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ABSTRACT

Motivation: Gene set enrichment has become a critical tool for inter-

preting the results of high-throughput genomic experiments.

Inconsistent annotation quality and lack of annotation specificity, how-

ever, limit the statistical power of enrichment methods and make it

difficult to replicate enrichment results across biologically similar

datasets.

Results: We propose a novel algorithm for optimizing gene set

annotations to best match the structure of specific empirical data

sources. Our proposed method, entropy minimization over variable

clusters (EMVC), filters the annotations for each gene set to minimize

a measure of entropy across disjoint gene clusters computed for a

range of cluster sizes over multiple bootstrap resampled datasets. As

shown using simulated gene sets with simulated data and Molecular

Signatures Database collections with microarray gene expression

data, the EMVC algorithm accurately filters annotations unrelated to

the experimental outcome resulting in increased gene set enrichment

power and better replication of enrichment results.

Availability and implementation: http://cran.r-project.org/web/pack

ages/EMVC/index.html.

Contact: jason.h.moore@dartmouth.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Gene set enrichment is widely used for the analysis and

interpretation of the large molecular datasets generated by
modern biomedical science (Hung et al., 2012; Khatri et al.,

2012). Despite the development of robust statistical enrichment

methods (Efron and Tibshirani, 2007; Subramanian et al., 2005;

Wu and Smyth, 2012) and extensive functional ontologies such

as the Gene Ontology (GO) (Ashburner et al., 2000), the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and

Goto, 2000) and the Molecular Signatures Database (MSigDB)

(Liberzon et al., 2011) with annotations for many biological mol-

ecules across numerous species, the results of enrichment analysis

are too often overly general, inaccurate or non-reproducible
across experiments (Khatri et al., 2012).

Although changes to statistical methods or refinements of
functional ontologies can improve enrichment performance,

annotation completeness and quality is often a dominant

factor driving enrichment accuracy and reproducibility.

The annotation of most genes and gene products is incom-
plete with only a sparse set of annotations to generic high-level

categories available (Faria et al., 2012). For those annota-
tions that do exist, the overwhelming majority are automatically

generated on the basis of sequence or structural similarity

without any curatorial review (du Plessis et al., 2011; Juncker
et al., 2009). Such automatically generated annotations have

known quality issues relative to manually curated annotations,
especially those based on published experimental findings (Bell

et al., 2012; Dolan et al., 2005; Faria et al., 2012; Park et al.,

2011; Schnoes et al., 2009; Skunca et al., 2012). Electronic
annotations are slowly being replaced with higher-quality

annotations backed by experimental evidence; however,
given the slow pace of experimental validation and manual

curation, the preponderance of unreviewed computational

annotations and continual generation of new automated annota-
tions, annotation quality will remain a challenge into the fore-

seeable future.
Current approaches to annotation quality fall into one of

several groups: those that create a filtered version of existing
annotations, those that subset and/or restructure existing

functional ontologies and those that define new, customized,
gene sets. In the context of GO, automatic annotation filtering

includes methods that use evidence codes, e.g. the MSigDB C5

collection (Liberzon et al., 2011), as well as approaches that use
the ontology hierarchy to identify and remove redundant anno-

tations (Faria et al., 2012). Methods that subset or restructure
ontologies include tools for the manual (Binns et al., 2009;

Carbon et al., 2009) or automatic (Davis et al., 2010) generation

of GO Slims as well as techniques for the information theoretic
optimization of the entire GO taxonomy (Alterovitz et al., 2010).

The process used to generate the MSigDB C4 cancer modules
(Segal et al., 2004) combines both automatic gene set generation

with gene set refinement. In the cancer module process, modules

are generated by merging and then refining existing gene sets
with gene clusters computed from a large collection of tumor

gene expression microarrays.
Although manually customized annotation collections can

achieve high specificity, they require domain expertise to cre-
ate and suffer from ad hoc methods that limit the relevance of

any subsequent analysis results. While automatic methods for

annotation filtering and ontology sub-setting do not suffer
from individual researcher bias, their general purpose nature

can prevent them from aligning with the narrow scientific*To whom correspondence should be addressed.
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domain under investigation. An important limitation of

many current automatic annotation filtering and ontology sub-

setting methods is the fact that analysis is only based on the

structure of the ontology and the content of the underlying

annotation databases. The experimentally observed abundance

of the annotated genes and gene products is not used to help

identify low-quality annotations or guide ontology restructuring.

By focusing on just ontological and annotation data, these

methods provide information about the general quality of the

annotations and ontology structure, information that is equally

relevant to any dataset measuring the annotated genes. Given

the large number of proteins with incomplete and

therefore coarse-grained functional annotations, a general meas-

ure of annotation quality may be a poor predictor of how well

annotations will perform within a narrow domain. Even

for those approaches that use experimental data, like the pro-

cess used to create the MSigDB C4 cancer modules, the focus is

usually on a broad collection of experimental data (e.g. micro-

array data for 22 tumor types in the case of the C4 cancer mod-

ules), and the output typically combines synthesis of new

gene sets with gene set refinement rather than focusing solely

on refinement of existing gene sets for a specific experimental

context.
Development of high-quality annotations that are specialized

to a research domain, yet free from researcher bias, requires

techniques that automatically refine annotations using machine

learning methods based on representative experimental data.

