity by disrupting microbial membrane
integrity (13). In vitro studies have shown activity against a range
of Gram-negative and Gram-positive bacteria including gastroin-
testinal pathogens such as Helicobacter, Salmonella, Shigella, and
the fungus Candida albicans (15). Its antibacterial activity is medi-
ated by the lipopolysaccharide (LPS)-binding and neutralizing
properties of cathelicidin, thereby inhibiting LPS-induced cellular
responses, such as the release of TNF-α, nitric oxide, and tissue
factor (34).

Cathelicidin contributes to host defenses by playing a role in
the inflammatory process. It exhibits in vitro chemotactic activity
for the selective migration of human peripheral blood monocytes,
neutrophils, and CD4+ T cells (35). Cathelicidin is also chemo-
tactic for mast cells, inducing their degranulation, resulting in
the release of inflammatory mediators like neutrophil chemo-
attractants and histamine, which increases vascular permeabil-
ity, thus further facilitating neutrophil infiltration of inflamed
tissue (36).

In addition, cathelicidin has been reported to help in the repair
of damaged tissue and wound closure by promoting wound neo-
vascularization and re-epithelialization of healing skin (34); its
role in intestinal mucosal healing is unknown.

ROLE IN INTESTINAL DISEASE
Inflammatory bowel disease
A study looking at cathelicidin expression in colonic mucosal biop-
sies of UC, CD, and healthy patients found a significantly higher
expression in patients with UC when compared to those with
CD (33). However, when inflamed and non-inflamed mucosa of
patients with UC or CD was compared, no difference in expres-
sion was found. In addition, increased CD4 expression levels (a
surrogate marker of infiltrating immune cells) in inflamed CD
mucosa were not associated with increased cathelicidin expression
(33). These findings suggest the dissociation between cathelicidin
expression and inflammation. Other studies have supported this
by showing that pro-inflammatory mediators do not upregulate
cathelicidin expression, whether in vitro or in vivo (37, 38).

Regulation of cathelicidin expression is unclear. Cathelicidin
expression was reported to be regulated by butyrate (a SCFA)
through butyrate-induced differentiation of colonic epithelial
cells (15, 37). However, Schauber and colleagues (33) showed
that butyrate-enhanced colonocyte differentiation and butyrate-
induced cathelicidin expression are regulated separately via dis-
tinct signaling pathways.

Shigellosis
Shigellosis is a major cause of morbidity and mortality in devel-
oping countries (39). It is caused by infection with the highly
contagious Shigella species, which invades the colonic mucosa
causing inflammation that destroys the mucosal barrier (40). The
clinical manifestations are the passage of bloody mucoid loose
stools, abdominal cramps, rectal tenesmus, and fever (40).

Reduced cathelicidin levels have been observed in gut biopsies
of patients with shigellosis (41). It has been suggested that this
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down-regulation is a strategy by pathogenic microbes to increase
their virulence by circumventing host immune defenses. Adjunct
therapy with butyrate during shigellosis resulted in enhanced
expression of cathelicidin in rectal epithelia, prolonged catheli-
cidin secretion in stool, and early reduction in inflammation (40).

LACTOFERRIN
Lactoferrin is an iron-binding glycoprotein of the transferrin
family which plays a role in transporting serum iron (42). The
expression pattern of lactoferrin (Table 2) indicates that it may
play a role in the innate immune response (43).

ROLE IN HEALTH
Lactoferrin has multiple roles, some attributable to its iron-
binding properties. Interestingly, lactoferrin is both promicrobial
and antimicrobial, the former because of its ability to provide
iron to bacteria. In contrast, its bacteriostatic activity is due to the
sequestration of iron and subsequent deprivation of this nutrient
from pathogenic bacteria (42). Furthermore, independent of its
iron-binding properties, lactoferrin possesses bactericidal activity
via direct interaction with bacteria (43). It was observed that apo-
lactoferrin, the iron-free form of lactoferrin, can bind to the outer
membrane of Gram-negative bacteria to cause the rapid release of
LPS and an increase in membrane permeability (44). In addition,
it is widely accepted that lactoferrin has antiviral, antifungal, and
antiparasitic functions (42).

