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Abstract: Physicochemical changes and protein denaturation were evaluated for pork longissimus
dorsi muscle subjected to different thawing methods. Fresh pork longissimus dorsi muscle served
as a control. Microwave (MT), microwave combined with ultrasonic (MUT), microwave combined
with 35 ◦C water immersion (MIT), microwave combined with 4 ◦C refrigeration (MRT), microwave
combined with air convection (MAT), and microwave combined with running water (MWT) were
applied. All microwave-based methods excepted for MT avoided localized overheating. The changes
in the water holding capacity (WHC), color, TBARS, and protein solubility were lowest with MAT.
Differential scanning calorimetry (DSC) and dynamic rheological property measurements indicated,
that the MAT samples changed only slightly and presented with complete peaks and high G′ values
compared with the other treatments. Thus, MAT may reduce protein denaturation associated with
meat thawing. The results of this study indicated that MAT effectively shortens thawing time,
preserves meat quality and uniformity, and could benefit the meat industry and those who consume
its products.

Keywords: pork longissimus dorsi muscle; thawing; physicochemical properties; differential scanning
calorimetry; dynamic rheological property

1. Introduction

In recent years, the meat consumption has grown rapidly because of its better flavor,
and nutrition [1]. Though meats are rich in essential amino acids, vitamins, and minerals, they are
highly perishable food commodities [2,3]. Frozen storage has been widely used to extend the shelf
life and maintain the quality of meat [3]. Frozen meat must be defrosted before consumption or
additional processing [4,5]. Frozen meat quality depends on freezing conditions, and thawing methods.
Protein denaturation, lipid peroxidation, water loss, textural changes, color and flavor deterioration,
and microbial spoilage may occur during thawing [6,7]. Therefore, a suitable thawing method must be
considered to maintain quality and minimize losses.

In earlier research studies, traditional methods and newer technologies were used to thaw
meat [2,8]. However, air, water, and refrigeration thawing all result in poor meat quality because
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of prolonged defrosting and wide temperature differences between the external and internal meat
layers [9,10]. Microwave, ultrasonics, radio frequency, high-pressure, and ohmics have been proposed
and could significantly accelerate meat thawing [11,12]. Nevertheless, each method has its own
weaknesses. All of them may cause uneven thawing, protein denaturation, and conformational
changes [13]. Hence, it is essential to develop a rapid thawing technique that mitigates undesirable
changes in frozen meat and maintains its quality.

Certain researchers proposed and evaluated thawed meat quality by combinations of various
methods [14]. The feasibility of this approach has been demonstrated in previous studies [15].
Microwave thawing has been widely used in the meat industry [16]. It can shorten defrosting time and
reduce the risk of microbial contamination more effectively than traditional thawing methods [17].
On the other hand, microwave technology has limited practical application in meat defrosting as its
penetration is shallow and it may cause localized overheating [18]. Previous studies compared different
thawing methods and their effects on freeze-defrost cycles. However, there is little information on the
effects of microwave combined with other thawing methods on pork quality. The results of our previous
study [19] showed that microwave thawing, was the fastest method and maintained pork quality
more effectively than ultrasonic, running water, air, refrigerator or 35 ◦C water immersion thawing.
Nevertheless, microwave thawing caused localized overheating and resulted in poor meat texture.
Other thawing methods have various advantages and disadvantages as well. Refrigeration-thawed
(RT) meat conserved meat texture and tenderness, while causing protein denaturation, poor WHC,
color and thiobarbituric acid-reactive substances (TBARS) value. Ultrasonic thawing (UT) was relatively
rapid but resulted in poor WHC. 35 ◦C water immersion thawed (IT) meat conserved meat color,
tenderness, and freshness, while other indexes were bad. Running water thawed (WT) meat had better
values of TBARS and protein solubility, but the DSC indicated the protein denaturation was serious.
Air convection thawing (AT) has least impact on WHC. In the present study, then, microwave thawing
was combined with ultrasonic, 35 ◦C water immersion, refrigeration, air convection, and running
water and their effects on pork longissimus dorsi quality were evaluated. The aim of this study was
to identify an optimal microwave-based thawing method that improves thawing efficiency, avoids
localized overheating, maintains the pork quality, and weakens disadvantages of the single thawing
methods. In this way, a theoretical basis may be established for the development and optimization of
a combination thawing process for application in the meat industry.

2. Materials and Methods

2.1. Sample Preparation

The samples were obtained from five Duroc × Landrace × Yorkshire crossbred pigs selected out
of 100 animals slaughtered at Gaojin Food Co. Ltd. (Xinxiang, China). The animals were commercially
fattened under intensive rearing conditions to 100 ± 5 kg live weight. Their age range was 170–180 d.
At 24 h post-mortem, ten raw longissimus dorsi muscles with an average weight of ~2.8–3.0 kg were
entirely excised from the right and left sides of each carcass and transported to the laboratory within
30 min. Prior to the experiment, all subcutaneous fat and connective tissues were aseptically removed.
Each longissimus dorsi muscle was then sliced into four regular loaves (6 cm × 5 cm × 3.5 cm) of equal
weight (150 ± 0.5 g). Thirty-five loaves of pork were randomly picked from all 40 samples sections,
packaged in polyethylene bags (120 mm × 170 mm) and randomly assigned to seven groups, of which
one was a control group, and the others were experimental treatments. Those assigned to the six
treatments were immediately stored for 24 h at −20 ◦C until the subsequent thawing experiments.
The control group was immediately analyzed at 20–25 ◦C.

2.2. Thawing Methods

Experimental samples were treated with microwave thawing (MT), microwave combined with
ultrasonic thawing (MUT), microwave combined with 35 ◦C water immersion thawing (MIT),
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microwave combined with refrigeration (4 ◦C) thawing (MRT), microwave combined with air convection
thawing (MAT), or microwave combined with running water thawing (MWT). All experimental samples
were tempered until their core temperature reached 2 ◦C according to the method of Xia [20] with some
modification. Microwave thawing (MT) was performed at 100 W in a household microwave oven
(Media Microwave Electronics Co., Ltd., Fushan, China). In a preliminary experiment, various core
temperatures (−4 ◦C, −3 ◦C, −2 ◦C, and −1 ◦C; Figure 1) of the samples thawed with 100 W microwave
were measured to determine localized overheating. It was determined that localized overheating
occurred when the core temperature was >−4 ◦C. All combined thawing methods were conducted in
a household microwave oven at 100 W until the core temperature reached –4 ◦C. The second process
was the same as that described in Zhu et al. [19]. MUT was run in an ultrasonic cleaner (Ultrasonic
Co. Ltd., Kunshan, China) at 100 W and 20 ◦C. MIT was performed in a water bath (HH 42; Guo Hua
Electronics Co. Ltd., Changzhou, China) at 35 ◦C. For microwave combined with 4 ◦C refrigeration
thawing (MRT), the samples were placed in a refrigerator (Meiling Co. Ltd., Hefei, China) at 4 ◦C.
The samples for MUT, MIT, and MRT were placed in polyethylene bags (120 mm × 170 mm) without
holes. MAT was run at 20–25 ◦C. MAT samples were placed in polyethylene bags (120 mm × 170 mm)
perforated on both sides with 16 holes (diameter 6 mm). MWT was conducted at 20–25 ◦C in water
flowing at 0.3 m s−1. MWT samples were also placed in polyethylene bags (120 mm × 170 mm)
perforated at the bottom with six holes (diameter 6 mm).
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Figure 1. Localized overheating in pork samples thawed by microwave. Core temperatures were −4 ◦C,
−3 ◦C, −2 ◦C, and −1 ◦C.