While statistical learning methods are commonly used to predict

new annotations from biological data, effective tools are not

currently available that apply these techniques for the refinement

of existing gene set annotations. To address this gap and enable

more accurate and reproducible gene set enrichment analysis, we

have developed a novel bioinformatics method, entropy mini-

mization over variable clusters (EMVC), that automatically cus-

tomizes existing functional annotations for specific sets of

biological data. As we demonstrate using simulated gene sets

with simulated data and MSigDB collections with microarray

gene expression data, the EMVC method accurately filters an-

notations unrelated to the experimental outcome, resulting in

increased gene set enrichment power and better replication of

enrichment results.

2 METHODS

Our EMVC algorithm refines gene set annotations to minimize a measure

of entropy between each gene set and clusters of genes computed from

empirical data. Our method takes as input a collection of functional an-

notations of genes and gene products (e.g. gene sets from GO, KEGG or

MSigDB) and a set of experimental data quantifying the abundance of

annotated molecules across multiple experimental conditions. The

method outputs the proportion of gene clusterings, averaged over mul-

tiple bootstrap resampled datasets, in which each annotation belongs to

the minimal entropy solution. Although described in the context of func-

tional gene sets and gene expression data, the EMVC method can be used

to optimize any collection of functional annotations given an associated

empirical dataset. Mathematical details of the EMVC method, a simple

illustrative example and specifics on EMVC evaluation are outlined in the

remainder of this section.

2.1 EMVC algorithm

2.1.1 Inputs The EMVC algorithm takes the following data structures

as input:

� Matrix of gene product abundance: n� p matrix X quantifying the

abundance of p gene products under n experimental conditions, e.g.

mRNA expression levels measured using microarray technology or

RNA-seq. These data will be modeled as a sample of n independent

observations from a p-dimensional random vector.

X ¼

x1, 1 � � � x1, p

..

. . .
. ..

.

xn, 1 � � � xn, p

2
64

3
75 ð1Þ

where xi, j represents the abundance of gene product j under con-

dition i. Although the EMVC algorithm does not have specific dis-

tributional requirements, sources of genomic data are often well

represented by a multivariate normal distribution

� Nð�p�1,�p�pÞ, especially after appropriate transformations. It is

assumed that any desired data transformations (e.g. mean centering,

standardization, log transformation of mRNA expression ratios)

have been performed and that missing values have been imputed

or removed for a complete case analysis.

� Matrix of functional annotations: f� p binary annotation matrix A

whose rows represent f different biological functions, e.g. GO cate-

gories or KEGG pathways, and whose cells ai, j hold indicator vari-

ables whose value depends on whether an annotation exists between

the function i and gene product j.

A ¼

a1, 1 � � � a1, p

..

. . .
. ..

.

af, 1 � � � af, p

2
64

3
75, ai, j ¼ 1 ½gene product j has function i� ð2Þ

� Algorithm parameters: Required parameters include the variable

clustering method (k-means and agglomerative hierarchical cluster-

ing using correlation distance are currently supported), the range of

cluster sizes (kmin to kmax) and the number of bootstrap resamples,N.

2.1.2 Entropy measure At the core of our EMVC approach is an

entropy measure computed over functional variable groups relative to

clusters of variables. In the context of gene sets and genomic data, it is

assumed that the p gene products have been divided via a strict partition-

ing into k clusters with the indicator function 1 ½genej 2 clusterl� repre-

senting the membership state of gene product j within cluster

l, l ¼ 1, . . . , k. This clustering can be modeled by f distinct categorical

random variables, Ci, one for each function class defined in the annota-

tion matrix A. Each Ci has k categories and a length-k vector of category-

specific probabilities �Ci with elements �Ci

l . The maximum likelihood

estimate for the �Ci

l can be computed as the ratio of the number of

gene products in cluster l that are annotated to function i over the total

number of gene products annotated to function i:

�̂Ci

l ¼

Pp
j¼1 ai, j1 ½genej 2 clusterl�Pp

j¼1 ai, j
ð3Þ

The maximum likelihood estimate for the entropy (Hausser and

Strimmer, 2009) of each Ci is therefore as follows:

HðCiÞ ¼ �
Xk
l¼1

�̂Ci

l logð�̂Ci

l Þ ð4Þ

1699

EMVC

employed 
the 
, 
, 
,
i
, 
, etc.
,


2.1.3 Annotation optimization Given the data matrix X, annota-

tion matrix A and required parameters, the EMVC algorithm

optimizes A using the following core algorithm for a range of k

values on each of N bootstrap resampled versions of X. The average

of all optimized annotation matrices is returned as the final output

matrix O.

Core algorithm:

� Generate K partitional clusters of the p gene products in X using an

algorithm such as k-means clustering or a cut of the dendrogram

produced by agglomerative hierarchical clustering with correlation

distance. Specialized variable clustering methods can also be used,

e.g. the principal component analysis-based methods in the R pack-

age ClustOfVar (Chavent et al., 2012), gene shaving (Hastie et al.,

2000), the varclus method in the R Hmisc package, an R implemen-

tation of the SAS VARCLUS procedure.