Lactoferrin is a modulator of the innate and adaptive immune
system. Its anti-inflammatory activity is attributed to the inhibi-
tion of cytokines such as TNF-α and IL-1β (45). It has also been
suggested that lactoferrin induces immunity via activation of var-
ious signaling pathways. Its positive charge allows it to bind to
negatively charged molecules on the surface of various immune
cells and this association may trigger signaling pathways that lead
to cellular activation, proliferation, and differentiation. Lactofer-
rin is also transported into the nucleus where it can bind DNA and
activate different signaling pathways (42).

ROLE IN INTESTINAL DISEASE
Inflammatory bowel disease
An increase in fecal lactoferrin levels occurs during intestinal
inflammation (46) due to mucosal infiltration and degranulation
of neutrophils, providing an additional source of lactoferrin to aid
the mucosal innate response (45). Elevated fecal lactoferrin levels
have been reported in IBD (47) with a sensitivity of 78%,and speci-
ficity of 90% in identifying inflammation in adults with chronic
UC and CD (46). In addition, fecal lactoferrin showed good cor-
relation to disease activity (endoscopic and histopathologic) and
was 100% specific in ruling out IBS (46). Using an established
cutoff point of 7.25 µg/mL for patients with IBD (48), similar
findings of elevated fecal lactoferrin in pediatric patients with UC
(1880± 565 µg/mL) and CD (1701± 382 µg/mL) compared to
healthy controls (1.17± 0.47 µg/mL; P < 0.001) were observed
(49). Fecal lactoferrin also correlated well with clinical activity
indices and erythrocyte sedimentation rate (ESR) (49).

OSTEOPROTEGERIN
Osteoprotegerin is a member of the tumor necrosis factor (TNF)
receptor superfamily and functions as a soluble decoy receptor of

the receptor activator of NF-κB ligand (RANKL) and TNF-related
apoptosis-inducing ligand (TRAIL) (Table 2) (50, 51).

ROLE IN HEALTH
Receptor activator of NF-κB ligand
Osteoprotegerin is best known for its role in bone metab-
olism. It binds to RANKL and blocks its interaction with
RANK, thereby inhibiting osteoclastogenesis (52). In addition,
the RANK/RANKL/OPG system has a role in regulating intestinal
inflammation by modulation of colonic DCs. In a murine model,
exogenous OPG reduced DC survival, eliminating the antigen-
presenting cell (APC) for colonic CD4+ T cells, thereby reducing
inflammation (53).

TNF-related apoptosis-inducing ligand
TNF-related apoptosis-inducing ligand is a member of the TNF
ligand superfamily that induces cellular apoptosis. The interaction
of OPG with TRAIL during intestinal inflammation inhibits apop-
tosis of DCs and activated T cells, thereby perpetuating intestinal
immune activation (54). This pro-inflammatory effect opposes
the above findings of a potent anti-inflammatory effect of OPG
when interacting with RANKL (53).

ROLE IN INTESTINAL DISEASE
Inflammatory bowel disease
The role of OPG in intestinal inflammation was affirmed by a
study of children with newly diagnosed CD that showed elevated
serum and intestinal mucosal OPG levels (52). Importantly, fecal
OPG was also raised in moderate/severe CD (6463± 8691 pg/mL)
and mild CD (477± 848 pg/mL) when compared to healthy con-
trols (63± 0.001 pg/mL; P < 0.0001). It was proposed that the
excess circulating OPG was a result of increased mucosal OPG
production due to inflammation. In addition, serum and fecal
OPG decreased after treatment with exclusive enteral nutrition
(EEN). This indicates that fecal OPG can be used as a marker
of mucosal OPG expression and intestinal inflammatory severity
in CD.

A recent study has provided further insight into the role of
OPG in intestinal inflammation. Via in vitro methods, Nahidi
and co-workers (55) found that OPG possesses pro-inflammatory
properties via its induction of gut barrier dysfunction and secre-
tion of pro-inflammatory cytokines. Their results also provide
evidence that OPG, like TNF-α, exerts its pro-inflammatory effects
by NF-κB activation.

Cryptosporidiosis
Cryptosporidiosis is caused by infection with the waterborne pro-
tozoan parasite Cryptosporidium (56). It characteristically results
in watery diarrhea (56) that is usually self-limited in immuno-
competent individuals (57) but may be profuse and prolonged in
immunocompromised patients (56).