2.3. Determination of Thawing Time and Rate

Thawing times were determined according to the method of Choi [2] with some modification.
Before thawing, holes were made in the sides of the frozen pork samples to enable the thermometers to
reach the centers. Testo 160 thermometers (Testo Instruments International Trading Co. Ltd., Shanghai,
China) recorded temperature changes in the centers of the samples every minute during thawing until
the core temperature reached 2 ◦C. Other Testo 160 thermometers were also inserted to 0.5 cm depth
to record temperature changes at the sample surfaces. According to the method of Zhu et al. [19],
the thawing rate was calculated as follows:

Vtv = L/t (1)



Foods 2020, 9, 26 4 of 16

where L is the shortest distance between the sample surface and the center, and t is the time required
for the surface and center temperatures to reach 0 ◦C and 2 ◦C, respectively.

2.4. Determination of Water-Holding Capacity (WHC)

The water-holding capacity (WHC) of thawed pork was expressed in terms of thawing, cooking,
drip, centrifugation, and total losses.

Thawing loss was calculated from the weights of the pork samples before (M0) and after (MT)
thawing [21]:

Thawing loss (%) = (M0 −MT)/M0 × 100 (2)

Cooking loss was determined according to the method of Xia [20] with some modification. Briefly,
10 ± 0.5 g fresh or thawed subsamples were placed in retort pouches and cooked in a water bath at 80 ◦C
until the center temperature reached 70 ◦C. A Testo 160 thermometer monitored the center temperature.
Cooking loss was determined by weighing the samples before (M0) and after (Mc) cooking:

Cooking loss (%) = (M0 −MC)/M0 × 100 (3)

Centrifugation loss was evaluated by the method of Zhou [22] with slight modification. Fresh or
thawed samples (10 ± 0.5 g) were wrapped in filter paper, placed in a centrifuge tube, and centrifuged
at 5000 rpm and 4 ◦C for 10 min. Centrifugation loss was determined by weighing the samples before
(M0) and after (M1) centrifugation:

Centrifugation loss (%) = (M0 −M1)/M0 × 100 (4)

Drip loss was measured according to the method of Adeyemi [23]. Fresh or thawed samples (10 ±
0.5 g) were weighed and the values were recorded as M0. The samples were placed in polyethylene
bags, suspended at 4 ◦C for 24 h, and reweighed. The new values were recorded as MD. The drip loss
was calculated as follows:

Drip loss (%) = (M0 −MD)/M0 × 100 (5)

Total loss was determined as follows:

Total loss (%) = Thawing loss (%) + Cooking loss (%) + Centrifugation loss (%) + Drip loss (%) (6)

2.5. Determination of Shear Force

Shear force was determined for the cooking loss samples according to the method of Li [15].
After the cooking loss calculation, each sample was cut into a cuboid (1 cm × 1 cm × 2 cm). Each cube
was perpendicularly sheared in the direction of the muscle fibers using a digital muscle tenderness
instrument (C-LM4; Northeast Agricultural University, Harbin, China). The maximum shear force was
recorded and expressed in Newtons (N).

2.6. Color Determination

According to the method of Chun [24], the surface colors of the fresh and thawed samples were
analyzed for L* (lightness), a* (redness), and b* (yellowness) with a color difference meter (CR 400;
Konica Minolta Co. Ltd., Tokyo, Japan; standard observer: ~2◦ observation angle; illuminant: C;
aperture: 8 mm). The instrument was precalibrated with a standard white plate. The control L*, a*,
and b* values were 97.22, −0.14, and 1.82, respectively. The colorimeter was placed vertically at six
different positions on the experimental samples and L*, a*, and b* were recorded. To compare the
color values of thawed and fresh samples, total color differences (∆E*) were calculated and expressed
as follows:

∆E∗ =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (7)
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where ∆L*, ∆a*, and ∆b* are the differences between the thawed and fresh samples in terms of L*, a*,
and b*, respectively.

2.7. Thiobarbituric Acid-Reactive Substances (TBARS)

Lipid peroxidation was determined using TBARS according to the method described by Xia [20]
with slight modifications. Ten grams of each pork sample was weighed out and homogenized at
7500 rpm and 25 ◦C for 15 s (T25; IKA Works, Inc., Wilmington, NC, USA). Then, 50 mL of 7.5% (w/v)
trichloroacetic acid (TCA) solution was added and the mixture was vortexed for 30 min. The sample
solution was filtered through Whatman No.1 filter paper, and then 5 mL of 20 mM 2-thiobarbituric acid
was added and the mixture was boiled in a water bath for 40 min. The sample was cooled to 20–25 ◦C
for 30 min and centrifuged at 5500 rpm and 25 ◦C for 25 min. The absorbance of the supernatant was
measured at 532 nm. The TBARS values were expressed as mg malondialdehyde (MDA) kg−1 sample
and calculated as follows:

TBARS (mg kg−1) = (A532/Ws) × 9.48 (8)

where A532 is the absorbance of the assay solution at 532 nm, Ws is the pork sample weight (g), and 9.48
is a constant derived from the dilution factor and the molar extinction coefficient (152,000 L mol−1 cm−1)
of the red TBA product.

2.8. Sample Freshness

The pH was measured with a digital pH meter (Seven CompactTM; Mettler Toledo, Shanghai,
China) according to the method of Zhu [19]. Before measurement, the pH meter was calibrated with
pH 6.8 and 4.0 technical buffers according to the instrument instructions. Meat samples (5 g) were
homogenized in 45 mL distilled water at 7500 rpm and 25 ◦C for 15 s and their pH values were
measured and recorded.

Total volatile base nitrogen (TVB-N) composes mainly trimethylamine, dimethylamine, ammonia,
and other compounds. TVB-N is the product of microbial enzymes that degrade of proteins and
nonprotein nitrogenous compounds [1]. For TVB-N analysis, 20 g of each fresh or thawed samples was
oscillated for 30 min with 100 mL of 20 g L−1 TCA according to the method of Choi [2]. The solution
was filtered through Whatman No.1 filter paper, and 5 mL was transferred to a Kjeldahl flask containing
5 mL of 10 g L−1 MgO solution. A few drops of dimethicone defoamer were added. The mixture
was distilled in 10 mL of 20 g L−1 boric acid for 5 min and titrated with 10 mM HCl and methyl red
indicator. The TVB-N concentration was evaluated as follows:

TVB-N (mg 100 g−1) = (V1 − V2) × c × 14 × 100/(m × 0.05) (9)

where V1 and V2 are the titration volumes (mL) of the sample and blank solution, respectively, C is the
concentration (M) of the HCl solution, and m is the sample weight (g).