� For each functional class i, i ¼ 1, . . . , f whose members are defined

by row vector ai, � of annotation matrix A, find the largest subset of

annotations that minimizes the entropy measure defined in Equation

(4) (i.e. largest minimal entropy subset or LMES). The minimum

entropy value of 0 will be achieved when annotations only exist

for gene products belonging to a single cluster. Although any cluster

with a non-zero number of annotations represents a minimum

entropy subset, the EMVC algorithm selects the largest cluster, cor-

responding to the LMES, to ensure that the fewest annotation

changes are made. If multiple clusters are tied for the largest size,

a random cluster is selected as the largest. In the case that a

functional class has just a single annotation, this annotation will

always be a member of the only non-empty cluster and will therefore

automatically be retained.

� Create the optimized annotation matrix A� by setting

a�i, j ¼ 1 ½genej 2 LMES for functional class i�.

Smoothing across clusterings:

� Generate A�k for k ¼ kmin, . . . , kmax.

� Average the A�k to create Asm. The elements of Asm hold the propor-

tion of all variable clusterings in which a particular gene is an elem-

ent of the LMES.

Bootstrap aggregation:

� Average the Asm across N bootstrap resampled datasets to form O

(Breiman, 1996).

2.1.4 Output The EMVC algorithm outputs the f� p matrix O whose

values oi;j reflect the proportion of variable clusterings over all bootstrap

resampled datasets in which the annotation of gene product j to function i

is kept after entropy minimization.

O ¼

o1, 1 � � � o1, p

..

. . .
. ..

.

of, 1 � � � of, p

2
64

3
75, oi, j 2 ½0, 1� ð5Þ

If an optimized annotation matrix containing binary indicator vari-

ables is desired as output, rather than a matrix of proportions, the

elements of O can be replaced by 0 or 1 according to some desired

threshold. For a specific threshold, � 2 ½0, 1�, such an f� p matrix T

can be generated as follows:

T ¼

t1, 1 � � � t1, p

..

. . .
. ..

.

tf, 1 � � � tf, p

2
64

3
75, ti, j ¼ 1 ½oi, j 	 �� ð6Þ

2.2 Simple example

The following simple example illustrates the basic operation of the

EMVC method. Assume that just two gene sets are defined over five

gene products as specified by the following annotation matrix:

A ¼
1 1 1 0 0
0 0 1 1 1

� �

Consider the behavior of the EMVC algorithm for the following two

idealized population covariance matrices:

�1 ¼

�2 2 2 0 0
2 �2 2 0 0
2 2 �2 0 0
0 0 0 �2 2

0 0 0 2 �2

2
66664

3
77775,�2 ¼

�2 2 2 0 0
2 �2 2 0 0
2 2 �2 2 2

0 0 2 �2 2

0 0 2 2 �2

2
66664

3
77775

When disjoint variable clusters are generated for experimental data

distributed according to �1 with k¼ 2, the cluster assignments will be

f1, 1, 1, 2, 2g with high likelihood, i.e. two variable clusters corresponding

to the block structure in the population covariance matrix. For the gene

set corresponding to the first row in A, the estimated entropy given by (4)

is HðC1Þ ¼ �
3
3 logð

3
3Þ �

0
3 logð

0
3Þ ¼ 0. Because the estimated entropy is al-

ready the minimum possible value, the EMVC algorithm will not make

any changes to the first row of A. For the gene set corresponding to the

second row in A, the estimated entropy given by (4) is

HðC2Þ ¼ �
1
3 logð

1
3Þ �

2
3 logð

2
3Þ ¼ :637. To achieve a minimum entropy of

0 for this gene set with the fewest annotation changes, the EMVC algo-

rithm eliminates all annotations except those belonging to cluster 2, the

gene cluster with the most genes annotated to this gene set. Overall,

EMVC optimization of A for �1 will result in the following optimized

annotation matrix:

O1 ¼ T1 ¼
1 1 1 0 0
0 0 0 1 1

� �

When disjoint variable clusters are generated for experimental data dis-

tributed according to �2 with k¼ 2, the cluster assignments will alternate

between f1, 1, 1, 2, 2g and f1, 1, 2, 2, 2g with roughly equal likelihood.

Because theEVMCalgorithmaveragesoptimization resultsacrossmultiple

bootstrap resampled datasets, the optimized matrixOwill reflect the aver-

age of the optimization for these two cluster assignment scenarios:

O2 ¼
1 1 :5 0 0
0 0 :5 1 1

� �

When the O2 matrix is filtered to generate the binary optimized anno-

tation matrix T2, either of the following can be generated depending on

whether the threshold � is set low or high, respectively:

T2,�5:5 ¼
1 1 1 0 0
0 0 1 1 1

� �
,T2,�4:5 ¼

1 1 0 0 0
0 0 0 1 1

� �

2.3 EMVC evaluation

To evaluate the effectiveness of our approach, we used the EMVC algo-

rithm to optimize both simulated variable groups for simulated data as

well as MSigDB gene set collections for real gene expression data.

Variable clusters were generated using both k-means clustering and aver-

age-link agglomerative hierarchical clustering with correlation-based

distance. Evaluation was based on the following metrics:

(1) Ability of the EMVC algorithm to filter inconsistent gene set an-

notations and leave valid annotations unchanged. Assuming the

validity of each annotation is known, this can be quantified using

contingency table statistics for the output matrix T and can be

represented using a receiver operating characteristic (ROC) curve

for the output matrix O.