The “disease-promoting” effect of OPG mediated by TRAIL,
as discussed above, was further alluded to in an in vitro study
of human ileal mucosal cells infected with Cryptosporidium (57).
The results showed that treatment with TRAIL induced epithe-
lial cell apoptosis and reduced parasite numbers. However, giv-
ing recombinant OPG blocked these therapeutic effects. More-
over, this study showed an early increase in OPG expression
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by the infected epithelial cells, suggesting that Cryptosporid-
ium may upregulate OPG to protect against early apoptosis by
TRAIL.

S100 PROTEINS
S100 proteins are a family of more than 20 calcium-binding pro-
teins (58). Unlike many of the other S100 proteins that exert their
regulatory effects in a Ca2+-dependent manner solely within the
cells they are expressed, three S100 proteins – S100A8, S100A9, and
S100A12, have also been found to have extracellular activity (59).
These three members are, moreover, specifically associated with
innate immune functions due to their expression in phagocytes
(60). S100A8 and S100A9 associate to form a complex known as
calprotectin (58). The expression of calprotectin and S100A12 is
summarized in Table 2.

ROLE IN HEALTH
Calprotectin (S100A8/S100A9) and S100A12 have a pro-
inflammatory role in innate immunity and are part of a group
called damage-associated molecular pattern molecules (DAMPs),
due to their release by activated or damaged cells under conditions
of cellular stress (60). An emerging concept of pattern recogni-
tion involves sensing of exogenous pathogen-associated molec-
ular patterns (PAMPs) and endogenous DAMPs via the multi-
ligand receptor for advanced glycation end products (RAGE) and
toll-like receptors (TLRs), enabling innate immunity to achieve
our primary host defense against invading microorganisms and
non-specific stress factors (58, 60).

In accordance with their pro-inflammatory role, calprotectin
and S100A12 are significantly overexpressed at sites of inflam-
mation, and there is a strong correlation of their serum con-
centrations to inflammation (60). The secretion of calprotectin
by phagocytes is induced when phagocytes come into contact
with inflamed endothelium. One mechanism that calprotectin
is thought to promote inflammation is via induction of pro-
inflammatory chemokines, adhesion molecules (e.g., VCAM-
1 and ICAM-1) and β2-integrin, thereby mediating leukocyte
recruitment,adhesion,and transendothelial migration to inflamed
tissue (58, 61).

S100A12 has also been shown to mediate inflammation via
the induction of similar adhesion molecules to calprotectin and it
also upregulates the production of pro-inflammatory cytokines by
macrophages, including TNF-α and IL-1β (58). Moreover, it has
been implicated in a novel pro-inflammatory axis binding RAGE,
leading to the transduction of pro-inflammatory signals in the
endothelium and immune cells (60).

The pediatric reference range for fecal calprotectin was estab-
lished in a study of 117 healthy children and found a median of
13.6 µg/g (95% confidence interval, 9.9–19.5 µg/g) (62). It was
also suggested that the adult cutoff level for intestinal inflam-
mation of 50 µg/g can be applied to children as well (62). More
recently, a pediatric reference range for S100A12 has also been
determined in a study involving 56 healthy children (63). A median
of 0.5 mg/kg (range 0.39–25 mg/kg) was found, suggesting that
the established adult cutoff of 10 mg/kg can also be applied to
children (63).

ROLE IN INTESTINAL DISEASE
Inflammatory bowel disease
S100 proteins, especially calprotectin and S100A12, have been
extensively studied in both the adult and pediatric IBD popula-
tions. Serum and mucosal levels of both of these biomarkers have
been shown to be elevated in children with IBD (64).

Fecal calprotectin levels are also significantly elevated in chil-
dren with IBD (median 1265 mg/kg) compared to children with-
out IBD (median 30.5 mg/kg; P < 0.0001). A sensitivity of 100%
and specificity of 67% was found for fecal calprotectin in iden-
tifying children with IBD (cutoff >50 mg/kg for IBD) (65). In
addition, multiple studies have shown that fecal calprotectin cor-
relates closely with endoscopic and histological grading of colonic
inflammation in both UC and CD (66–68). A positive correlation
between fecal calprotectin and clinical activity indices in both CD
and UC has also been demonstrated (69) and therefore, fecal cal-
protectin has been proposed as a useful tool in monitoring disease
activity in children with IBD (67).

