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Abstract
Purpose: Artificial intelligence (AI) is about to touch every aspect of radiation therapy, from consultation to treatment planning, quality
assurance, therapy delivery, and outcomes modeling. There is an urgent need to train radiation oncologists and medical physicists in
data science to help shepherd AI solutions into clinical practice. Poorly trained personnel may do more harm than good when attempting
to apply rapidly developing and complex technologies. As the amount of AI research expands in our field, the radiation oncology
community needs to discuss how to educate future generations in this area.
Methods and Materials: The National Cancer Institute (NCI) Workshop on AI in Radiation Oncology (Shady Grove, MD, April 4-5,
2019) was the first of 2 data science workshops in radiation oncology hosted by the NCI in 2019. During this workshop, the Training
and Education Working Group was formed by volunteers among the invited attendees. Its members represent radiation oncology,
medical physics, radiology, computer science, industry, and the NCI.
Results: In this perspective article written by members of the Training and Education Working Group, we provide and discuss action
points relevant for future trainees interested in radiation oncology AI: (1) creating AI awareness and responsible conduct; (2) imple-
menting a practical didactic curriculum; (3) creating a publicly available database of training resources; and (4) accelerating learning and
funding opportunities.
Conclusion: Together, these action points can facilitate the translation of AI into clinical practice.
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Figure 1 Schematic of how artificial intelligence, ML, and
deep learning relate to each other. Closely associated application
areas such as “data analytics” and “big data” exist both within
and outside of these realms. Salient examples of artificial in-
telligence include expert systems using rules (if-then statements)
and statistical ML; ML includes support vector machines and
neural networks; deep learning includes deep neural networks
and convolutional neural networks; big data can be described as
data having volume, velocity, variety, veracity and variability,
and value61; and “data analytics” refers to the process of making
meaningful predictions and models, as exemplified by the work
of several authors referenced in this paper.27,28,36,44,46,51

Abbreviation: ML Z machine learning.
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Introduction

Artificial intelligence (AI) is a longstanding field of
study that has attempted to emulate and augment human
intelligence. In the last several years, AI has been rein-
vigorated by advances in computer technology and ma-
chine learning (ML) algorithms, which aim to teach
computers to learn patterns and rules by using previous
examples. ML builds on experiences from computer sci-
ence, statistics, neuroscience, and control theory, among
many other disciplines. ML has benefited from recent
availability of large data sets and developments in com-
puters’ hardware and software for solving large-scale
optimization problems. Most notably, deep-learning (DL)
techniques have demonstrated significant successes in
computer vision and language processing. These ad-
vances are most visible in consumer quality-of-life im-
provements such as self-driving cars and voice-activated
virtual assistants. The umbrella term “informatics” in-
cludes practical applications of any of the aforementioned
areas of study; for example, bioinformatics for biology
and clinical informatics (or biomedical informatics) for
clinical practice. The term “data science” refers to the
general study of data analysis, which has recently focused
on ML methods. A schematic of the relationships between
common terminologies is shown in Figure 1.

Many fields, such as finance, manufacturing, and
advertising, have already incorporated AI into their
workflows to improve efficiency and perform suprahuman
tasks. Although AI has been adopted more slowly in the
clinic owing to multiple competing factorsdincluding a
lack of trainingdthe perception and engagement of AI in
medicine has been improving. The American Medical
Association adopted a policy in June 2019 to integrate
training in AI augmentation.1 The National Institutes of
Health (NIH) Big Data to Knowledge Initiative has
established several Centers of Excellence in Data Science
and is focused on enhancing nationwide training infra-
structure in biomedical data science and data sharing.2

Radiation oncology holds significant promise for AI-
powered tasksddescribed in several perspectives and
reviews3-8dnot only for optimizing workflows or diag-
nosis, but also for more rewarding tasks, such as
prognostic prediction and personalized treatment
recommendations.

AI applications in radiation oncology span the domains
of both medical physicists and radiation oncologists.
Some applications, such as autosegmentation and auto-
mated treatment planning, will be human-verifiable; in
other words, a human can check the work of a computer
before deployment. Other applicationsdsurvival prog-
nostication, decision support, and genomics-based treat-
ment planningdare not human-verifiable at an individual
scale and will thus require careful model development and
validation. As applied research in these applications
grows in radiation oncology, a commensurate growth in
education is necessary to be able to build and validate
trustworthy AI models that can be applied to the clinic.