H.R.Frost and J.H.Moore
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(2) Improvement in gene set enrichment power when using the opti-

mized annotations in T versus the unoptimized annotations in A.

This can be quantified if the identity of gene sets that have a true

association with the output for a given dataset is known.

(3) Improved replication of gene set enrichment results across similar

datasets when using the annotations in T versus A. Although

knowledge of the true enrichment status of each gene set is not

needed to measure replication, multiple datasets are required.

2.3.1 Evaluation using simulated variable groups and simulated
data As a straightforward example, the EMVC algorithm was used

to optimize 20 disjoint variable groups, each composed of annotations

to 15 variables, against twenty-five 100� 300 data matrices simulated

according to a multivariate normal distribution �MVNð�,�Þ.

The population covariance matrix, �, was structured such that all vari-

ables had a variance of �2 ¼ 1 and a correlation among the first 5 vari-

ables within the first 10 variable groups of � ¼ 0:75. For the first 50

observations, i.e. the cases, the mean vector, �, was set to 0 for all vari-

ables except for the first 5 variables within variable groups 1, 2, 11 and 12

(the enriched variable groups) for which it was set to 1. For the last 50

observations, i.e. the controls, the mean vector was set to zero, � ¼ 0.

According to this design, only the first 5 variables within each of the first

10 variable groups represent valid annotations.

EMVC optimization of the simulated variable groups was performed

withoutbootstrappingandusing 50bootstrapresampleddatasets.Variable

clusters were created by cutting the dendrogram generated via average-link

agglomerative hierarchical clustering with correlation-based distance,

ð1� rÞ=2, at k¼ 10 and at k ranging from 5 to 15. Variable group enrich-

ment false discovery rates (FDR) were computed using the Benjamini and

Hochberg algorithm (Benjamini and Hochberg, 1995) from two-sided en-

richment P-values generated by the Correlation Adjusted MEan RAnk

(CAMERA) competitive enrichment method (Wu and Smyth, 2012)

using the R implementation in the limma package (Smyth, 2005) with de-

fault settings. Improvement in enrichment replication was quantified using

Kendall’s coefficient of concordance (Kendall and Smith, 1939), as imple-

mented in the R package irr, across the 25 simulated datasets.

EMVC optimization results for additional simulation scenarios invol-

ving larger sets of overlapping variable groups and the use of k-means

clustering instead of average-link agglomerative hierarchical clustering

with correlation distance can be found in Supplementary File S1.

2.3.2 Evaluation using MSigDB C2 v1.0 gene sets and p53 gene
expression data The EMVC algorithm was used to optimize the

MSigDB C2 v1.0 gene sets for the p53 gene expression data used in the

2005 GSEA paper (Subramanian et al., 2005). This classic gene set col-

lection and gene expression dataset were selected principally because of

their widespread use in the gene set enrichment literature [e.g. (Efron and

Tibshirani, 2007) and (Subramanian et al., 2005)] and easy accessibility

from the MSigDB repository, factors that will enable other researchers to

more easily interpret and replicate the reported EMVC optimization

results. As a curated gene set collection with experimentally based

annotations, the C2 collection also provides a more meaningful an-

notation optimization challenge than much larger collections such as

GO whose annotations are primarily generated via automated methods

and are therefore less likely on average to align with experimental data.

EMVC optimization was performed using the archived MSigDB C2

v1.0 gene sets and collapsed p53 gene expression data downloaded from

the MSigDB repository. With a minimum gene set size of 15 and max-

imum gene set size of 200, 301 gene sets out of the original 522 were used

in the analysis. The optimized annotation matrix O was generated by

executing the EMVC algorithm on 50 bootstrap resampled datasets

drawn from the standardized p53 gene expression data, i.e. each

column was mean centered and scaled to have a standard deviation of

1, with gene clusters generated by k-means clustering for k in the range

of 3–15. An optimized version of the C2 gene sets, representing matrix T,

was generated by filtering the optimized annotation matrix O at a thresh-

old of 0.1. The enrichment of both optimized and unoptimized C2 gene

sets was computed for the p53 mutated versus wild-type phenotype using

CAMERA (Wu and Smyth, 2012) with default parameters.

Unlike in the simulated data case, where the validity of each annota-

tion was known by design, the consistency of C2 gene set annotations for

the p53 data could only be inferred indirectly. For evaluation of the

EMVC algorithm via contingency table statistics, the designation of

each gene set member by the GSEA algorithm (Subramanian et al.,

2005) as either a core gene or non-core gene with respect to enrichment

against the p53 mutated phenotype was used as a proxy for annotation

validity (e.g. see the detailed results at http://www.broadinstitute.org/

gsea/resources/gsea_pnas_results/p53_C2.Gsea/index.html). Although it

was not possible to directly quantify the change in gene set enrichment

power due to EMVC optimization of the C2 gene sets, the impact was

indirectly examined by comparing the change in enrichment FDR values

between unoptimized and optimized annotations and the unoptimized

enrichment significance. Enrichment replication was analyzed using

Kendall’s coefficient of concordance on the enrichment results computed

using optimized annotations over multiple bootstrap resampled datasets,

where these bootstrap datasets used to compute concordance were dis-

tinct from the bootstrap datasets used during annotation optimization.