Together, there is substantial evidence in the literature that fecal
calprotectin is a sensitive marker of intestinal inflammation. Mul-
tiple studies have shown that fecal calprotectin can differentiate
IBD from functional disorders like IBS (69, 70), with validation in
children (67, 71). Based on a cutoff of 30 mg/kg, fecal calprotectin
discriminated adults with active CD from those with IBS with
100% sensitivity and 97% specificity (72). However, it is not a
disease-specific fecal marker and is also elevated in other gastroin-
testinal disorders like gastroenteritis (73) and colorectal cancer
(CRC) (70), as well as during non-steroidal and non-inflammatory
drug use (74).

Another potential aspect of fecal calprotectin is in predicting
relapse in children with IBD. An elevated calprotectin level in
stool was found to be associated with a 13-fold increased risk
of relapse in adult IBD patients experiencing remission (75), with
another study suggesting that fecal calprotectin is more accurate
in predicting relapse in UC than CD (76).

S100A12 is also elevated in stool from children with active
IBD (median 95.40 mg/kg; range 6.19–349.9 mg/kg) compared
to healthy controls (median 0.69 mg/kg; range 0.39–17.73 mg/kg;
P < 0.0001) (77). Moreover, it was found to have a sensitivity of
96% and specificity of 92% in distinguishing children with active
IBD from healthy controls when a 10 mg/kg fecal S100A12 was
used as a cutoff.

Cystic fibrosis
Cystic fibrosis (CF) is the most common life-shortening autoso-
mal recessive disease in Caucasians, with an incidence of 1 in 2500
live births (78). There is evidence that CF predisposes to inflam-
matory changes not only in the respiratory system but also in the
gastrointestinal tract (79).

In comparison to the abovementioned biomarkers, calprotectin
has been more widely studied in CF. A study looking at chil-
dren with CF found elevated fecal calprotectin levels and rectal
nitric oxide production in majority of the subjects, indicating that
intestinal inflammation is a major feature in CF (79). These values
fell significantly after administration of the probiotic Lactobacillus
GG, suggesting that the intestinal microbiota plays a role in CF
intestinal inflammation (79). This was supported by Werlin and
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co-workers (78), who used wireless capsule endoscopy (WCE) and
fecal calprotectin to investigate intestinal inflammation in chil-
dren with CF. Fecal calprotectin was elevated only in pancreatic
insufficient (PI) subjects, whereas WCE showed a high prevalence
of small bowel injury in both PI and pancreatic sufficient (PS)
children. The authors suggested that these findings support a “CF
enteropathy”that is a primary feature of the CF phenotype and that
its inflammatory component (as reflected by fecal calprotectin)
changes with the degree of exocrine pancreatic impairment (78).

Nevertheless, it has been suggested that fecal sampling assessing
intestinal inflammation in CF may potentially give false positive
results due to the cross-reaction of ingested sputum proteins with
intestinal inflammatory markers. However, this is likely a minor
confounder to the significantly elevated fecal calprotectin detected
in patients with CF (80).

In contrast, results from a recent study showed that unlike cal-
protectin, fecal S100A12 levels were not elevated in children with
CF when compared to healthy controls (81).

M2-PYRUVATE KINASE
ROLE IN HEALTH
Pyruvate kinase (PK) is a key enzyme in the glycolytic pathway
that catalyzes the conversion of phosphoenolpyruvate into pyru-
vate with eventual ATP production (82). It is expressed in all cells
(83) and exists as dimeric and tetrameric isotypes in humans (84).
The tetrameric (M1) type is found in skeletal muscles, heart, and
brain (84), while the dimeric (M2) form is expressed by all rapidly
dividing cells (both neoplastic and non-neoplastic) (83) (Table 2).

ROLE IN INTESTINAL DISEASE
Increased concentrations of fecal M2-PK are found in patients
with CRC and M2-PK has been proposed as a potential screen-
ing tool for this cancer, with a sensitivity of 73% and specificity of
78% (85). Other studies have reported enhanced M2-PK activity in
neutrophils in patients with polytrauma (86) and chronic cardiac
failure (87). The role of M2-PK in gastrointestinal inflammation
is unraveling (84), with several studies reporting its potential as a
novel marker of intestinal inflammation.