Separate surveys of trainees in radiation oncology and
radiology reveal that the majority are interested in addi-
tional training in the AI or informatics.9,10

In the radiation oncology survey, the American Society
of Radiation Oncology (ASTRO) queried chairs and
trainees in 2017 to assess their perception of training and
research opportunities in genomics, bioinformatics, and
immunology.10Among the 3 areas, bioinformatics received
the most enthusiasm: 76% believed that bioinformatics
training would “definitely or probably” advance their
career. Sixty-seven percent expressed interest in a formal
bioinformatics training course, and 88% of chairs reported
they would “probably or definitely” send faculty or trainees
to such a course, reflecting an unmet need in training op-
portunities. Although the ASTRO survey did not specif-
ically ask about AI/ML, we believe the high interest in
bioinformatics accurately reflects interest in quantitative
analysis in line with AI/ML methods.11 In recognition of
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the need for radiation oncologists with specialized infor-
matics training, the National Cancer Institute (NCI), Ore-
gon Health & Science University, and MD Anderson
Cancer Center have each created training programs specific
for radiation oncology fellows and residents aimed for ca-
reers as medical director in informatics or formal board
certification in clinical informatics.12

The radiology survey supports a sentiment toward AI
that is similar to that in radiation oncology.13 A single-
institution survey of a radiology department revealed
concerns about job security but also enthusiasm to learn
about AI/ML.9 This survey showed that 97% of trainees
(residents and fellows) were planning to learn AI/ML as
relevant to their job (vs 77% of attending radiologists). In
fact, 74% of trainees (vs 60% of attendings) were willing
to help create or train an ML algorithm to do some of the
tasks of a radiologist. National radiology societies have
been responsive to these sentiments. The American Col-
lege of Radiology (ACR) Data Science Institute (https://
www.acrdsi.org/) recently launched the ACR AI-LAB
to allow radiologists to create, validate, and use models
for their specific local clinical needs. The Radiologic
Society of North America (RSNA) and the Society for
Imaging Informatics in Medicine cosponsor the National
Imaging Informatics Course, held twice a year (in its third
year); the majority of residency programs have partici-
pated.14 The RSNA annual meeting hosts several AI
refresher courses and coding challenges in the new “AI
Pavilion,” with residents encouraged to participate. The
Society for Imaging Informatics in Medicine hosts
monthly journal clubs and promotes mentoring opportu-
nities for trainees.15

In this perspective article written by the Training and
Education Working Group of the NCI Workshop on AI in
Table 1 Main summary of recommendations from action points

AP1: Create awareness and responsible conduct of AI.
- Teach the importance of consideration of ethics, disparities, bias,
AP2: Implement practical didactic curriculum.
- Curriculum should address the needs of medical physicists, radiati
the process.

- Mandate incorporation of AI, big data, data privacy, and data scie
- Reiterate the importance of promoting a data-sharing culture throu
AP3: Create publicly accessible resources.
- Create centralized, public repository of resources (seminal white pa
- Develop and disseminate radiation-specific training tools to all inst
- Leverage trainee crowdsourcing efforts to annotate data sets for re
and AI skills development.

- Incorporate open-source challenges for both technology developm
AP4: Accelerate learning and funding opportunities.
- Incorporate workshop model used by AACR, ESTRO, and others
- Leverage industry support and interest via AI fellowships and tuto
- Identify applicable research grants specifically for trainees and ne

Abbreviations: AACRZ American Association for Cancer Research; AIZ a
and Oncology.
Radiation Oncology (Shady Grove, MD, April 4-5,
2019),16 we propose an overall action plan for radiation
therapyespecific AI training that is composed of the ac-
tion points outlined in Table 1. We cover each action
point (AP) in detail in this article.

AP1: Create Awareness and Responsible
Conduct of AI

In the last decade or so, we have seen several examples
of ethical concerns and biases magnified by AI. When
there are biases in the training data (eg, certain pop-
ulations or scenarios are overrepresented), an algorithm
that models correlations could propagate or even amplify
these biases, leading to undesirable outcomes in deploy-
ment.17 This is particularly problematic because AI is
sometimes viewed as being “objective” without consid-
eration for the data generation process, which is often
unknown.