Electrical conductivity was measured with a conductivity meter (Seven CompactTM; Mettler
Toledo, Shanghai, China) according to the method of Yang [25]. In brief, 10 g of each sample was
weighed out and homogenized in 100 mL distilled water. The conductivity electrode was then inserted
and held in place until a stable reading was obtained.

For the total viable counts, 25 g of each meat sample was weighed out, homogenized for 5 min,
and diluted with 250 mL sterile saline (0.85% w/v NaCl). Then, 1 mL of each solution was spread onto
Luria-Bertani (LB) agar (Haibo Biology Co. Ltd., Qingdao, China) plates and incubated at 37 ◦C for
48 h. Total viable counts were then recorded [26].

2.9. Protein Solubility

The effects of thawing on protein solubility were determined according to the method of Joo [27].
Total protein was extracted from 0.25 g pork sample with 5 mL of 0.1 M potassium phosphate buffer
(pH 7.2) plus 1.1 M potassium iodide for total protein solubility determination. The samples were
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minced, homogenized, and placed on a shaker incubator (Fuma Co. Ltd., Shanghai, China) at 4 ◦C
for 12 h. They were then centrifuged at 1500× g and 4 ◦C for 20 min and the protein concentrations
in the supernatants were measured with a total protein quantitative assay kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). Sarcoplasmic protein was extracted from 0.25 g pork sample
using 5 mL of 0.1 M potassium phosphate buffer (pH 7.2). The subsequent steps were the same as
those for total protein solubility determination. Differences between total and sarcoplasmic protein
solubility were expressed as myofibrillar protein solubility.

2.10. Differential Scanning Calorimetry (DSC)

DSC was performed with a STA 449c differential scanning calorimeter (Netzsch Group, Selb,
Germany) according to the method of Zhu [19]. The instrument was calibrated for temperature with
water and indium and for enthalpy with indium. Fresh or thawed samples weighing 15–20 mg ±
0.01 mg were sealed in Perkin-Elmer sample pans and scanned over a temperature range of 25–100 ◦C
at a heating rate of 5 ◦C. The thermodynamic values (4H) and the denaturation temperatures (◦C)
were obtained.

2.11. Dynamic Rheological Properties

Rheological differences between the thawed and fresh samples were characterized with a Haake
Mars 40 Rheometer (Thermo Fisher Scientific, Waltham, MA, USA) using cone-plate geometry (0.5 mm
gap). Measurements were made at 20 ◦C over 10 min and a heating rate of 2 ◦C min−1 over a range of
20−90 ◦C. A constant strain amplitude of 10% was selected to cut the samples at 0.1 Hz. Variations in
the storage modulus (G’) with temperature were recorded [28].

2.12. Statistical Analysis

The carcass was the experimental unit. There were five replicates and the data were means ± SEM
with significant differences at p < 0.05. Variances were determined and Duncan’s multiple range tests
were performed in SPSS v. 18.1 (IBM Corp., Armonk, NY, USA).

3. Results and Discussion

3.1. Thawing Time and Rate

Temperature changes with time for frozen samples subjected to six different thawing methods
are shown in Figure 2. The rate-limiting step in the thawing process was passage from the region
of maximum ice crystal formation (−5–−1 ◦C). Thereafter, thawing accelerated. This pattern is
consistent with the food freezing. MT had the shortest thawing time (4 min) followed by MIT (20 min),
MUT (25 min), and MWT (30 min). MRT had the longest thawing time (960 min) followed by MAT
(110 min). These discrepancies may be explained by the relative differences in heat transfer rate
among the samples exposed to ultrasonic, water, air convection, and 4 ◦C refrigeration thawing [2].
Nevertheless, microwave combined with the other thawing methods shortened the thawing time
compared with those obtained using each individual technique. According to Zhu [19], thawing
time could be reduced by ~50% using MAT instead of air convection thawing (AT). The highest
thawing rate was recorded for MT (39.61 cm h−1) followed by MUT (9.18 cm h−1), MIT (8.97 cm h−1),
MWT (7.93 cm h−1), MAT (2.24 cm h−1), and MRT (0.446 cm h−1). Our previous study [19] showed
the thawing rate of UT, IT, WT, AT, and RT was 6.22 cm h−1, 4.34 cm h−1, 3.20 cm h−1, 0.95 cm h−1,
and 0.125 cm h−1, respectively. Therefore, the thawing rates measured here were significantly higher
for the combined than the single methods (p < 0.05).
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Figure 2. Temperature changes in frozen pork samples under six different thawing conditions. MT:
Microwave thawing (100 W); MUT: Microwave combined with ultrasonic thawing; MIT: Microwave
combined with 35 ◦C water immersion thawing; MRT: Microwave combined with 4 ◦C refrigeration
thawing; MAT: Microwave combined with air convection thawing; MWT: Microwave combined with
running water thawing.

3.2. Effect of Thawing on WHC

Water loss may adversely affect meat weight, appearance, color, and sensory properties as it is
associated with the loss of certain amino acids and nucleotides [20,29]. Table 1 shows the WHC of the
experimental samples subjected to thawing, cooking, drip, and centrifugation and the total loss under
various thawing methods. Relative to the control, all methods caused significant thawing loss (p < 0.05).
The highest thawing loss was recorded for samples treated with MRT (5.37%) because thawing by this
method was too slow. Ambrosiadis [30] indicated that for beef, slow defrosting caused substantially
greater thawing loss than microwaving. The lowest value (1.74%) was obtained for the samples treated
with MWT. It was similar to that reported for running water thawing (1.86%) [19] but still comparatively
lower than it. Microwaving combined with other methods could reduce thawing loss. Leygonie [3]
reported that accelerated thawing could cause thawing loss-type damage, associated with meat tissues.
However, short-term microwave thawing causes relatively higher losses as it heats product rapidly
and accelerates evaporation. The phenomenon was observed in pork by Kondratowicz [31], in beef
by Kim [32], in chicken by Anna [33], and in rabbit meat by Chwastowska-Siwiecka [34]. Therefore,
thawing loss tended to increase with thawing temperature.

Table 1. Changes in water holding capacity of pork samples under six different thawing conditions.