Inflammatory bowel disease
In active IBD, there is increased intestinal epithelial cell turnover
and rapid division (84). Hence, given the relationship of M2-PK
to cell division, it has been postulated that fecal M2-PK concen-
trations are elevated in IBD patients (83). This has been supported
by several studies.

Chung-Faye and co-workers (83) found fecal M2-PK to be sig-
nificantly elevated in 81 adults with IBD and 7 with CRC when
compared to 43 with IBS. Using a cutoff of 3.7 U/mL, fecal M2-PK
had a sensitivity of 73% and specificity of 74% when used as a
marker of organic gastrointestinal disease. Furthermore, M2-PK
levels were greater in IBD patients with active compared to inac-
tive disease. Their results also showed a high correlation between
fecal M2-PK and calprotectin.

A pediatric study reported similar findings of significantly
higher PK immunoreactivity in IBD patients (143.7± 24.6 U/g)
when compared to healthy controls (1.2± 0.4 U/g; P < 0.00001)
(82). Using the manufacturer recommended cutoff of 4 U/g, sensi-
tivities of 94.3 and 100% were found for UC and CD, respectively.

When a second cutoff of 5 U/g was used, false positives were
reduced. However, specificity fell from 97.1% (cutoff of 4 U/g)
to 94.3% (cutoff of 5 U/g) and sensitivity for CD fell to 94.1%.
Regardless, the high sensitivity and specificity reflect the potential
use of the fecal M2-PK test in pediatric IBD.

A more recent multicentre cohort study compared the abil-
ity of four fecal markers (calprotectin, lactoferrin, M2-PK, and
S100A12) to predict the outcome in severe acute pediatric UC
(88). Although all four markers reflected disease severity by their
very elevated fecal values, only M2-PK had sufficient ability to
predict corticosteroid treatment failure and the need for second-
line therapy, presenting the potential for fecal M2-PK testing to be
incorporated into clinical practice with further research. However,
it was still inferior to the Pediatric UC activity index (PUCAI).

Pouchitis
Two studies looking at ileal pouch-anal anastomosis (IPAA) in
patients with UC and familial adenomatous polyposis (FAP) who
underwent restorative proctocolectomy found that those with
pouchitis had significantly higher fecal M2-PK levels (89, 90).
Johnson and colleagues (90) found that fecal M2-PK could differ-
entiate between non-inflamed and inflamed pouches with a sensi-
tivity and specificity of 80 and 70.6%, respectively. Moreover, fecal
M2-PK levels correlated significantly with disease activity indices,
endoscopic and histological appearances, as well as the degree of
neutrophilic infiltration (90). These findings were mirrored in the
earlier study despite a smaller sample size (89).

SHORT-CHAIN FATTY ACIDS
Short-chain fatty acids are produced when colonic microflora
ferment complex carbohydrates that are not absorbed in the
small intestine (91) (Table 2). The main SCFAs liberated in the
colon are propionate, acetate, and butyrate and their production
can be altered by diet and rate of transit (3). The type of sub-
strates derived from a person’s diet influences the production of
SCFA. For instance, pectin is a particularly good source of acetate,
while starch, oat, and wheat bran give rise to high amounts of
butyrate (91). Antibiotics, especially those effective against Gram-
negative and anaerobic bacteria, can also alter colonic SCFA pro-
duction by reducing the fermentative capacity of the intestinal
microflora (91).

ROLE IN HEALTH
Short-chain fatty acids have a wide range of actions. They are
absorbed and metabolized rapidly by colonocytes, providing 60–
70% of their energy requirements (91). They also regulate fluid
and electrolyte uptake via activation of apical Na+/H+ exchange
(91). Their presence in the colon lowers the pH, thus preventing
the overgrowth of pH-sensitive pathogenic bacteria. Human rectal
SCFA infusions have also shown to increase splanchnic blood flow
and decrease gastric tone (3).