2.3.3 Evaluation using MSigDB C4 v4.0 cancer modules and leu-
kemia gene expression data The EMVC algorithm was also used to

optimize the MSigDB C4 v4.0 cancer modules for the leukemia gene

expression data (Armstrong et al., 2002) used in the 2005 GSEA paper

(Subramanian et al., 2005). Because the cancer modules (Segal et al.,

2004) were generated by merging and then refining both existing gene

sets drawn from GO, KEGG and the Gene Microarray Pathway Profiler

(GenMAPP) (Dahlquist et al., 2002) and gene clusters computed from

1975 gene expression microarrays for 22 tumor types, the cancer modules

should be well aligned with the structure of tumor gene expression data,

making further optimization challenging for a dataset such as the leuke-

mia gene expression data. The automated data-driven process used to

create the cancer modules also provides a useful contrast with the curated

C2 gene sets for the purpose of evaluating the EMVC algorithm.

Similar to testing on the C2 gene sets and p53 data, optimization was

performed using the MSigDB C4 v4.0 cancer modules and collapsed leu-

kemia gene expression data downloaded from the MSigDB repository.

With a minimum gene set size of 15 and maximum gene set size of 200,

297 gene sets of the original 431 were used in the analysis. The optimized

annotation matrix O was generated by executing the EMVC algorithm on

50 bootstrap resampled datasets drawn from the standardized leukemia

gene expression data with gene clusters generated by cutting the dendrogran

generated via average-link agglomerative hierarchical clustering with cor-

relation distance at k in the range of 3–15. An optimized version of the

cancer modules, representing matrix T, was generated by filtering the opti-

mized annotation matrix O at a threshold of 0.15. The enrichment of both

optimized and unoptimized cancer modules was computed for the acute

myeloid leukemia (AML) versus acute lymphoblastic leukemia (ALL)

phenotypes using CAMERA (Wu and Smyth, 2012).

The computation of contingency table statistics, analysis of enrichment

power and quantification of enrichment replication were performed for

the cancer modules and leukemia data using the same methods employed

for the C2 gene sets and p53 data (see Section 2.3.2 above).

3 RESULTS

3.1 Optimization of simulated variable groups using

simulated data

Removal of inconsistent annotations. Optimization results for one

of the 25 datasets simulated according the procedure outlined in

EMVC
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Section 2.3.1 is shown in Figure 1b–f. Figure 1b and c show the

EMVC output when results are not averaged over multiple boot-

strap resampled datasets. Figure 1b is additionally restricted to

just a single number of clusters, in this case 5. Figure 1d illus-

trates the standard output matrix O, which averages results over

cluster sizes from 5 to 15 and 50 bootstrap resampled datasets.

Figure 1e and f show two versions of the filtered output matrix T

for thresholds of 0.1 and 0.9, respectively.
For the simulation procedure outlined in Section 2.3.1, the

EMVC algorithm filtered inconsistent annotations with high

accuracy when applied to a range of cluster sizes and multiple

bootstrap resampled datasets. The mean area under curve

(AUC) over all 25 simulated datasets was 0.995. When just a

single cluster size was used or bootstrapping was not used,

EMVC performance declined. The mean AUC for no bootstrap-

ping and k¼ 10 was 0.912, for all cluster sizes and no bootstrap-

ping the mean AUC was 0.941, and for 50 bootstrap datasets

and k¼ 5 the mean AUC was 0.993.
Impact on enrichment power. The impact of EMVC optimiza-

tion on variable group enrichment for all 25 simulated datasets is

shown in Figure 2. This figure plots the distribution of variable

group enrichment FDR computed using CAMERA (Wu and

Smyth, 2012) for each of the 20 variable groups using both

unoptimized and optimized annotations. Based on the simula-

tion design, only variable groups 1, 2, 11 and 12 should have

significant FDR values because only these variable groups in-

clude variables that have a true association with the simulated

binary phenotype. Although the EMVC algorithm filters many

uncorrelated variables from the first 10 variable groups, enrich-

ment using both unoptimized and optimized annotations results

in insignificant FDR values for all truly non-enriched variable

groups. The enrichment FDR values for unenriched variable

groups are therefore not impacted by EMVC filtering of uncor-

related variables. As shown by the figure, enrichment power for

this example is substantially improved after EMVC-based anno-

tation optimization with the mean power to detect the truly en-

riched variable groups at a q-value of 
1, changing from 0.63 for

unoptimized annotations to 0.79 for optimized annotations.
Impact on enrichment replication. EMVC-optimized annota-

tions also improved the replication of enrichment results, as

measured by Kendall’s coefficient of concordance across the 25

independently simpulated datasets. Using unoptimized annota-

tions, Kendall’s W for the enrichment FDR values across the 25

simulated datasets was 0.486. Using optimized annotations,

Kendall’s W was 0.507.