Parameter
Thawing Ways

Control MT MUT MIT MRT MAT MWT

Thawing loss (%) - 2.26 ± 0.15 c 3.05 ± 0.27 b 3.27 ± 0.20 b 5.34 ± 0.09 a 2.50 ± 0.19 c 1.74 ± 0.12 d

Centrifugation
loss (%) 20.69 ± 0.44 c 23.09 ± 0.22 a 23.31 ± 0.37 a 23.59 ± 1.11 a 21.93 ± 0.49 b 20.84 ± 0.16 c 21.93 ± 0.35 b

Cooking loss (%) 21.77 ± 0.20 de 22.46 ± 0.54 bcd 22.36 ± 0.73 cd 22.82 ± 0.19 abc 23.38 ± 0.66 ab 21.23 ± 0.39 e 23.48 ± 0.59 a

Drip loss (%) 4.50 ± 0.16 d 6.53 ± 0.11 a 5.96 ± 0.40 bc 5.66 ± 0.28 c 6.32 ± 0.38 ab 4.76 ± 0.11 d 5.68 ± 0.17 c

Total loss (%) - 54.35 ± 0.85 b 54.68 ± 0.69 b 55.35 ± 0.84 b 56.97 ± 0.97 a 49.34 ± 0.71 d 52.80 ± 0.96 c

Shear force (N) 31.08 ± 0.96 bc 28.77 ± 1.01 de 29.43 ± 1.20 cd 27.56 ± 0.98 de 27.34 ± 0.83 e 31.71 ± 1.34 b 35.98 ± 1.00 a

MT: Microwave thawing (100 W); MUT: Microwave combined with ultrasonic thawing; MIT: Microwave combined
with 35 ◦C water immersion thawing; MRT: Microwave combined with 4 ◦C refrigeration thawing; MAT: Microwave
combined with air convection thawing; MWT: Microwave combined with running water thawing. Data are means ±
SE. a–d values in the same row followed by different letters are significantly different according to Duncan’s multiple
range test (p < 0.05).
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Centrifugation, cooking, and drip losses for the MAT treatment were 20.84%, 21.23%, and 4.76%,
respectively, and most nearly approached those of the control (20.36%, 21.77%, and 4.50%, respectively).
However, they were significantly lower (p < 0.05) than those for the other thawing treatments. The total
loss for the MAT treatment (49.26%) was lowest of all, and was, in fact, lower than those previously
reported for either MT or AT alone [19]. Moisture loss occurred when frozen muscle tissue was thawed,
and resulted in higher centrifugation, cooking, and drip losses than those of fresh muscle tissue [35].
However, another study reported no significant differences between thawed and fresh samples [8].
Changes in muscle moisture content were affected by freezing and thawing [3]. Hence, the relative
differences in water loss among the various thawing treatments may be explained by the relative
differences in the samples, freezing and thawing rates, and final thawing temperatures [2].

3.3. Effect of Thawing on Shear Force

Tenderness is an important criterion of pork quality. It is assessed by measuring shear force
(N). Meat tenderness increases with decreasing shear force. The effects of the various thawing
treatments on shear force are shown in Table 1. The range of shear force obtained for pork samples
subjected to the various thawing methods was 27.34–35.98 N. The lowest N was determined for the
MRT samples. Xia [20] reported that thawing temperature influences pork longissimus dorsi muscle
tenderness. They measured comparatively lower N for samples thawed at lower temperatures. Except
for MWT, the values of N for all thawed samples approached that of the control. Elevated temperature
and extended thawing time may denature or degrade protein [15]. The shear forces of the MAT samples
resembled those of the fresh ones. MAT decreased the shear force of defrosted pork by 16.2% relative
to that for AT-thawed meat [19]. Thus, combining thawing methods could improve meat tenderness in
the thawing process. This hypothesis is consistent with the report of Zhang [14] and Li [15].

3.4. Effect of Thawing on Pork Color

Color changes in meat during frozen storage and tempering is used to assess meat quality.
As shown in Table 2, L* for MRT-thawed meat was significantly lower than that for fresh meat (p < 0.05).
In contrast, L* for the samples subjected to MT, MUT, MIT, MAT, and MWT did not significantly differ
from that for the fresh control (p > 0.05). This observation is similar to those reported by Anna [33]
and Benli [36]. These authors demonstrated that thawing method had no significant influence on L*.
Hughes [37] found that decreases in the meat water-holding capacity reduced surface light reflectivity
which, in turn, lowered L*. All thawing methods except for MAT significantly decreased a* relative
to the fresh control (p < 0.05). The value of a* changes rapidly during thawing possibly because of
lipid and protein oxidation, microstructural changes, and drip loss [38]. Microwave thawing may
reduce both protein denaturation and loss of quality in frozen meat [33]. Conversely, Choi [2] reported
substantial changes in the color values of microwave-thawed pork loin caused by non-uniform heating.
Here, no significant differences in b* were detected between the experimental groups and the control
(p > 0.05). The total color difference (∆E*) was also evaluated. The lowest ∆E* (1.18) was obtained
for samples thawed by MAT. It was lower than that measured for AT-thawed meat [19]. Therefore,
MAT thawing maintained color stability in thawed pork.
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Table 2. Changes in color and thiobarbituric acid-reactive substances (TBARS) values of pork samples
under six different thawing conditions.

Parameter
Thawing Ways

Control MT MUT MIT MRT MAT MWT

L* 50.18 ± 1.99 ab 51.94 ± 2.22 a 48.56 ± 0.68 bc 52.70 ± 0.82 a 47.01 ± 0.19 c 51.22 ± 1.97 ab 52.92 ± 1.07 a

a* 6.27 ± 0.09 a 5.99 ± 0.01 b 5.78 ± 0.21 bc 5.98 ± 0.14 b 5.57 ± 0.17 c 6.21 ± 0.03 a 5.56 ± 0.08 c

b* 4.82 ± 0.36 ab 5.24 ± 0. 29 a 4.65 ± 0.05 b 5.11 ± 0.29 ab 4.74 ± 0.18 b 4.93 ± 0.23 ab 4.90 ± 0.18 ab

∆E - 1.92 ± 0.12 c 2.09 ± 0.24 c 2.64 ± 0.37 bc 3.41 ± 0.23 a 1.18 ± 0.39 d 2.90 ± 0.77 ab

TBARS (mg kg−1) 0.16 ± 0.01 d 0.17 ± 0.01 cd 0.26 ± 0.02 c 0.23 ± 0.01 b 0.18 ± 0.01 c 0.16 ± 0.01 d 0.27 ± 0.02 a

MT: Microwave thawing (100 W); MUT: Microwave combined with ultrasonic thawing; MIT: Microwave combined
with 35 ◦C water immersion thawing; MRT: Microwave combined with 4 ◦C refrigeration thawing; MAT: Microwave
combined with air convection thawing; MWT: Microwave combined with running water thawing. Data are means ±
SE. a–d values in the same row followed by different letters are significantly different according to Duncan’s multiple
range test (p < 0.05).

3.5. Effect of Thawing on TBARS

The effects of thawing methods on TBARS were also evaluated and the results are shown in
Table 2. The TBARS values for MT and MAT were similar to those for the control (0.16 mg kg−1).
On the other hand, significantly higher TBARS values were measured for the samples thawed by MUT,
MIT, MRT, and MWT (p < 0.05). Previous studies reported that under freezing conditions, frozen
storage, and thawing could cause the autooxidation of polyunsaturated fats [39]. Chun [24] found that
the thawing conditions had a much greater influence on TBARS than the freezing conditions. Thus,
the comparatively higher TBARS values measured for MUT, MIT, and MWT may be explained by
their higher thawing temperatures and microbial action. The TBARS values for all thawing samples
did not exceed the flavor threshold (>1.0 mg kg−1), above which meat product odor and flavor are
unacceptable [40].

