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Purpose: To develop a deep learning model to estimate the visual field (VF) from
spectral-domain optical coherence tomography (SD-OCT) and swept-source OCT (SS-
OCT) and to compare the performance between them.

Methods: Two deep learning models based on Inception-ResNet-v2 were trained to
estimate 24-2 VF from SS-OCT and SD-OCT images. The estimation performance of the
twomodels was evaluated by using the root mean square error between the actual and
estimated VF. The performance was also compared among different glaucoma severi-
ties, Garway-Heath sectorizations, and central/peripheral regions.

Results: The training dataset comprised images of 4391 eyes from 2350 subjects, and
the test dataset was obtained from another 243 subjects (243 eyes). In all subjects, the
global estimation errors were 5.29± 2.68 dB (SD-OCT) and 4.51± 2.54 dB (SS-OCT), and
the estimation error of SS-OCT was significantly lower than that of SD-OCT (P < 0.001).
In the analysis of sectors, SS-OCT showed better performance in all sectors except for
the inferonasal sector in normal vision and early glaucoma. In advanced glaucoma, the
estimation error of the central region was worsened in both OCTs, but SS-OCT was still
significantly better in the peripheral region.

Conclusions: Our deep learning model estimated the VF 24-2 better with a wide field
imageof SS-OCT thandidwith retinal nerve fiber layer andganglion cell–inner plexiform
layer images of SD-OCT.

Translational Relevance: This deep learning method can help clinicians to determine
the VF fromOCT images. OCTmanufacturers can equip this system toprovide additional
VF data.

Introduction

To detect glaucomatous damage in the optic
nerve head (ONH), red-free fundus photography and
optical coherence tomography (OCT) are usually
performed.1,2 The visual field (VF) test is also an
essential examination to identify the correspond-
ing functional damage.3 However, VF examination
includes many random errors and fluctuations4–6 and
could lead to an inaccurate diagnosis. In contrast with

the VF, OCT is easy to perform, and the result is very
objective and highly reproducible.7–9 If we can estimate
the VF from SS-OCT, the benefit will be substantial.

The diagnostic performance to differentiate normal
vision from glaucoma has been proven in many previ-
ous studies.10–12 Spectral-domain OCT (SD-OCT) is
an improved version of conventional time-domain
OCT, and it offers higher scanning rates and better
resolution. The intravisit and intervisit reproducibil-
ity of SD-OCT is superior to that of time-domain
OCT,13 indicating the potential usefulness of SD-OCT
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in monitoring glaucoma progression. The diagnostic
ability of SD-OCT is also better than that of time-
domain OCT.14 More recently, swept-source OCT (SS-
OCT), a new generation of OCT, has been devel-
oped. This technique allows clinicians to obtain a
high-quality, wide-angle image that includes coverage
of the whole optic disc and macula and has a rapid
scan speed. Previous studies have revealed that the
diagnostic ability of peripapillary retinal nerve fiber
layer (RNFL) and macular ganglion cell–inner plexi-
form layer thickness using SS-OCT is comparable with
that of SD-OCT and have suggested that a single wide
scan in SS-OCT could replace separate peripapillary
and macular scans in patients with glaucoma.15

With the recent tremendous advances in deep learn-
ing algorithms, there have been several trials for
estimating the VF based on the structural damage
displayed in OCT.16,17 Because structural changes
measured by OCT are closely related to the functional
changes in VF examination,18–20 OCT images are
considered to provide useful data to estimate VF
damage. Although these studies have found that deep
learning systems using OCT have a high accuracy
for estimating VF defects in glaucoma, there is no
report that directly compares the accuracy of various
OCTs used with estimate VF defects. In terms of the
deep learning approach, it is necessary to compare
which data have shown greater estimation accuracy,
because the process of selecting data is an impor-
tant factor to increase accuracy. Therefore, we deter-
mined whether the thickness map in SD-OCT or SS-
OCT influences the accuracy of estimating functional
damage in glaucoma.