3.2 Optimization of MSigDB C2 v1.0 using p53 data

Removal of inconsistent annotations. Figure 3 shows the impact of

EMVC optimization on the 15 MSigDB C2 v1.0 gene sets with

the lowest enrichment P-values relative to the p53 mutated versus

wild-type phenotype using unoptimized annotations. The contin-

gency table embedded in the lower right corner of this figure

holds the results of the overlap between EMVC-filtered genes

(a) (b) (c)

(d) (e) (f)

Fig. 1. EMVC optimization results on simulated data. (a) Graphical

representation of the annotation matrix capturing the non-overlapping

assignment of 300 random variables to 20 variable groups. Each row

represents a variable group, each column represents a random variable

and positive annotation values are indicated by dark cells. (b) Annotation

matrix after a single execution of the EMVC algorithm on clusters of the

300 variables generated by a cut of the dendrogram generated by single-

link agglomerative hierarchical clustering with correlation distance at

k¼ 10. Dark cells reflect annotations that were not filtered during opti-

mization. (c) Annotation matrix after execution of the EMVC algorithm

on clusters of the 300 variables generated by dendrogram cuts at k in the

range 5–15. Intensity of the cell shading corresponds to the proportion of

the clusterings in which the annotation was kept after optimization. (d)

Annotation matrix based on the average of 50 executions of the EMVC

algorithm on bootstrap resampled datasets. Intensity of cell shading cor-

responds to the average optimization proportion over all bootstrap

resampled datasets. (e) Annotation matrix based on sparse filtering of

bootstrap results. Only annotations whose average bootstrap optimiza-

tion proportion is 40.9 are included. (f) Annotation matrix based on

strict filtering of bootstrap results. Only annotations whose average boot-

strap optimization proportion is50.1 are removed

Fig. 2. Distribution of enrichment FDR for simulated variable groups

using both unoptimized and optimized annotations. Plotted FDR values

were computed using the Benjamini and Hochberg algorithm from two-

sided enrichment P-values generated by the competitive enrichment

method CAMERA (Wu and Smyth, 2012) for each of the 20 variable

groups across 25 datasets simulated according to the design outlined in

Section 2.3.1. Filled circles and flat error bars represent the average (�

one standard error) of the FDR values computed for each of the 20

variable groups using unoptimized annotations on the 25 simulated data-

sets. Squares and angled error bars represent the FDR values computed

using bootstrap optimized annotations with strict filtering. For the four

enriched variable groups simulated with a true mean difference between

cases and controls, open circles and open squares are used. FDR values

are plotted on a logarithmic scale
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and genes that were designated as core or non-core by GSEA for

these 15 gene sets. In terms of the desired behavior of the EMVC

algorithm, non-core genes can be viewed as true positives, i.e.

annotations that should be removed. As demonstrated by the

significant odds ratio of 9.38 (95% CI: 2.23–84) and area

under the ROC curve of 0.67 for all annotation filtering thresh-

olds, the EMVC algorithm effectively removed C2 annotations

for genes that do not contribute to the mutated versus wild-type

phenotype in the p53 data.
Impact on enrichment power. As illustrated in Figure 3, EMVC

optimization resulted in an improvement in enrichment FDR

values for 13 of the 15 most significant gene sets. As demon-

strated by the association between EMVC annotation filtering

and the GSEA core versus non-core designation, this improve-

ment in enrichment FDR values was primarily due to the pref-

erential removal of annotations for genes with either a small

association with the outcome or with an association that was

the opposite from the overall direction of enrichment of the

gene set. Across all 301 tested C2 gene sets, the improvement

in the enrichment FDR after EMVC optimization was positively

correlated with the original enrichment significance of the gene

set, i.e. gene sets with significant enrichment values using the

unoptimized annotations were most likely to benefit from opti-

mization. This association was demonstrated by a Spearman

correlation between unoptimized enrichment FDR values and

the ratio of optimized to unoptimized enrichment FDR values

of 0.261 (P-value: 4.39e-06). The Spearman correlation between

the unoptimized enrichment FDR and the proportion of filtered
gene set annotations was �0.0309 (P-value: 0.594). The fact that

the proportion of gene set annotations filtered during optimization
was unassociated with gene set enrichment significance demon-

strates that this positive correlation was not the result of prefer-
ential annotation filtering for significantly enriched gene sets.
Impact on enrichment replication. EMVC optimization also

had a positive impact on gene set enrichment replication, as
measured by Kendall’s coefficient of concordance on the enrich-

ment P-values across multiple bootstrap resampled datasets.
Using the unoptimized annotations, Kendall’s W for the enrich-
ment P-values values of the C2 gene sets relative to the p53

mutated and wild-type phenotypes on 20 bootstrap resampled
p53 datasets was 0.372. Using the optimized annotations,

Kendall’s W was 0.384.
Detailed results. Complete output from both EMVC annota-

tion optimization and CAMERA gene set enrichment can be

found in Supplementary File S2.