3.6. Effect of Thawing on Freshness

The impact of thawing on freshness was assessed to determine its direct relationship with edibility
and safety. Here, freshness was evaluated by pH, total volatile base nitrogen (TVB-N), electrical
conductivity, and total viable counts (Figure 3). The pH is an objective meat quality parameter.
It changes in response to the various phases of water transformation and declines during thawing as
acidic by-products accumulate [33]. Leygonie [3] stated that inappropriate thawing actually increases
pH. As shown in Figure 3a, however, there were negligible differences in pH among the various
thawed samples (p > 0.05). Similar results were reported by Zhu [19] for pork, by Zhang [14] for
chicken, and by Chwastowska-Siwiecka [34] for rabbit meat. The pH range was 5.82–5.92. Therefore,
a high level of freshness was achieved after the six thawing treatments. TVB-N is an important index
of meat freshness. The highest acceptable TVB-N was 20 mg N 100 g−1 [8]. Here, the TVB-N of the
control was 6.05 mg N 100 g−1 (Figure 3b). Thus, the TVB-N of fresh pork was generally within the
acceptable range. The TVB-N range for the pork samples subjected to the six thawing treatments
was 6.8–8.1 mg N 100 g−1 (p < 0.05). The MAT samples had the lowest TVB-N (6.8 mg N 100 g−1).
Nevertheless, all TVB-N were <20 mg N 100 g−1 which implies that a high standard of freshness was
maintained after freezing and thawing. This observation was consistent with that reported by Choi [2].
Electrical conductivity (EC) is another important meat freshness indicator. The electrical conductivity
of pork is negatively correlated with freshness. As the meat tissue degrades, it produces large quantities
of conductive substances. The electrical conductivity of the control was 1284.67 µS cm−1 (Figure 3c).
The electrical conductivity range for the thawed frozen pork samples was 1336.83–1369.33 µS cm−1

(p < 0.05). The upper threshold of acceptance is 1370 µS cm−1 [25]. There were no significant differences
among treatments in terms of EC. The electrical conductivity of the pork was positively correlated
with TVB-N. Yang [25] reported similar findings. Favorable temperatures and long processing times
during thawing may increase microbial growth [3]. Here, the total viable counts in the control were
1.46 lg CFU g−1 (Figure 3d). It was comparatively higher for the samples after the various thawing
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treatments. The MT samples had a relatively low total viable counts (1.68 lg CFU g−1) because of
its short processing time and transient high temperature. The MAT samples presented with the
lowest total viable counts (1.80 lg CFU g−1) which was significantly lower than that for the AT sample
(2.91 lg CFU g−1) (p < 0.05) [19]. Therefore, the combined MAT thawing method may effectively reduce
microbial growth. Overall, it was apparently the best for maintaining pork freshness.

3.7. Effect of Thawing on Protein Solubility

Protein solubility is a vital metric of meat quality and is closely associated with several other
physical and functional characteristics [41]. Here, the influences of thawing methods on the three
types of protein solubility were investigated (Figure 4). Compared with the control, the thawed
samples had significantly lower values for all three types of protein solubility (p < 0.05). Decrease
in protein solubility is a marker of muscle protein deterioration and is associated with increases in
surface hydrophobicity and exudation [14]. Freezing and thawing may reduce pork protein solubility.
Pork samples processed by MAT and MWT had significantly higher total and myofibrillar protein
solubilities than those treated with the other thawing methods (p < 0.05). Nevertheless, there were no
significant differences among thawing treatments in terms of sarcoplasmic protein solubility (p > 0.05).
A previous study showed that insoluble protein aggregation may occur, and reduce myofibrillar
protein solubility and extractability [41]. In the current study, MAT maintained significantly higher
protein solubility than either MT or AT (p < 0.05) [19].

3.8. Effects of Thawing on Protein Denaturation as Determined by Differential Scanning Calorimetry (DSC)

Thermal transition curves for samples subjected to various thawing methods are shown in Figure 5.
For the control, three major endothermic transitions occurred. The first occurred at peak temperatures
between 53 ◦C and 58 ◦C and corresponded to myosin denaturation. The second happened between
64 ◦C and 67 ◦C when collagen and sarcoplasmic proteins denatured. The third was observed between
73 ◦C and 77 ◦C wherein actin was denatured. Similar results were reported by Ali [42]. Each thawing
method produced different protein denaturation peaks. Peak 2 was significantly lower for the MIT
samples compared with the control. Thus, MIT denatured collagen and sarcoplasmic proteins. Table 3
shows the denaturation temperature Tm (◦C) and enthalpies ∆H (J g−1) of pork muscle protein subjected
to various thawing conditions and analyzed by DSC. There was no significant difference between
Peaks 1 and 2 in terms of Tm (p > 0.05). The Peak 3 Tm for MT, MUT, and MWT were higher than that
of the control (p < 0.05). The enthalpy ∆H (J g−1) for Peak 2 was lowest for pork samples subjected
to MIT. This finding aligned with the results shown in Figure 5 and resembled those reported by
He [8]. Water immersion thawing at 50 ◦C significantly influenced protein denaturation whereas the
AT method had the least effect on it. Only small changes in protein denaturation were observed for the
MAT samples with complete peaks and high ∆H values. Thus, MAT only slightly induced protein
denaturation. This discovery is consistent with the fact that MAT presented with the lowest total water
loss rate.
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Figure 4. Changes in pork protein solubility under six different thawing conditions. MT: Microwave
thawing (100 W); MUT: Microwave combined with ultrasonic thawing; MIT: Microwave combined
with 35 ◦C water immersion thawing; MRT: Microwave combined with 4 ◦C refrigeration thawing;
MAT: Microwave combined with air convection thawing; MWT: Microwave combined with running
water thawing. a–d values in the same series followed by different letters are significantly different
according to Duncan’s multiple range test (p < 0.05).
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3.9. Effects of Thawing on Dynamic Rheological Properties