Butyrate, in particular, plays an important role in intestinal
health. It has been shown to have a trophic effect on colorectal
and ileal mucosal cells but despite this, is able to maintain normal
colonic phenotype via growth arrest, differentiation, and apopto-
sis, thereby lowering the risk of malignancy. Importantly, butyrate
enhances the gastrointestinal innate immunity by acting as a relay
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for transducing information from the luminal environment to
the mucosal immune system via up-regulation of TLR expression
(92). These TLRs enable the epithelium to differentiate commen-
sal flora from pathogens, via recognition of bacterial molecular
patterns called PAMPs and induce the transcription of a panel of
genes mediating immune and inflammatory responses (92).

ROLE IN INTESTINAL DISEASE
Inflammatory bowel disease
Butyrate has anti-inflammatory effects that are mediated by the
inhibition of NF-κB (i.e., inhibiting NF-κB nuclear translocation)
in human colonic epithelial cells, therefore suppressing the gene
transcription of pro-inflammatory cytokines. Histone deacety-
lase inhibition is the proposed mechanism behind this reduction
in NF-κB translocation (93). The anti-inflammatory effects of
butyrate have been demonstrated in UC, where butyrate ene-
mas resulted in improved clinical disease activity and histological
inflammation (94). The same anti-inflammatory effect was seen in
CD, where butyrate reduced the expression of pro-inflammatory
cytokines by intestinal biopsy specimens from CD patients (95).

Diversion colitis
Following the formation of an ileostomy, or after proximal colec-
tomy for conditions such as IBD, where there is surgical diversion
of the fecal stream (91), diversion colitis can develop due to the
reduction in luminal butyrate levels (96). This results from the loss
of butyrate as an energy source for colonocytes as well as a lack
of its trophic effects on the colon (91). The anti-inflammatory
effects of SCFAs were reiterated in a study which showed that
SCFA-irrigation reversed the mucosal abnormalities in patients
with diversion colitis (97).

Diarrheal disorders
Short-chain fatty acids have been found to have a role in diar-
rheal disorders, in accordance with their ability to stimulate fluid
and electrolyte uptake. A study on cholera in children found that
including rice starch in oral rehydration salts (ORS) resulted in
faster clinical recovery (98). This was associated with striking
increases in fecal bacterial concentrations and SCFA levels with
time, indicating that this therapeutic effect might be mediated
by SCFA enhancing sodium and water absorption and providing
colonocytes with energy (98).

Short-chain fatty acids have also been implicated in the devel-
opment of antibiotic-associated diarrhea (AAD). A study aimed
at elucidating the pathogenesis of AAD found very low SCFA pro-
duction in AAD patients versus controls (99). It is unclear whether
AAD is secondary to impaired colonic fermentation resulting in
decreased SCFA-stimulated sodium and water absorption, or the
reduction in SCFA production is due to decreased colonic bacterial
count (99).

Cystic fibrosis
It has been hypothesized that malabsorption of carbohydrates and
to a lesser extent, protein, that occurs in CF associated with pan-
creatic insufficiency, can serve as substrates for fermentation by
colonic microflora, thus leading to an increase in SCFA produc-
tion and excretion in stool (100). Increased fecal SCFA output

(50± 30 mmol/day) was found in patients with pancreatic insuf-
ficiency secondary to chronic pancreatitis unrelated to CF when
compared to healthy individuals (10–20 mmol/day) (101). This
finding of increased SCFA production in a maldigestive state sim-
ilar to CF might indicate mechanisms other than pancreatic insuf-
ficiency in determining fecal SCFA output in CF patients. Notably,
SCFA derivatives have been shown to correct the ∆F508-CFTR
mutation in vitro, by correcting the inability of the ∆F508-CFTR
protein to traffic to the cell surface membrane and by activating
alternate chloride transport pathways (102).

PRACTICAL ASPECTS OF FECAL BIOMARKERS
Of the markers discussed, all except SCFA can be measured in stool
via sandwich ELISAs, which are mostly commercially available and
therefore easily performed in a routine laboratory.

There is limited information on the stability of defensins in
stool. In preparation for one study (19), the authors looked at three
sample storage conditions – 48 h at room temperature, 1 week at
4°C, and 3 months at −80°C – and observed no significant dif-
ference in HBD2 levels in stool. These results suggest that fecal
samples can be stored in a patient’s home refrigerator for up to a
week prior to laboratory testing, therefore enhancing the clinical
utility of the test. On the contrary, no information regarding the
stability of cathelicidin in stool has been found.