3.3 Optimization of MSigDB C4 v4.0 cancer modules

using leukemia data

Removal of inconsistent annotations. The ability of the EMVC
algorithm to successfully remove inconsistent cancer module an-
notations was verified by examining the overlap between EMVC

filtered genes and genes that are designated by GSEA as core or

Fig. 3. Enrichment and annotation optimization results for the MSigDB C2 v1.0 gene sets and p53 data used in the 2005 GSEA paper (Subramanian

et al., 2005). The figure shows the difference between enrichment FDR computed using unoptimized and optimized annotations for the 15 C2 gene sets

with the lowest unoptimized enrichment P-values. Enrichment FDRs were computed using the Benjamini and Hochberg algorithm on two-sided P-

values generated by the enrichment method CAMERA (Wu and Smyth, 2012). Open circles represent the FDR values computed using the unoptimized

gene sets annotations, and solid squares represent the FDR values computed using optimized annotations. If the optimized FDR value is less than the

unoptimized value, a solid line is used, otherwise, a dotted line is used. A WT prefix is used for gene sets enriched using the unoptimized annotations for

the wild-type phenotype, and a MUT prefix is used for gene sets enriched for the mutated phenotype. The ratio of optimized to unoptimized annotations

for each of the top 15 gene sets is displayed after each gene set name along with the symbols for the filtered genes. An asterisk follows the symbol for

filtered annotations that were designated as core genes by the GSEA algorithm. The contingency table in the bottom right corner displays the association

between EMVC annotation filtering and whether each annotation was designated as a core or non-core gene by the GSEA algorithm with respect to

enrichment against the WT versus MUT phenotype. For the displayed contingency table, filtered annotations were removed by EMVC in more 90% of

the cluster results in 50 bootstrap resampled datasets resulting in an odds ratio of 9.38 (95% CI: 2.23–84). When all filtering thresholds are considered,

the area under the ROC curve is 0.67

EMVC

1703

, 
-
-
vs.
vs.
, 
-
values 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu110/-/DC1


non-core with respect to enrichment against the AML versus

ALL phenotype. Similar to Figure 3, Figure 4 shows the

impact of EMVC optimization on the 15 cancer modules with

the lowest enrichment P-values. The contingency table embedded

in the lower right corner of this figure holds the results of the

overlap between EMVC filtered genes and GSEA core or non-

core genes for the 15 most enriched cancer modules. As demon-

strated by the significant odds ratio of 41.1 (95% CI: 21.8–86)

and area under the ROC curve of 0.92 for all annotation filtering

thresholds, the EMVC algorithm effectively removed C4 cancer

module annotations for genes that do not contribute to the AML

versus ALL phenotype.
Impact on enrichment power. As illustrated in Figure 4, EMVC

optimization resulted in an improvement in enrichment FDR

values for all 15 most significantly enriched cancer modules.

The Spearman correlation between the unoptimized enrichment

FDR and the ratio of optimized enrichment FDR to unopti-

mized enrichment FDR was 0.755 (P-value: 4.78e-56), while

the Spearman correlation between the unoptimized enrichment

FDR and the proportion of filtered annotations was 0.277 (P-

value: 1.2e-06).

Impact on enrichment replication. Using the unoptimized an-

notations, Kendall’s W for the enrichment P-values of the cancer

modules relative to the AML versus ALL phenotypes on 20

bootstrap resampled leukemia datasets was 0.889. Using the

optimized annotations, Kendall’s W was 0.934.

Detailed results. Complete output from both EMVC annota-

tion optimization and CAMERA gene set enrichment can be

found in Supplementary File S3.

4 DISCUSSION

Gene clusters and gene set enrichment. The EMVC algorithm

performs annotation optimization on variable clusters computed

using an unsupervised view of experimental data. By minimizing

the entropy for each variable group relative to disjoint variable

clusters, the annotations for variables that tend to cluster with

other variable group members are kept and annotations for vari-

ables that cluster apart are filtered. A key advantage of this un-

supervised approach is that EMVC-optimized annotations can

be used for subsequent variable group enrichment without bias-

ing the computed enrichment statistics. However, the unsuper-

vised EMVC approach can only successfully filter inconsistent

annotations, improve gene set enrichment power and improve

enrichment replication if the structure of genomic data, as rep-

resented by gene clusters, can be used to identify the genomic

variables most likely to contribute to gene set enrichment. In

other words, the genes that contribute strongly to the enrichment

signal for significantly enriched gene sets must be more likely to

cluster together than the genes whose expression is not consistent

with gene set enrichment.

Fig. 4. Enrichment and annotation optimization results for the MSigDB C4 v4.0 cancer modules and leukemia gene expression data (Armstrong et al.,

2002). The figure shows the difference between enrichment FDR computed using unoptimized and optimized annotations for the 15 cancer modules with

the lowest unoptimized enrichment P-values. Enrichment FDRs were computed using the Benjamini and Hochberg algorithm on two-sided P-values

generated by CAMERA (Wu and Smyth, 2012). Open circles represent the FDR values computed using the unoptimized cancer module annotations,

and solid squares represent the FDR values computed using optimized cancer modules. If the optimized FDR value is less than the unoptimized value, a

solid line is used, otherwise, a dotted line is used. An AML prefix is used for gene sets enriched using the unoptimized annotations for the acute myeloid

leukemia, and an ALL prefix is used for gene sets enriched for the acute lymphoblastic leukemia phenotype. The ratio of optimized to unoptimized

annotations for each of the top 15 cancer modules is displayed after each module name along with the symbols for the filtered genes (cropped at 7). An

asterisk follows the symbol for filtered annotations that were designated as core genes by the GSEA algorithm. For the displayed contingency table,

filtered annotations were removed by EMVC in more 85% of the cluster results in 50 bootstrap resampled data sets resulting in an odds ratio of 41.1