A dynamic rheological test was conducted to assess heat-induced myofibrillar proteins gelation.
This parameter reflects protein quality [28]. G’ is a measure of the deformation energy stored in the
pork sample during shearing and indicates the elastic behavior of the material [42]. The changes
in G’ for the pork samples subjected to various thawing methods are shown in Figure 6. For the
control, G’ gradually decreased from 20 ◦C to 44 ◦C and then slightly increased from 45 ◦C to 50 ◦C
when the protein underwent denaturation and gelation [42]. G’ moderately declined thereafter until
55 ◦C when the myosin tails denatured. G’ then rapidly increased up to 80 ◦C when the viscous sol
was transformed into an elastic gel network [43]. After thawing, the pattern of change in G′ was
similar to that for the control but G’ (40,206–56,655 Pa) was lower than that of the control (~59,796 Pa).
Thawing had a deleterious effect on the dynamic rheological properties because it induced denaturation,
excessive aggregation, and structural changes in the proteins [42]. G’ was highest (56,655 Pa) for the
samples subjected to MAT and was similar to that for the control. Therefore, MAT minimizes protein
denaturation and structural changes during heating. These findings aligned with the results obtained
for DSC. G’ in the present study was higher than the loss modulus (G”). Thus, the material behaved
like a solid and its deformations were essentially elastic [44]. Other physicochemical changes including
the oxidation and denaturation of proteins extracted from pork longissimus dorsi muscle thawed by
MAT should be assessed in the future to elucidate the mechanism of water retention in the process.
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Figure 6. Changes in dynamic storage modulus (G’ Pa) of pork samples under six different thawing
conditions. MT: Microwave thawing (100 W); MUT: Microwave combined with ultrasonic thawing;
MIT: Microwave combined with 35 ◦C water immersion thawing; MRT: Microwave combined with
4 ◦C refrigeration thawing; MAT: Microwave combined with air convection thawing; MWT: Microwave
combined with running water thawing.

Table 3. Denaturation temperature Tm (◦C) and enthalpy 4H (J g−1) for the muscle proteins in pork
samples under six different thawing conditions (analyzed by differential scanning calorimetry (DSC)).

Thawing
Ways

Peak 1 Peak 2 Peak 3

Tm (◦C) 4H (J g−1) Tm (◦C) 4H (J g−1) Tm (◦C) 4H (J g−1)

Control 55.76 ± 1.34 a 0.31 ± 0.01 a 66.26 ± 2.02 a 0.20 ± 0.02 a 74.26 ± 1.10 cd 0.19 ± 0.03 ab

MT 55.29 ± 0.94 a 0.28 ± 0.02 bc 66.80 ± 2.00 a 0.16 ± 0.03 b 76.30 ± 0.55 ab 0.17 ± 0.01 bc

MUT 55.10 ± 0.62 a 0.25 ± 0.02 d 65.10 ± 1.23 a 0.17 ± 0.02 ab 77.60 ± 0.83 a 0.20 ± 0.01 ab

MIT 54.62 ± 0.87 a 0.31 ± 0.01 a 65.62 ± 2.04 a 0.11 ± 0.01 c 73.12 ± 0.77 d 0.16 ± 0.02 c

MRT 55.02 ± 0.93 a 0.26 ± 0.01 cd 65.02 ± 2.05 a 0.19 ± 0.01 ab 75.52 ± 0.63 bc 0.22 ± 0.02 a

MAT 56.19 ± 0.77 a 0.29 ± 0.01 ab 64.19 ± 1.47 a 0.18 ± 0.01 ab 73.19 ± 0.90 d 0.20 ± 0.01 ab

MWT 55.65 ± 0.92 a 0.26 ± 0.01 cd 64.65 ± 1.79 a 0.17 ± 0.01 ab 76.65 ± 1.10 ab 0.22 ± 0.02 a

MT: Microwave thawing (100 W); MUT: Microwave combined with ultrasonic thawing; MIT: Microwave combined
with 35 ◦C water immersion thawing; MRT: Microwave combined with 4 ◦C refrigeration thawing; MAT: Microwave
combined with air convection thawing; MWT: Microwave combined with running water thawing. Data are means ±
SE. a–d values in the same row followed by different letters are significantly different according to Duncan’s multiple
range test (p < 0.05).

4. Conclusions

MAT provided the best results in terms of WHC, color, TBARS, protein solubility, and protein
denaturation. There were no significant differences among the six thawing treatments in terms of
pH, TVB-N, or electrical conductivity. Microwave-based combination thawing avoided localized
overheating and maintained the uniformity of the frozen pork samples. Therefore, MAT was the
preferred thawing method as it maintained sample uniformity and quality. MAT is a promising way to
improve pork meat quality during freezing and thawing and could be beneficial both to the frozen
meat industry and to those who consume its products.

Author Contributions: Conceptualization and writing, M.-M.Z.; Data curation, Z.-Y.P.; Formal analysis, S.L.;
Funding acquisition, H.-J.M.; Software, Z.-R.W.; Supervision, Z.-L.K.; Writing—review & editing, H.-J.H. and
S.-M.Z. All authors have read and agree to the published version of the manuscript.

Funding: This study was funded by grants from the Major Science and Technology Special Project of Henan
Province (No. 161100110600), the Science and Technology Research Project of Henan Province (Nos. 182102110404
and 192102110108), the National Undergraduate Innovation Program of Henan Institute of Science & Technology



Foods 2020, 9, 26 14 of 16

(No. 2018CX55), and the High-Level Talent Scientific Research Staring Foundation of Henan Institute of Science &
Technology (No. 2016020).

Conflicts of Interest: There are no conflicts of interest to declare.

References

1. Zhao, S.M.; Li, N.N.; Li, Z.; He, H.J.; Zhao, Y.Y.; Zhu, M.M.; Wang, Z.R.; Kang, Z.L.; Ma, H.J. Shelf Life
of Fresh Chilled Pork as Affected by Antimicrobial Intervention with Nisin, Tea Polyphenols, Chitosan,
and Their Combination. Int. J. Food Prop. 2019, 22, 1047–1063. [CrossRef]

2. Choi, E.J.; Park, H.W.; Chung, Y.B.; Park, S.H.; Jin, S.K.; Chun, H.H. Effect of Tempering Methods on Quality
Changes of Pork Loin Frozen by Cryogenic Immersion. Meat Sci. 2017, 124, 69–76. [CrossRef]

3. Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of Freezing and Thawing on the Quality of Meat: Review.
Meat Sci. 2012, 91, 93–98. [CrossRef]

4. Taher, B.J.; Farid, M.M. Cyclic Microwave Thawing of Frozen Meat: Experimental and Theoretical
Investigation. Chem. Eng. Process. 2001, 40, 379–389. [CrossRef]

5. Jia, G.L.; Sha, K.; Meng, J.; Liu, H.J. Effect of High Voltage Electrostatic Field Treatment on Thawing
Characteristics and Post-Thawing Quality of Lightly Salted, Frozen Pork Tenderloin. LWT-Food Sci. Technol.
2019, 99, 268–275. [CrossRef]

6. Oliveira, M.; Gubert, G.; Roman, S.; Kempka, A.; Prestes, R.; Oliveira, M. Meat Quality of Chicken Breast
Subjected to Different Thawing Methods. Revista Brasileira Ciência Avícola 2015, 17, 165–171. [CrossRef]

7. Uyar, R.; Bedane, T.F.; Erdogdu, F.; Palazoglu, T.K.; Farag, K.W.; Marra, F. Radio-Frequency Thawing of Food
Products-A Computational Study. J. Food Eng. 2015, 146, 163–171. [CrossRef]

8. He, X. Freezing and Thawing Characteristics of Pork Tenderloin Meat and the Mechanism of High Voltage Electrostatic
Field (HVEF) Thawing; China Agricultural University: Beijing, China, 2016; pp. 19–39.