Lactoferrin, calprotectin, and S100A12 are stable in stool at
room temperature for up to 4, 7, and more than 7 days, respectively
(58). In addition to the resistance of lactoferrin to proteolysis in
stool, it is unaffected by multiple freeze-thaw cycles (84). Calpro-
tectin and S100A12 also have a homogenous distribution in stool
(58). These features increase the convenience and acceptability of
sample collection to children and parents, with the potential to use
regular mail for the S100 proteins. They also ensure the accuracy
of measurement via ELISA in the laboratory, further enhancing
their desirability as fecal biomarkers.

M2-pyruvate kinase is stable for 2 days at room temperature
in stool (84). Commercial ELISAs have been previously devel-
oped and validated for use in CRC screening and are thus readily
available.

Osteoprotegerin, on the other hand, decays rapidly in stool
within 24 h at room temperature (54). This means that sam-
ples have to be freshly collected and kept frozen at −80°C until
tested.

Measurement of SCFA in stool is done via high-performance
liquid chromatography (HPLC), therefore requiring additional
expertise and laboratory equipment than an ELISA. SCFA, both
volatile and non-volatile, are found to be stable in stool for at least
7 days at room temperature if samples are treated with 70% ethanol
(103). Fecal samples are suggested to be treated immediately after
defecation (103), which may be inconvenient for patients. A fur-
ther drawback of measuring fecal levels of SCFA is that <5% of
SCFA produced in the colon is excreted in stool (91). Moreover,
fecal SCFA can be altered by diet and rate of transit, and there-
fore may only be useful in reflecting changes in excretion but not
in production. Alternative methods for measuring SCFA are the
breath gas test and peripheral venous SCFA. However, these meth-
ods are general indicators of SCFA fermentation and not intestinal
specific (3). These disadvantages presented in the literature affect
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the feasibility and clinical utility of measuring SCFA in stool to a
fair extent.

AREAS FOR CONSIDERATION AND FUTURE RESEARCH
Currently, the clinical role of fecal biomarkers is better established
in diseases like IBD, with a paucity of information in other states
of gastrointestinal disease and inflammation. More research into
these biomarkers has to be performed before they can be used
to accurately define the basic biological processes and pathogen-
esis of disease. With more research to further our understanding
of these biomarkers, there is the potential for them to be incor-
porated into clinical practice. Although endoscopy with tissue
biopsies is at present the only accurate means of detecting intesti-
nal inflammation (58), testing of fecal biomarkers can be used
as an initial screening test to determine the need for more inva-
sive investigations. Their non-invasive nature is also especially
valuable in the pediatric population. Furthermore, the analysis
of these biomarkers directly from stool provide intestinal-specific
information as opposed to the commonly used serum markers
such as C-reactive protein (CRP) and ESR, which reflect a sum-
mation of systemic inflammatory responses (58). Therefore, fecal
biomarkers may be a viable option for monitoring disease activity
in the follow-up of patients and assessing their response to anti-
inflammatory therapies. The current lack of age-related reference
ranges of these biomarkers in healthy children, apart from cal-
protectin and S100A12, needs to be addressed. In addition, with
future work to more clearly define healthy from disease levels, these
biomarkers can be used for risk stratification in patients to direct
therapy and predict clinical outcomes.

In addition to protein biomarkers, intestinal microbes and
microbial products also have the potential to be used as disease
markers. However at present, more research into their role in
healthy and disease states has to be done. Therefore, they are less
applicable to clinical practice in the immediate future as compared
to protein biomarkers. With reducing costs and the automation of
high-throughput sequencing, microbes and their products show
great promise as disease markers for future clinical use (104). A
further advantage is that determining specific compositions of gut
microbiota in disease states may provide more insight into the
causes of such diseases. This is in contrast to quantifying protein
biomarkers, which reflect more on the effects of disease states.

CONCLUSION
There are various biomarkers, a few of which have been reviewed
above, that may be useful in providing insight into the role
of intestinal health and disease, and the development of non-
gastrointestinal conditions associated with intestinal dysbiosis.
There is a current lack of literature on the normal ranges as well as
age-related changes of these biomarkers in healthy children, which
limit the applicability of these fecal biomarkers in a general clinical
setting.
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