The purpose of this study was to develop a deep
learning architecture to estimate the VF from differ-
ent OCT images and to compare the performance
between SD-OCT and SS-OCT images. We built a
model with a state-of-the-art deep learning architecture
and compared its performance globally and regionally
in different glaucoma severities.

Methods

This retrospective study was performed in accor-
dance with the tenets of the Declaration of Helsinki.
The study was approved by the Institutional Review
Board of Yangsan Pusan National University Hospi-
tal, South Korea. The patients’ consent was waived by
the institutional review board owing to the retrospec-
tive nature of the investigation.

All training and test data were collected from
subjects who visited the glaucoma clinic at Yangsan
PusanNational UniversityHospital from 2015 to 2019.

In Table 1, the demographic characteristics of the
training dataset are summarized. The total number of
images in the training dataset was 4391 eyes from 2350
subjects. Of the 4391 training images, 2171 images were
from SD-OCT and 2220 were SS-OCT. The mean age
was 61.4 ± 17.0 years (SD-OCT) and 61.4 ± 13.7 years
(SS-OCT). Unlike the test dataset, which contains
only patients with glaucoma, the training dataset was
not labeled by diagnosis. Therefore, it contains not
only normal subjects but also patients with glaucoma
and other optic neuropathies. However, eyes with
severe retinal disease ormedia opacity (corneal opacity,
cataract, etc.) were excluded.

Apart from the training dataset, a completely
different test dataset was obtained from another 243
subjects (243 eyes) (Table 2). To evaluate performance
more objectively, we obtained only one eye dataset
from each patient. All subjects in the test group
had both SD-OCT and SS-OCT performed within 6
months from the date of the VF. We retrospectively
reviewed all test patients’ medical records to obtain
detailed results of the ophthalmic examination, which
included age, gender, Goldmann applanation tonom-
etry, spherical equivalence of refractive error (ARK-
510A; NIDEK, Hiroshi, Japan), central corneal thick-
ness (Pachmate; DGH Technology, Exton, PA), and
axial length (IOLMaster, Carl Zeiss Meditec, Dublin,
CA). Glaucomatous optic neuropathy was defined if
one or more of the following criteria were met: vertical
cup-to-disc ratio asymmetry of 0.2 or more, focal or
diffuse neuroretinal rim thinning, localized notching,
and the presence of RNFL defects that corresponded
with VF defects.21 Normal subjects were defined as
those with no history of ocular disease, an intraocu-
lar pressure of less than 21 mm Hg, an absence of a
glaucomatous optic disc appearance, and a normal VF.
To ensure representation of the full range of disease,
normal subjects also included those who were clini-
cally suspected of having glaucoma (based on optic disc
or RNFL appearance or elevated intraocular pressure)
but had a normal VF. Patients with a corneal or
ocular media opacity, refractive error of ±6.0 diopters
or more, optic neuropathies other than glaucoma, or
recent ocular surgery or trauma were excluded.

Zeiss SD-OCT

The Cirrus SD-OCT instrument (Carl Zeiss
Meditec) was used to acquire macular ganglion
cell–inner plexiform layer and peripapillary RNFL
(pRNFL) thickness maps. Two consecutive OCT
exams, namely, the 6 mm × 6 mm macular cube scan
200 × 200 protocol and the 6 mm × 6 mm optic disc
cube 200 × 200 scan, were performed at the same time
to obtain both macular ganglion cell–inner plexiform
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Table 1. Demographic Characteristics of the Training Dataset

Zeiss SD-OCT Topcon SS-OCT

Total number of eyes 2171 2220
Total number of patients 1230 1120
Age (mean ± standard deviation) 61.4 ± 17.0 61.4 ± 13.7
Number of eyes binned by VF MD
MD ≥ –6 dB 1344 (61.9%) 1196 (53.9%)
–6 dB > MD ≥ –12 dB 380 (17.5%) 399 (18.0%)
–12 dB > MD 447 (20.6%) 625 (28.2%)