9. Chakanya, C.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Colour and Oxidative Stability of Mince Produced
from Fresh and Frozen/Thawed Fallow Deer (Dama dama) Meat. Meat Sci. 2017, 126, 63–72. [CrossRef]
[PubMed]

10. Chandirasekaran, V.; Thulasi, G. Effect of Different Thawing Methods on Physico-Chemical Characteristics
of Frozen Buffalo Meat. J. Food Technol. 2010, 8, 239–242.

11. Manios, S.G.; Skandamis, P.N. Effect of Frozen Storage, Different Thawing Methods and Cooking Processes
on the Survival of Salmonella spp. and Escherichia coli O157:H7 in Commercially Shaped Beef Patties. Meat Sci.
2015, 101, 25–32. [CrossRef]

12. Simpson, B.C.; Byelashov, O.A.; Geornaras, I.; Kendall, P.A.; Scanga, J.A.; Belk, K.E.; Smith, G.C.; Sofos, J.N.
Fate of Listeria Monocytogenes During Freezing, Thawing and Home Storage of Frankfurters. Food Microbiol.
2010, 27, 144–149. [CrossRef] [PubMed]

13. Wu, X.F.; Zhang, M.; Adhikari, B.; Sun, J. Recent Developments in Novel Freezing and Thawing Technologies
Applied to Foods. Crit. Rev. Food Sci. 2017, 57, 3620–3631. [CrossRef] [PubMed]

14. Zhang, X.; Gao, T.; Song, L.; Zhang, L.; Jiang, Y.; Li, J.L.; Gao, F.; Zhou, G.H. Effects of Different Thawing
Methods on the Quality of Chicken Breast. Int. J. Food Sci. Technol. 2017, 52, 2097–2105. [CrossRef]

15. Li, Y.; Jia, W.; Zhang, C.H.; Li, X.; Wang, J.Z.; Zhang, D.Q.; Mu, G.F. Fluctuated Low Temperature Combined
with High-Humidity Thawing to Reduce Physicochemical Quality Deterioration of Beef. Food Bioprocess
Technol. 2014, 7, 3370–3380. [CrossRef]

16. Li, F.F.; Wang, B.; Liu, Q.; Chen, Q.; Zhang, H.W.; Xia, X.F.; Kong, B.H. Changes in Myofibrillar Protein Gel
Quality of Porcine Longissimus Muscle Induced by Its Structural Modification under Different Thawing
Methods. Meat Sci. 2019, 147, 108–115. [CrossRef] [PubMed]

17. Krifi, B.; Amine, M.; Makram, J. Microbiological Comparison of Microwave and Traditional Thawing
Processes for Poultry Meat. Afr. J. Microbiol. Res. 2014, 8, 109–117.

18. Kang, B.S.; Kim, D.H.; Lee, O.S. A Study on the Changes of Pork Quality by Freezing and Thawing Methods.
Korean J. Culin. Res. 2008, 14, 286–292.

19. Zhu, M.M.; Wang, Y.Q.; Liu, X.J.; Kang, Z.L.; Zhao, S.M.; Wang, Z.R.; He, H.J.; Ma, H.J. Effects of Rapid and
Slow Thawing Methods on Quality Characteristics and Protein Denaturation of Frozen Pork. Sci. Technol.
Food Ind. 2018, 39, 23–30. [CrossRef]

http://dx.doi.org/10.1080/10942912.2019.1625918
http://dx.doi.org/10.1016/j.meatsci.2016.11.003
http://dx.doi.org/10.1016/j.meatsci.2012.01.013
http://dx.doi.org/10.1016/S0255-2701(01)00118-0
http://dx.doi.org/10.1016/j.lwt.2018.09.064
http://dx.doi.org/10.1590/1516-635x1702165-172
http://dx.doi.org/10.1016/j.jfoodeng.2014.08.018
http://dx.doi.org/10.1016/j.meatsci.2016.12.008
http://www.ncbi.nlm.nih.gov/pubmed/28063341
http://dx.doi.org/10.1016/j.meatsci.2014.10.031
http://dx.doi.org/10.1016/j.fm.2009.09.007
http://www.ncbi.nlm.nih.gov/pubmed/19913705
http://dx.doi.org/10.1080/10408398.2015.1132670
http://www.ncbi.nlm.nih.gov/pubmed/26853683
http://dx.doi.org/10.1111/ijfs.13488
http://dx.doi.org/10.1007/s11947-014-1337-3
http://dx.doi.org/10.1016/j.meatsci.2018.09.003
http://www.ncbi.nlm.nih.gov/pubmed/30219362
http://dx.doi.org/10.1016/j.tifs.2018.02.018


Foods 2020, 9, 26 15 of 16

20. Xia, X.; Kong, B.; Liu, J.; Diao, X.; Liu, Q. Influence of Different Thawing Methods on Physicochemical
Changes and Protein Oxidation of Porcine Longissimus Muscle. LWT-Food Sci. Technol. 2012, 46, 280–286.
[CrossRef]

21. Xia, X.; Kong, B.; Liu, Q.; Liu, J. Physicochemical Change and Protein Oxidation in Porcine Longissimus Dorsi
as Influenced by Different Freeze-Thaw Cycles. Meat Sci. 2009, 83, 239–245. [CrossRef]

22. Zhou, Y.; Wang, W.; Ma, F.; Li, P.J.; Chen, C.G. High-Pressure Pretreatment to Improve the Water Retention
of Sodium-Reduced Frozen Chicken Breast Gels with Two Organic Anion Types of Potassium Salts. Food
Bioprocess Tech. 2017, 1, 526–535. [CrossRef]

23. Adeyemi, K.D.; Sabow, A.B.; Shittu, R.M.; Karim, R.; Karsani, S.A.; Sazili, A.Q. Impact of Chill Storage on
Antioxidant Status, Lipid and Protein Oxidation, Color, Drip Loss and Fatty Acids of Semimembranosus
Muscle in Goats. CYTA–J. Food 2016, 14, 1–10. [CrossRef]

24. Chun, H.H.; Choi, E.J.; Han, A.R.; Chung, Y.B.; Kim, J.S.; Park, S.H. Changes in Quality of Hanwoo Bottom
Round under Different Freezing and Thawing Conditions. J. Korean Soc. Food Sci. Nutr. 2016, 45, 230–238.
[CrossRef]

25. Yang, X.J.; Zhang, X.; Zhao, J.Y.; Wang, G.J.; Xiao, Y.; Tao, L.L. Application of Conductivity Evaluate Pork
Freshness. Mod. Food Sci. Technol. 2013, 29, 1178–1191.

26. National Standard of Food Safety. In Test Method for Total Volatile Basic Nitrogen in Food. GB 5009.228;
The National Health and Family Planning Commission: Beijing, China, 2016.