The European Union has recently released a 7-point
action plan toward so-called “trustworthy” AI. This plan
focuses on the ethical aspects of AI and includes human
agency and oversight; robustness and safety; privacy and
data governance; transparency; diversity, nondiscrimina-
tion, and fairness; societal and environmental well-being;
and accountability.18 Similarly, the Food and Drug
Administration (FDA) has taken similar steps toward
regulation of AI applications in medicine.19 A key
component of improving awareness is to be transparent
and clearly document where and when an AI algorithm is
used in any part of the clinical workflow. And in cases
where AI is applied, researchers and physicians should
also clarify whether the AI is an ML systemdthe more
and fairness in AI.

on oncologists, and data scientists and their respective roles in

nce training into residency curricula.
gh education and exposure.

pers, webinars, video lectures, hackathons, data sets, code, etc).
itutions to democratize access and standardize training quality.
search and use annotated data sets for education toward model

ent and educational purposes.

for rapid learning opportunities.
rial workshops.
w investigators.

rtificial intelligence; ESTROZ European Society for Radiation therapy

https://www.acrdsi.org/
https://www.acrdsi.org/
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recent type of AI trained on large data, which tend to be
less interpretabledor an older rule-based system. ML and
rule-based AI have different behaviors. For example,
neural networksda type of ML systemdare vulnerable
to adversarial attacks.20,21

AP2: Implement Practical Didactic Curriculum

There are currently no educational guidelines for AI
training for radiation oncology or medical physics resi-
dents. Serendipitously, there is an active discussion within
the field about revising the radiation oncology resident
training curriculum. Although in-depth discussion of all
the factors at play is beyond the scope of the present
discussion, we refer readers to a pair of editorials by
Amdur and Lee22 and Wallner et al.23 In July 2020, the
Accreditation Council for Graduate Medical Education
made several changes to the radiation oncology residency
curriculum.24 The revisions are notable for mandating
education in several new areas, including clinical infor-
matics. We are pleased that the Accreditation Council for
Graduate Medical Education has the foresight to update
the training curriculum to include informatics and hope
that this paper can serve to provide high-level guidance.

In action point 2, we propose a high-level overview of
a curriculum draft for trainees in medical physics and
radiation oncology to adequately grasp the basic princi-
ples of AI. These principles are generalizable to medicine
as a whole and have particular significance for interven-
tional and informatics-heavy specialties such as radiation
oncology.

1. Responsible conduct of AI, bias, and disparities
2. Methodology: Data science basics
3. Interpreting data and models
4. Practical experience and applications
5. Data sharing: Logistics and culture
Responsible conduct of AI, bias, and disparities

There is increasing concern that AI models influenced
by bias will further perpetuate health care disparities for
patients. The underlying reason behind bias retained in AI
models is often related to training data that fail to repre-
sent the entire population equally. Because AI algorithms
do not have a concept of “fairness,” surveillance of
inherent bias with AI is typically left to those who
designed the system. As noted by the European Union
and FDA in action point 1, proper application of AI
should aim to enhance positive social change and enhance
sustainability and ecological responsibility. Particularly in
medicine, rules and regulations should be put in place to
ensure responsibility and accountability of AI systems,
their users, and their appropriate use. In the computer
science and ML communities, there has been increasing
efforts to improve the teaching of ethics and human-
centered AI in coursework (https://stanfordcs181.github.
io/).25 A complementary area of work is to develop
methods to audit AI systems to identify potential sys-
tematic or cultural biases. Trainees must develop an
appreciation for these critical complexities and potential
limitations of AI.
Methodology: Data science basics

Data features, structures, and algorithms form the
foundation of AI applications. Unfortunately, quantitative
analysis and critical data appraisal are not universally
emphasized in medical or postgraduate education,
particularly for physicians. As many ML techniques
become published in general medical or oncology jour-
nals, it is incumbent upon editors and readers alike to
have some basic facility with the techniques. A working
knowledge of basic statistical concepts such as hypothesis
testing, confidence intervals, and basic performance
metrics will need to be introduced before more data
structures and model-agnostic techniques such as data
cleaning, cross validation, model fitting, biasevariance
tradeoff, and advanced performance metrics, including the
widely used but poorly understood receiver operating
curve, can be developed.26 To demystify many of these
topics, there are existing high-quality online courses made
broadly available, which will be further discussed in ac-
tion points 2 and 3.
Interpreting data and models