Table 2. Demographic Characteristics of the Test Dataset

Glaucoma (n = 157)

Normal (n = 86) Early (n = 87) Advanced (n = 70) P Value

Age (years) 62.0 ± 13.3 60.3 ± 14.7 66.6 ± 11.2 0.011a

Gender (male/female) 36/50 37/50 30/40 0.017b

Intraocular pressure (mm Hg) 15.97 ± 3.92 15.46 ± 4.46 15.00 ± 4.38 0.369a

Refractive error (diopters) –0.91 ± 2.57 –1.37 ± 2.89 –1.43 ± 2.46 0.381a

Central corneal thickness (μm) 550.3 ± 68.6 546.5 ± 44.7 542.3 ± 36.6 0.654a

Axial length (cm) 23.91 ± 1.47 24.19 ± 1.69 24.13 ± 1.29 0.496a

VF examination
MD (dB) –1.23 ± 1.24 –3.16 ± 1.79 –13.35 ± 7.40 <0.001c

PSD (dB) 1.71 ± 0.54 3.03 ± 1.69 8.93 ± 3.27 <0.001a

VF index (%) 98.7 ± 1.2 95.2 ± 3.7 63.2 ± 25.0 <0.001a

Zeiss SD-OCT macular ganglion cell analysis
Signal strength 7.63 ± 1.11 7.36 ± 8.37 7.20 ± 1.12 0.048a

Average GCIPL thickness (μm) 80.2 ± 5.3 73.1 ± 8.4 63.6 ± 8.1 <0.001c

Zeiss SD-OCT ONH and RNFL analysis
Signal strength 7.72 ± 0.95 7.45 ± 1.03 7.21 ± 1.06 0.008a

Superior RNFL thickness (μm) 109.5 ± 14.9 94.9 ± 15.9 78.6 ± 19.5 <0.001c

Temporal RNFL thickness (μm) 69.4 ± 12.5 65.1 ± 14.1 55.5 ± 13.7 <0.001a

Nasal RNFL thickness (μm) 65.3 ± 9.4 64.1 ± 10.1 59.3 ± 10.1 <0.001c

Inferior RNFL thickness (μm) 111.8 ± 18.1 87.7 ± 18.3 67.1 ± 15.2 <0.001c

Topcon SS-OCT
Image-quality score 59.5 ± 6.1 59.1 ± 5.9 57.8 ± 6.1 0.209a

Superior RNFL thickness (μm) 119.3 ± 18.4 97.8 ± 22.9 74.2 ± 27.5 <0.001c

Temporal RNFL thickness (μm) 81.1 ± 13.1 72.6 ± 15.5 57.9 ± 16.1 <0.001c

Nasal RNFL thickness (μm) 69.3 ± 14.5 64.7 ± 13.3 55.6 ± 16.9 <0.001c

Inferior RNFL thickness (μm) 122.8 ± 21.0 90.1 ± 24.2 58.1 ± 19.2 <0.001c

GCIPL, ganglion cell to inner plexiform layer.
aAnalysis of variance test.
bχ2 test.
cKruskal-Wallis test.

layer and pRNFL thickness maps. For quality control,
only good quality scans defined as having a minimum
signal strength of 6, having no involuntary eye
movements or blinking artifacts, and being without
misalignment or segmentation failures were used for
analysis.

Topcon SS-OCT

Wide-angle scanning using the SS-OCT (DRI-
OCT-1Atlantis; Topcon, Tokyo, Japan) was performed
on each subject within 6 months of the VF. Wide-
angle scanning uses a wide-angle 12 × 9 mm lens, with
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the scan centered on the fovea, for 256 B-scans, each
comprising 512 A-scans, for a total of 131,072 axial
scans per volume. A scan time of 1.3 seconds per 12
× 9 mm2 scan, which was previously shown to be suffi-
cient for acquiring total images, was used here. Poor
quality images (image quality scores of <40, poorly
focused, or decentered during fovea scanning) or those
acquired after segmentation failures or with artifacts
owing to eye movements or blinking were excluded.
Built-in DRI-OCT-1 software (version 9.12) automati-
cally identified the outer boundary of the RNFL, from
the internal limiting area to the retinal ganglion cells
and the outer boundary of the inner plexiform layer.