27. Joo, S.T.; Kauffman, R.G.; Kim, B.C.; Park, G.B. The Relationship of Sarcoplasmic and Myofibrillar Protein
Solubility to Colour and Water-Holding Capacity in Porcine Longissimus Muscle. Meat Sci. 1999, 52, 291–297.
[CrossRef]

28. Yasin, H.; Babji, A.S.; Ismail, H. Optimization and Rheological Properties of Chicken Ball as Affected by
κ-Carrageenan, Fish Gelatin and Chicken Meat. LWT-Food Sci. Technol. 2015, 66, 79–85. [CrossRef]

29. Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem
Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [CrossRef]

30. Ambrosiadis, I.; Theodorakakos, N.; Georgakis, S.; Lekas, S. Influence of Thawing Methods on the Quality of
Frozen Meat and the Drip Loss. Fleischwirtschaft 1994, 74, 320.

31. Kondratowicz, J.; Chwastowska-Siwiecka, I.; Burczyk, E. Technological Properties of Pork Thawed in the
Atmospheric Air or in the Microwave Oven as Determined during a Six-Month Deep-Freeze Storage. Anim.
Sci. Pap. Rep. 2008, 26, 175–181.

32. Kim, Y.B.; Jeong, J.Y.; Kyung-Ku, S.; Kim, E.M.; Park, K.J.; Jang, A. Effects of Various Thawing Methods on
the Quality Characteristics of Frozen Beef. Korean J. Food Sci. Anim. 2013, 33, 723–729. [CrossRef]

33. Anna, A.P.; Malgorzata, O.; Zofia, S. Physicochemical and Sensory Properties of Broiler Chicken Breast Meat
Stored Frozen and Thawed Using Various Methods. J. Food Qual. 2018, 2018, 6754070.

34. Chwastowska-Siwiecka, I.; Kondratowicz, J.; Gugolek, A.; Matusevicius, P. Changes in the Physicochemical
Properties of Deep-Frozen Rabbit Meat as Dependent on Thawing Method. Vet. Zootech-Lith. 2013, 62, 68–72.

35. Yu, L.H.; Lee, E.S.; Jeong, J.Y.; Paik, H.D.; Choi, J.H.; Kim, C.J. Effects of Thawing Temperature on the
Physicochemical Properties of Pre-Rigor Frozen Chicken Breast and Leg Muscles. Meat Sci. 2005, 71, 375–382.
[CrossRef] [PubMed]

36. Benli, H. Consumer Attitudes toward Storing and Thawing Chicken and Effects of the Common Thawing
Practices on Some Quality Characteristics of Frozen Chicken. Asian Austral. J. Anim. 2016, 89, 100–108.
[CrossRef]

37. Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A Structural Approach to Understanding the Interactons
between Colour, Water-Holding Capacity and Tenderness. Meat Sci. 2014, 98, 520–532. [CrossRef]

38. Llave, Y.; Terada, Y.; Fukuoka, M.; Sakai, N. Dielectric Properties of Frozen Tuna and Analysis of Defrosting
Using a Radio-Frequency System at Low Frequencies. J. Food Eng. 2014, 139, 1–9. [CrossRef]

39. Cheng, W.W.; Sϕrensen, K.M.; Engelsen, S.B.; Sun, D.W.; Pu, H. Lipid Oxidation Degree of Pork Meat during
Frozen Storage Investigated by Near-Infrared Hyperspectral Imaging: Effect of Ice Crystal Growth and
Distribution. J. Food Eng. 2019, 263, 311–319. [CrossRef]

40. Helga, M.; Ivona, D.K.; Jelka, P.; Lidija, K.; Bela, N.; Brigita, H.; Goran, K. The Impact of Frozen Storage
Duration on Physical, Chemical and Microbiological Properties of Pork. Meat Sci. 2018, 140, 119–127.

41. Marcos, B.; Kerry, J.P.; Mullen, A.M. High Pressure Induced Changes on Sarcoplasmic Protein Fraction and
Quality Indicators. Meat Sci. 2010, 85, 115. [CrossRef]

http://dx.doi.org/10.1016/j.lwt.2011.09.018
http://dx.doi.org/10.1016/j.meatsci.2009.05.003
http://dx.doi.org/10.1007/s11947-017-2023-z
http://dx.doi.org/10.1080/19476337.2015.1114974
http://dx.doi.org/10.3746/jkfn.2016.45.2.230
http://dx.doi.org/10.1016/S0309-1740(99)00005-4
http://dx.doi.org/10.1016/j.lwt.2015.10.020
http://dx.doi.org/10.1016/j.meatsci.2005.04.022
http://dx.doi.org/10.5851/kosfa.2013.33.6.723
http://dx.doi.org/10.1016/j.meatsci.2005.04.020
http://www.ncbi.nlm.nih.gov/pubmed/22064239
http://dx.doi.org/10.5713/ajas.15.0604
http://dx.doi.org/10.1016/j.meatsci.2014.05.022
http://dx.doi.org/10.1016/j.jfoodeng.2014.04.012
http://dx.doi.org/10.1016/j.jfoodeng.2019.07.013
http://dx.doi.org/10.1016/j.meatsci.2009.12.014


Foods 2020, 9, 26 16 of 16

42. Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.B.; Zhou, G.H. Effect of Multiple Freeze-Thaw Cycles on the
Quality of Chicken Breast Meat. Food Chem. 2015, 173, 808–814. [CrossRef]

43. Kang, Z.L.; Li, B.; Ma, H.J.; Chen, F.S. Effect of Different Processing Methods and Salt Content on the
Physicochemical and Rheological Properties of Meat Batters. Int. J. Food Prop. 2016, 19, 1604–1615. [CrossRef]

44. Rao, M.A. Rheological Behavior of Processed Fluid and Semisolid Foods. Rheology Fluid Semisolid Foods 2014,
231–329. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.foodchem.2014.09.095
http://dx.doi.org/10.1080/10942912.2015.1105819
http://dx.doi.org/10.1007/978-1-4614-9230-6_5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Thawing Methods 
	Determination of Thawing Time and Rate 
	Determination of Water-Holding Capacity (WHC) 
	Determination of Shear Force 
	Color Determination 
	Thiobarbituric Acid-Reactive Substances (TBARS) 
	Sample Freshness 
	Protein Solubility 
	Differential Scanning Calorimetry (DSC) 
	Dynamic Rheological Properties 
	Statistical Analysis 

	Results and Discussion 
	Thawing Time and Rate 
	Effect of Thawing on WHC 
	Effect of Thawing on Shear Force 
	Effect of Thawing on Pork Color 
	Effect of Thawing on TBARS 
	Effect of Thawing on Freshness 
	Effect of Thawing on Protein Solubility 
	Effects of Thawing on Protein Denaturation as Determined by Differential Scanning Calorimetry (DSC) 
	Effects of Thawing on Dynamic Rheological Properties 

	Conclusions 
	References