For proper clinical application of AI tools, physicians
should be able to assess the validity of the data and the
model-generation process. So-called “black-box” models
have such internal complexity that they are conceptual-
ized as inputs mapped to outputs without any intent to
understand how the mapping occurs. Several ML
methods, including deep learning (DL) and most
ensemble methods, fall into this categorization. Although
black-box AI models can have excellent performance
during training and internal validation, they often
encounter problems generalizing when widely deployed.
Understanding why a problem occurred can be difficult
with “black-box” models and is currently a very active
area of AI research.21,27

One way to demonstrate data and model interpret-
ability is through “use cases.” In medical research, there
are well-known examples of the potential dangers of
black-box models related to confounding.28 Fortunately,
researchers were able to catch these issues before
deploying their models, which may not always be the case
for complex data sets with non-obvious confounders.

https://stanfordcs181.github.io/
https://stanfordcs181.github.io/


Table 2 Examples of data-sharing initiatives in oncology

Entity Est. Area

The Cancer Genome
Atlas

2005 Tumor genomics

ACR Imaging
Network/TRIAD

2009 Clinical trial protocols,
data sets, cloud-
based data transfer

Radiogenomics
Consortium

2009 Radiation therapy
genomics and
genetics

The Cancer Imaging
Archive

2010 DICOM, radiomics.
Select data sets with
genomics,
histopathology.

ASCO CancerLinQ 2014 Quality improvement.
Plan for decision
support.

Project DataSphere 2014 Phase 3 cancer clinical
trial patient-level
data

ACR Data Science
Institute

2017 Use cases in for
development of
medical imaging AI

NCI Office of Data
Sharing

2018 Advocacy, establishing
standards, defining
incentives

Abbreviations. ACR Z American College of Radiology; AI Z
artificial intelligence; ASCO Z American Society of Clinical
Oncology; DICOM Z digital imaging and communications in
medicine; NCI Z National Cancer Institute; TRIAD Z transfer of
images and data.
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There is an ongoing discussion on the necessity of AI
interpretability by the FDA19,29 and the informatics
community.30 All authors would agree that elevating the
knowledge base of clinicians and physicists will certainly
enable more innovation regardless of final regulatory
plans.

Practical experience and applications

For trainees interested in applying data science to
clinical practice, these opportunities should be encour-
aged and promoted.

Although medical physics and radiation oncology AI
curricula could have significant overlap, there will
necessarily be focuses on separate domains. In medical
physics, instruction may cover methods for auto-
segmentation, automated and adaptive treatment plan-
ning, and quality assurance. Radiation oncology trainees
may be more interested in prognostic predictions and
clinical decision support. In the future, as AI takes more
of an augmented intelligence role, there should be in-
struction for physicians on how to decide whether to
accept, interrogate, or reject recommendations. For
example, physicians may need to determine whether there
are sufficient rationales to accept an automatically
generated plan or treatment recommendation using clin-
ical and dosimetric information.

Several radiation oncology departments have AI and
ML researchers who could contribute to a training cur-
riculum. These courses should be jointly taught to both
physicists and physicians. We anticipate that common
courses and collaboration between trainees in medical
physics and radiation oncology will improve translation
of AI methods into the clinic. Given that medical physi-
cists already have quantitative training in methods with
significant overlap with ML, we anticipate close collab-
oration between physicists and physicians. Indeed, this is
the current status quo in most radiation oncology de-
partments performing AI and ML research.

For departments without access to sufficient resources,
online education using so-called MOOCs (“massive open
online courses,” a misnomer, as they are not necessarily
massive or open) and workshop models (see action point
4) may be more educational to trainees than co-opting
faculty without training in AI and ML.

For advanced practitioners, we will discuss data sci-
ence hackathons and crowdsourcing in Action Point 3.
Data sharing: Logistics and culture

One of the key aspects of creating robust predictive
models is being able to show generalization to novel data
sets through a process called external validation, which
requires institutions to share data among themselves. The
data-sharing culture in medicine has been historically
tribalistic but has gradually become more collaborative.
This dynamic was well exemplified by the backlash to an
infamous 2016 editorial (coauthored by the editor in chief
of The New England Journal of Medicine at that time)
that was viewed as antiedata sharing.31,32 Unlike in ac-
ademic medicine, academic AI researchers have a strong
open-access culture where preprint archiving of publica-
tions is the norm and data sets are simultaneously pub-
lished with papers to invite validation. Notably, patients
are generally supportive of the sharing of their data and
would likely embrace scientific reuse of their data to
improve the lives of future patients,33 although we
recognize that there are many regulatory limitations to
widespread data sharing of this sort. Finding a path for
controlled data sharing among trusted parties, or more
broadly with deidentification schemes, could be an
important first step in improving the accuracy of AI
algorithms.