VF Examination

A VF test was performed on all training and test
subjects using a Humphrey Field Analyzer 750i instru-
ment (Carl Zeiss Meditec) with the Swedish interac-
tive threshold algorithm 24-2 or 30-2. Of the 54 test
points of the 24-2 test pattern, 2 points of physio-
logic scotoma were excluded, and the remaining 52
test points of the total threshold value were used as
the ground truth VF of the training and test sets.
Adequate reliability was defined as having a false-
positive rate of less than 33%, false-negative rate of
less than 33%, and fixation loss of less than 20%.
Normal VFs were defined as those with a glaucoma
hemifield test within the normal limits and with a mean
deviation (MD) and pattern standard deviation (PSD)
within 95% of the Humphrey Field Analyzer’s norma-
tive database. Glaucoma VFs were defined as those
whomet at least one of the following criteria: glaucoma
hemifield test outside the normal limits and/or PSD
probability outside of 95% of the Humphrey Field
Analyzer’s normative database. Glaucoma severity was
determined by theMD of the VF: early greater than –6
dB and moderate to severe (advanced) –6 dB or less.

To evaluate performance sectorally, we mapped 52
VF test points according to two different methods.
First, Garway-Heath sectorization22 was used (Supple-
mentary Fig. S1A). This method assigns VF test points
to the corresponding ONH sectors and is known to be
useful to analyze structure-function relationships. The
second method was central and peripheral mapping
(Supplementary Fig. S1B). The central region contains
test points that overlap with the VF 10-2 points,23 and
the peripheral region contains the rest of the test points
outside the central region.

Input Image Generation

We developed custom Windows software using
Microsoft Visual Studio 2015 and C# language with a

dot net library to generate combined input images. Our
custom software used two report images exported from
Zeiss SD-OCT: (1) ganglion cell analysis of both eyes:
macular cube 200 × 200, and (2) ONH and RNFL
analysis of both eyes: optic disc cube 200 × 200 proto-
col. The custom software automatically detected the
location of these blue-toned thickness maps by search-
ing for the rectangular boundary of the blue image,
starting from a predefined location, and cropped and
combined them (Fig. 1 left). Another custom software
for SS-OCT cropped the ganglion cell layer thickness
map and RNFL thickness map in the SS-OCT report
image and combined it together (Fig. 1, right). All left
eye images were flipped horizontally to match the right
eye format.

Deep Learning Architectures and Training

The open source deep learning library, Keras,24
running on top of the TensorFlow backend (Google,
Mountain View, CA) python (version 3.5) API r1.10,
was used. The CUDA toolkit 9.0 and cuDNN 7.0
library were installed to use the GPU computation
power. The hardware environment used for training
and test runs was an Intel i5-8400 CPU, 32 GB RAM,
and a GeForce Titan XP (NVIDIA, Santa Clara, CA).

The final deep neural network architecture to
estimate the total threshold values is shown in Fig. 1.
Google’s state-of-the-art CNN architecture, Inception-
Resnet V2, was used as the backbone structure at the
beginning of architecture to extract global features. A
bottleneck layer of the InceptionResnet V2 backbone
was modified by one global average pooling layer
followed by four consecutive fully connected layers
(dense layers 1–4 in Fig. 1). The ReLu (rectified linear
unit) was used as the activation function in all 4 dense
layers. A combined OCT image, which had a size of
322 × 161 (width × height) for SD-OCT or 480 ×
200 (width × height) for SS-OCT, was fed into the
input layer of the CNN architecture. The output of the
InceptionResnet V2 backbone architecture produced a
shape of 3 × 8 × 2048 (height × width × depth) global
features. The global average pooling layer flattened
the output of the inception backbone and averaged
2048 features. Four dense layers gradually condensed
these features into 52 final output values, which
correspondedwith 52 total threshold values (two points
of physiologic scotoma were excluded from estima-
tion).