(95% CI: 21.8–86). When all filtering thresholds are considered, the area under the ROC curve is 0.92
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In the simulation example outlined in Section 3.1, such a re-
lationship between variable group enrichment and inter-variable
correlation was explicitly created for the first five variables in the

first two variable groups with the predictable result that these
variables were not filtered by EMVC and significantly lower en-
richment FDR values were obtained using optimized annota-

tions. The results in Sections 3.2 and 3.3 provide important
confirmation that this association between gene set enrichment
and gene clustering exists in real microarray gene expression data

in the context of curated and automatic MSigDB gene sets. This
is most clearly demonstrated by the strong relationship between
EMVC annotation filtering and the designation of gene set an-

notations by the GSEA enrichment algorithm as either core or
non-core genes.
Optimal number of gene clusters and use of bootstrap

aggregation. Because the true number of clusters for experimen-

tal datasets is unknown and cluster size estimation methods such
as the gap statistic (Tibshirani et al., 2001) or silhouette width
(Kaufman and Rousseeuw, 2005) are often unreliable, the

EMVC algorithm is executed on multiple variable clusterings
where the number of clusters varies over a specified range. One
potential enhancement of the EMVC method would be use of

results from a method such as the gap statistic to weight the
EMVC optimization results for each clustering in the specified
range. Bootstrap aggregation is further used to reduce the vari-

ance of the annotation optimization estimates (Breiman, 1996;
Hastie et al., 2009). Averaging over multiple clusterings for mul-
tiple bootstrap resampled datasets provides a robust optimiza-

tion result that is not dependent on a specific estimate of the
optimal number of variable clusters. As demonstrated by the
simulation example in Section 3.1, this can have a significant

impact on optimization performance. The importance of com-
puting information-theoretic measures over a range of cluster
sizes has also been highlighted in the paper describing the re-

cently developed maximal information coefficient method
(Reshef et al., 2011).
Using EMVC to analyze specific genomic datasets. One of the

primary applications of the EMVC algorithm involves the opti-
mization of a gene set collection for a specific genomic dataset
before enrichment analysis. For this application, it is desirable to

perform enrichment analysis against existing gene set categories
that have been modified to only contain annotations consistent
with the narrow domain under investigation. By using standard

gene sets and only allowing the removal of annotations, the
computed enrichment results can be directly interpreted in
terms of widely known and well understood genomic functions.

Such direct and easy interpretation is not possible if annotations
are added or if new novel gene sets are derived. The fact that the
EMVC algorithm uses an unsupervised view of the data to just

filter annotations from existing gene sets therefore makes it well
suited for this use case. Additional benefits of the EMVC
algorithm in this scenario include the ability to use optimization

proportions, rather than filtered annotations based on a
threshold, directly with enrichment methods that support
annotation weights [e.g. ProbCD (Vêncio and Shmulevich,

2007)], and flexibility regarding the algorithm used to cluster
genes.
Using EMVC to refine gene set collections. The EMVCmethod

can also be used for the general refinement of gene set

collections, either to create versions of a gene set collection

that are customized for a specific domain or to identify and en-

tirely remove annotations that exhibit poor alignment with a

broad selection of genomic datasets. For both variants of this

use case, the EMVC algorithm would be used to optimize a gene

set collection for a large number of individual datasets. For the

first variant, the average optimization proportions generated

across all target datasets could be used by researchers to create

customized versions of the gene set collection at any desired level

of confidence. For this application, the ease with which the

EMVC algorithm can be parallelized, at the level of different

clusterings or different bootstrap resampled datasets, is a major

benefit.

EMVC Limitations. Limitations of the EMVC algorithm in-

clude the restriction to annotation removal, computational com-

plexity, dependence on gene clustering structure and sensitivity to

algorithm parameter settings.

� The EMVC algorithm will only remove potentially incon-

sistent annotations to a gene set. It will not augment incom-

plete gene sets or identify new gene sets.

� If gene set members associated with the clinical outcome fail

to cluster together, EMVC annotation optimization will not

improve gene set enrichment.

� EMVC performance is sensitive to several algorithm param-

eters. Specifically, the cluster method, k range and filtering

threshold must be appropriate for the structure of the ex-

perimental data in X and annotations in A.

� EMVC can be computationally expensive. This is especially

true for large genomic datasets and correspondingly large

gene sets collections with the k range and number of boot-

strap resamples needed to generate stable optimization

results.

5 CONCLUSION

Gene set enrichment has become a central element in the

analysis and interpretation of genomic data. Although signifi-

cant progress has been made building gene set collections and

developing statistical enrichment methods, annotation qual-

ity remains a critical challenge. Because of the broad scope of

many gene set collections and the large number of low-

quality annotations, enrichment analysis results are frequently

inaccurate and non-reproducible. Current approaches to

annotation quality are mainly general purpose, largely driven

by just the structure and content of the gene set ontology and,

when experimental data are considered, focus on gene set

synthesis over refinement. To address the annotation quality

issue and limitations of current approaches, we have developed

a novel annotation optimization method, EMVC, which is

available as an R package from CRAN. On both simulated

gene sets with simulated data and MSigDB gene sets with

real gene expression data, the EMVC algorithm has

been shown to effectively filter inconsistent annota-

tions, improve enrichment power and improve enrichment

replication.
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