In this curriculum, we hope to emphasize the efforts in
medicine and oncology to promote data sharing (Table 2).
The NCI is keen on improving data-sharing protocols and
resources. In 2018, the NCI Office of Data Sharing was
created, and the NIH has recently asked for open com-
ments on a draft policy for data management and



Table 3 Examples of data science competitions in
oncology and medicine

Platform Year Prediction Goal

MICCAI Brain
Tumor
Segmentation
(BraTS)
benchmark

2012-2020 Segment
heterogeneous
brain tumors
(gliomas)

Prostate Cancer
DREAM
Challenge

2015 Predict overall
survival and
docetaxel
discontinuation
in mCRPC

Kaggle Data
Science Bowl

2016 Predict heart
ejection fraction

MICCAI radiomics
challenges (2)

2016 (1) HPV, (2) local
control in
oropharyngeal
cancer

Kaggle Data
Science Bowl

2017 Detect lung cancer
via National
Lung Screening
Trial DICOMs

TopCoder Lung
Cancer Challenge

2017 Segment lung
cancer

Kaggle Data
Science Bowl

2018 Detect cellular
nuclei

Abbreviations: DICOM Z digital imaging and communications in
medicine; DREAM Z Dialogue for Reverse Engineering Assess-
ments and Methods; HPV Z human papillomavirus; MICCAI Z
Medical Image Computing and Computer Assisted Intervention
Society; mCRPC Z metastatic castrate resistant prostate cancer.
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sharing.34 The Cancer Imaging Archive is funded by NCI
and allows the sharing of anonymized imaging data sets
and corresponding clinical and genomic data. A radiology
initiative includes the ACR Imaging Network for clinical
trial protocol and data set sharing through TRIAD
(Transfer of Images and Data). The American Society of
Clinical Oncology (ASCO) provides another strong
example of centralized data sharing in the CancerLinQ
project (https://cancerlinq.org/). Radiation oncology
currently lacks a specialty-specific centralized platform
for data request and sharing. A notable effort to move
toward this goal is by American Association of Physicists
in Medicine (AAPM) Task Group 263 to standardize
nomenclature using structured ontology for data
pooling.35

One approach to overcome data transfer medicolegal
and protected health information issues is through
distributed or federated learning. In this approach, anal-
ysis is performed locally and models are transferred (eg,
feature weights) instead of data; this decentralized
approach has shown equivalent performance to that using
central pooling of data.36,37 Such innovative approaches
for anonymization could be part of a training curriculum
to help overcome barriers to data sharing.
Recent years have seen signs of a cultural shift in ra-
diation oncology toward open collaboration and data
sharing, along with formalization of key principles in data
sharing, namely that data should be FAIR: findable,
accessible, interoperable, and reusable. These FAIR
guiding principles for scientific data management and
stewardship38 are of utmost importance and should be
discussed with and endorsed for all trainees. In line with
FAIR, several radiation oncology academic centers and
cooperative groups have contributed data sets to the
Cancer Imaging Archive.39-41 Open-access journals with
a focus on radiation oncology include BMC Radiation
Oncology, the Frontiers in Oncology section on radiation
oncology, and Advances in Radiation Oncology, which
was launched by ASTRO in 2015.

Several coordinating efforts present opportunities to
pool ideas and data to promote collaborating, increase
power for discovery, and avoid redundancy. Within im-
aging, these efforts include the aforementioned ACR Data
Science Institute for AI in medical imaging, which aims to
identify clinically impactful use cases in radiation
oncology, such as autosegmentation and magnetic reso-
nance imagingederived synthetic computed tomography
scans.42 Within genomics, the Radiogenomics Con-
sortium is a transatlantic cooperative effort pooling
American and European cohorts to find genomic markers
for toxicity to radiation therapy.43 Several groups within
the consortium are interested in creating ML models to
predict toxicity response in radiation therapy.44-47

Through the proposed curriculum draft of action point
2, we hope to build a core of trainees for the next gen-
eration who can understand and apply data science fun-
damentals while also understanding ethical considerations
and data sharing principles.
AP3: Create Publicly Accessible Resources

Directly building off the curriculum discussed in action
point 2, the third AP relates to the creation of a central-
ized, publicly accessible repository of resources to guide
trainees. These resources could include seminal white
papers, video lectures, code samples, and contacts for
potential collaborations. To reach the widest potential
audience, we favor storage at open access websites such
as GitHub and YouTube, for instance.