Before training began, InceptionResnet pretrained
on the ImageNet dataset was downloaded and applied.
No layer was frozen during training and all layers were
fine tuned. Training data records were randomly split
into training and validation datasets in a 9:1 ratio and
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Figure 1. Diagram of the deep learning architecture.

batches of 64 were supplied to the neural network.
The optimizer was ‘rmsprop’ and the loss function
was ‘mean squared error.’ Training was monitored by
reference to the loss trends of both the training and
validation sets. When no further performance gain was
observed over 100 epochs, training finished. To prevent
overfitting, the repeated random subsampling cross-
validation technique25 was used. The training datawere
again randomly split in a 9:1 ratio, the last trained
weight file was loaded, and training resumed until no
further performance gain was evident over 100 epochs.
This process was repeated five times.

Statistical Analysis

The Shapiro–Wilk test was performed to check
the normality of the continuous data distribution. To
compare values among all three groups (normal, early
glaucoma, advanced glaucoma), we used the Kruskal–

Wallis test, Friedman’s test, or analysis of variance
depending on the normality of the data. To perform
post hoc analysis, we used the Mann–Whitney U test
or Wilcoxon’s signed rank test. The chi-square test was
used for categorical variables. The VF estimation error
was calculated as the root mean square error (RMSE)
using the following formula:

RMSE =
√√√√ N∑

n=1

(true THVn − predicted THVn)2

N

n =nth test point of the visual field exam, N = Total
number of values, THV=visual field threshold value.

When we calculated the global RMSE (i.e., includ-
ing all 52 test points), N was 52, and for the regional
estimation error, N was only a select number of VF
test points inside the target region. These regions are
defined in Figure 1. For conducting statistical analy-
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ses, SPSS (version 21.0 for Windows; SPSS, Chicago,
IL) was used, and a P value of less than 0.05 (single
comparison) and a P value of less than 0.017 (multi-
ple comparisons) were considered to indicate statistical
significance.

Results

Data from a total of 243 eyes from 243 patients
were used for the test set. The test set included 86
normal subjects, 87 patients with early glaucoma,
and 70 patients with advanced (moderate-to-severe
stage) glaucoma. The demographic characteristics are
summarized in Table 2. Age and gender were signif-
icantly different (P = 0.011 and P = 0.017, respec-
tively) between the subject groups, whereas intraocu-
lar pressure, refractive error, central corneal thickness,
and axial length were not. All VF parameters, such
as the MD, PSD, and VF index, were significantly
different (all P values < 0.001) between the subject
groups. The average MD was –1.23 dB/–3.16 dB/–
13.35 dB (normal/early/advanced glaucoma, respec-

tively). Supplementary Fig. S2 shows the distribu-
tion of MD between subject group. All SD-OCT
parameters were significantly different between the
subject groups. In the SD-OCT macular ganglion cell
analysis, the average GCIPL thickness was 80.2 μm
(normal), 73.1 μm (early glaucoma), 63.6 μm (advanced
glaucoma) and was significantly different between the
subject groups (all P values < 0.001). In SD-OCT
ONH and RNFL analysis, the sectoral RNFL thick-
nesses were 109.5 μm, 69.4 μm, 65.3 μm, and 111.8
μm for normal subjects, 94.9 μm, 65.1 μm, 64.1 μm,
and 87.7 μm for patients with early glaucoma, and 78.6
μm, 55.5 μm, 59.3 μm, and 67.1 μm for patients with
advanced glaucoma (superior, temporal, nasal, and
inferior sector, respectively), and these values were all
significantly different between groups (all P < 0.001).
All sectoral RNFL thicknesses measured by SS-OCT
were also significantly different between subject groups
(all P < 0.001) except for the image quality score (P =
0.209).

Global and regional VF estimation error between
ground truth and estimated are summarized
in Table 3, and representative examples are shown in

Table 3. RMSE Between Ground Truth and Estimated Values of the VF

Glaucoma Post Hoc Analysis

All Subjects Normal Early Advanced Pala PNEb PEAc PNAd

Zeiss SD-OCT
Global 5.29 ± 2.68 3.75 ± 1.26 4.73 ± 2.28 7.84 ± 2.67 <0.001 0.003 <0.001 <0.001
Temporal 4.73 ± 3.38 3.06 ± 1.29 4.08 ± 2.93 7.59 ± 3.94 <0.001 0.138 <0.001 <0.001
Superotemporal 4.78 ± 3.09 3.77 ± 1.57 4.13 ± 2.06 6.80 ± 4.45 <0.001 0.287 <0.001 <0.001
Inferotemporal 4.85 ± 3.49 3.41 ± 1.42 4.39 ± 3.06 7.17 ± 4.57 <0.001 0.073 <0.001 <0.001
Nasal 4.42 ± 3.04 3.59 ± 1.73 3.89 ± 2.26 6.09 ± 4.35 <0.001 0.709 0.001 <0.001
Superonasal 5.17 ± 2.94 4.00 ± 1.41 4.73 ± 1.98 7.16 ± 4.17 <0.001 0.013 <0.001 <0.001
Inferonasal 5.23 ± 3.80 3.90 ± 1.82 5.13 ± 4.08 6.97 ± 4.62 <0.001 0.185 0.001 <0.001
Central 5.14 ± 3.07 3.65 ± 1.49 4.28 ± 2.39 8.05 ± 3.37 <0.001 0.182 <0.001 <0.001
Peripheral 5.26 ± 2.69 3.76 ± 1.26 4.81 ± 2.35 7.65 ± 2.82 <0.001 0.003 <0.001 <0.001

Topcon SS-OCT
Global 4.51 ± 2.54 2.88 ± 0.92 3.77 ± 1.45 7.43 ± 2.54 <0.001 <0.001 <0.001 <0.001
Temporal 3.89 ± 3.37 1.94 ± 0.92 2.96 ± 2.00 7.42 ± 3.98 <0.001 <0.001 <0.001 <0.001
Superotemporal 3.65 ± 3.25 2.38 ± 1.30 2.79 ± 2.05 6.26 ± 4.51 <0.001 0.385 <0.001 <0.001
Inferotemporal 4.30 ± 3.46 2.60 ± 0.91 3.72 ± 2.01 7.11 ± 4.94 <0.001 <0.001 <0.001 <0.001
Nasal 3.41 ± 2.48 2.78 ± 1.25 2.91 ± 1.58 4.81 ± 3.74 <0.001 0.803 0.001 0.001
Superonasal 4.22 ± 2.90 3.05 ± 1.38 3.60 ± 1.93 6.39 ± 4.00 <0.001 0.126 <0.001 <0.001
Inferonasal 4.54 ± 2.99 3.59 ± 1.61 4.26 ± 2.65 6.06 ± 4.05 <0.001 0.222 0.002 <0.001
Central 4.13 ± 3.33 2.22 ± 1.15 3.00 ± 1.82 7.88 ± 3.63 <0.001 0.007 <0.001 <0.001
Peripheral 4.51 ± 2.46 3.01 ± 0.97 3.89 ± 1.54 7.11 ± 2.67 <0.001 <0.001 <0.001 <0.001
aP value among all subject groups (Kruskal–Wallis test, significance level P < 0.05).
bP value between normal and early glaucoma (Mann–Whitney U test, significance level P < 0.017).
cP value between early and advanced glaucoma (Mann–Whitney U test, significance level P < 0.017).
dP value between normal and advanced glaucoma (Mann–Whitney U test, significance level P < 0.017).
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Table 4. RMSE Between Ground Truth and Estimated Values of the VF in the Global Sector

Zeiss SD-OCT Topcon SS-OCT P Valuea

All subjects 5.29 ± 2.68 4.51 ± 2.54 <0.001
Normal 3.75 ± 1.26 2.88 ± 0.92 <0.001
Early glaucoma 4.73 ± 2.28 3.77 ± 1.45 <0.001
Advanced glaucoma 7.84 ± 2.67 7.43 ± 2.54 0.218

aWilcoxon’s signed rank test.