As discussed in action point 2, a formal curriculum can
be facilitated and standardized using MOOCs, which
would consist of video lectures and interactive coding
exercises. MOOCs have become very influential in online
education, as they can be tailored for various experience
levels and are self-paced. Owing to economies of scale,
they can be widely disseminated for reasonable costs. For
example, the MOOCs on Coursera run on the higher end
of cost and charges are around $40/mo for classes that last
around a month, with about 10 to 12 hours of coursework

https://cancerlinq.org/


Table 4 Examples of data science workshops in radiation oncology

Workshop Date Host

AAPM Practical Big Data Workshop May 19-20, 2017 University of Michigan
AAPM Practical Big Data Workshop May 31-June 2, 2018 University of Michigan
EORTC State of Science meeting September 26-27, 2018 EORTC
AAPM Practical Big Data Workshop June 6-8, 2019 University of Michigan
NCI Workshop on AI in Radiation Oncology April 4-5, 2019 Radiation Research Program, NCI
NCI State of Data Science in Radiation Oncology July 25, 2019 Radiation Oncology Branch, Center for Cancer

Research, NCI
Second Annual NRG Radiation Oncology
Mini-Symposium: “AI and Machine
Learning in Radiation Oncology”

January 10, 2020 NRG Radiation Oncology Committee, Center for
Innovation in Radiation Oncology

NRG Oncology Digital Health Workshop January 10, 2020 NRG Oncology

Abbreviations: AAPM Z American Association of Physicists in Medicine; AI Z artificial intelligence; EORTC Z European Organization for
Research and Treatment of Cancer; NCI Z National Cancer Institute.
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per week. MOOCs could be adopted from existing
courses or centrally created in collaboration with organi-
zations such as the Association of Residents in Radiation
Oncology Education Committee and Radiation Oncology
Education Collaborative Study Group.

As there is more interest, trainees will likely want to be
involved in practical research projects. Given that AI
expertise is not evenly distributed, both intra- and interin-
stitutional collaborations can be fostered. In this respect,
trainees can provide a valuable service by annotating data
for research. At the same time, theywould also benefit from
the service of others by receiving annotated data for model
and skills development. A model for this can be seen in
eContour (https://www.econtour.org), a free web-based
contouring atlas. In a randomized trial, eContour
improved nasopharynx contours and anatomy knowledge
compared with traditional resources.48 A next phase of
eContour may involve enabling user-generated contours
and segmentations for technology development and
research, with a prototype initially pilot tested at the
American College of Radiation Oncology Annual Meeting
in 2017.49 Researchers are invited to use the platform to
collect contours from large numbers of users from diverse
practice locations, though must provide funding to support
website programming and content administration. For
residents, funding opportunities are available through
professional organizations, as discussed in action point 4.

Another promising venue for trainees interested in
skills development is through public competitions
(Table 3). Past challenges in radiation oncology have
leveraged collaborations between academic centers; in-
ternational societies, such as MICCAI (the Medical Image
Computing and Computer Assisted Intervention Society);
and commercial sites, such as TopCoder.com (Wipro,
Bengalaru, India) and Kaggle.com (Google, San Fran-
cisco, CA). These public crowd-sourcing challenges have
included 2 radiomics challenges: (1) to predict human
papillomavirus status or local control in oropharyngeal
cancer after radiation therapy50 and (2) to predict lung
tumor segmentation.51 Within the medical computer
vision domain, MICCAI hosts several challenges every
year to help validate and benchmark image processing
algorithms52; regular challenges have included melanoma
diagnosis, brain tumor segmentation, and prostate cancer
Gleason grading. In the data science competition space as
a whole, there has been enthusiasm for health care chal-
lenges, with the last 3 Kaggle Data Science Bowls
(https://datasciencebowl.com/) focused on heart ejection
fraction determination (2016), lung cancer screening
(2017), and cellular nuclei detection (2018).

AP4: Accelerate Learning and Funding
Opportunities

Developing and maintaining resources described in
action point 3 will require accelerated learning of partic-
ularly motivated trainees who will need institutional
infrastructure and funding mechanisms to be successful.

Although MOOCs provide consistency and quality of
education, for accelerated training, the radiation oncology
community could adopt the intensive weeklong workshop
model that is widely used by oncology organizations.11

Examples include separate workshops on clinical trial
development by ASCO and the American Association for
Cancer Research (AACR) (https://vailworkshop.org/) and
the European Cancer Organization, AACR, European
Organization for Research and Treatment of Cancer, and
European Society for Medical Oncology53 in addition to
the AACR Molecular Biology in Clinical Oncology
Workshop, which focuses on molecular biology methods
and grantsmanship.54 These intensive, week-long work-
shops are run by established faculty and are aimed at the
research career development of senior trainees and junior
faculty with a strong focus on mentorship; this workshop
model could be adopted in radiation oncology to mentor
trainees in data science. The aforementioned ASTRO
2017 survey10 suggests this workshop model could be

https://www.econtour.org
http://TopCoder.com
http://Kaggle.com
https://datasciencebowl.com/
https://vailworkshop.org/
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well received, with 88% of radiation oncology chairs
“probably or definitely” willing to send faculty or trainees
to such a course to learn bioinformatics. Radiation
oncologyespecific workshops (Table 4) such as the
Practical Big Data Workshop55 (hosted by the University
of Michigan annually 2017-2019) and 2 ad hoc work-
shops by the NIH/NCI in 2019 (NCI Workshop on AI in
Radiation Oncology in April16 and the NCI State of Data
Science in radiation Oncology in July56) have provided
forums for data science practitioners to discuss results and
ideas but have not yet had a primary focus on education or
research mentorship. A joint ASTRO/AAPM AI research
workshop planned for June 2020 was cancelled due to the
COVID-19 pandemic (https://www.astro.org/Meetings-
and-Education/Live-Meetings/2020/Research-Workshop)
. Other promising avenues for future AI education and
workshops include annual society (ASTRO, AAPM, etc)
and cooperative group meetings. For example, recent
European Organization for Research and Treatment of
Cancer57 and NRG Oncology meetings58 have included
workshops on AI and digital health and may be able to
incorporate educational content.

Another avenue to gain expertise during radiation
oncology residency could be through theAmericanBoard of
Radiology’s B. Leonard Holman research pathway. This
pathway is an established research fellowship during resi-
dency that provides between 18 and 21 protected months of
research without lengthening clinical training time. This
protected time could beused to gain expertise in data science,
which could include MOOCs or AI fellowships in collabo-
ration with data science departments or industry. Several
companies, including Google, Microsoft, nVidia, and
Facebook, all offer 1-year AI “residencies” for specific areas
such as deep learning. In late 2019, ASTRO and Varian
Medical Systems announced a joint 1-year research fellow-
ship to start in July 2020 for eligible residents59; research
topics include AI, information systems, and related areas.

There are several grant opportunities for residents and
fellows that could be used toward AI and ML research or
education. These include 1-year grants of $25-$50k by
ASTRO (physicians and physicists), RSNA, and ASCO.
There are also additional funding opportunities not specific
to trainees by the Radiation Oncology Institute and radiation
therapy companies. For new faculty, NIH K08/K23 awards
can provide mentored research time and salary support. NIH
R25 grants for developing informatics tools for cancer are
another promising avenue for multiyear funding opportu-
nities. RSNA offers several grants for education60 and had a
specific focus on developing AI education tools for their
2020 Education Innovation Grant.
Conclusions

AI is becoming a transformative force in medicine, but
there are dangers to blindly trusting trained models and
raw data without understanding their governance. Just as
radiation oncology trainees should understand requisite
radiobiology and physics to treat patients, we believe that
some level of competency in AI is necessary to safely and
effectively use it in the clinical setting. In the present
perspective article from the 2019 NCI Workshop on AI in
Radiation Oncology: Training and Education Working
Group, we have discussed AI awareness and proper
conduct (Action Point 1), what an AI curriculum might
include (AP2), how to create and contribute to educa-
tional resources (AP3), and what support from in-
stitutions, societies, and funding agencies is required
(AP4). We hope that this paper will spark further dis-
cussion on the future of trainee education in radiation
oncology. One concrete path forward could be for radia-
tion oncologists and medical physicists to collaboratively
apply for fellowships/funding and develop workshops
(AP4) for creation of data science educational curricula
(AP2) and resources (AP3), while being mindful of the
ethical concerns in AI implementation (AP1).
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