Figure 2. Scatter plot of estimated versus actual mean threshold
value.

Supplementary Fig. S3. Globally, the estimation error
became significantly worsened as glaucoma progressed
in both OCTs (all P ≤ 0.003). In SD-OCT, the global
RMSE was 5.29 ± 2.68 dB for all patients, 3.75 ± 1.26
dB for normal subjects, 4.73± 2.28 dB for patients with
early glaucoma, and 7.84 ± 2.67 dB for patients with
advanced glaucoma. In SS-OCT, the global RMSE
was 4.51 ± 2.54 dB for all patients, 2.88 ± 0.92 dB
for normal subjects, 3.77 ± 1.45 dB for patients with
early glaucoma, and 7.43 ± 2.54 dB for patients with
advanced glaucoma. Supplementary Table S1 lists the
intraclass variabilities of the VF total threshold values.
Data from a second VF examination performed within
6 months after the original test set were collected and

the mean absolute differences between the two consec-
utive examinations were calculated. The intra-lass
variabilities of the VFmean threshold values were 4.28
± 1.94 (all subjects), 3.27 ± 1.07 dB (normal subjects),
3.87 ± 1.48 dB (patients with early glaucoma), and
5.56 ± 2.27 dB (patients with advanced glaucoma).

In the Garway–Heath sectorization, the RMSEs of
the temporal side sectors (temporal, superotemporal,
and inferotemporal sectors), which are more important
for glaucomatous damage, were all lower than those
of the corresponding nasal side sectors (nasal, super-
onasal, and inferonasal sectors). The lowest RMSE
sector among the temporal side was the temporal
sector (4.73 dB) in SD-OCT and the superotemporal
sector (3.65 dB) in SS-OCT. All sectoral estimation
errors became significantly worsened as the glaucoma
progressed. However, between normal vision and early
glaucoma, not all sectors were significantly different. In
SD-OCT, only the superonasal sector was significantly
different between normal vision and early glaucoma,
whereas in SS-OCT, the temporal and inferotempo-
ral sectors were significantly different. In central and
peripheral sectorization, the estimation error of the
central region was generally lower than that of the
peripheral region, but in advanced glaucoma, it was the
opposite. The estimation error of SD-OCTwas 5.14 dB
and 5.26 dB (central and peripheral) and that of SS-
OCT was 4.13 dB and 4.51 dB (central and peripheral)
in all patients.

A global comparison of the estimation error
(RMSE) between the two OCT devices is summarized
in Table 4 and Figure 2. In general, the global estima-
tion error of SS-OCT was significantly lower than that
of SD-OCT (all P < 0.001), except for the advanced
glaucoma group. In advanced glaucoma, the estima-
tion error of SS-OCT (7.43 dB) was still better than
that of SD-OCT (7.84 dB), but it was not significant
(P = 0.218). The plot of estimation error (Fig. 3)
showed that the Topcon SS-OCT data were skewed to
the left compared with the Zeiss-SD-OCT data. This
finding indicated that the overall estimation error was
lower for the Topcon SS-OCT.

Bar plots in Figure 4 show the sectoral estima-
tion error between SD-OCT and SS-OCT. In normal
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Figure 3. Distribution plot of estimation error.

subjects and the early glaucoma groups, the estima-
tion error of SS-OCT was better than that of SD-
OCT in all sectors, except for the inferonasal sector.
However, in the advanced glaucoma group, all tempo-
ral side sectors (temporal, superotemporal, and infer-
otemporal) showed no significant performance differ-
ence between both OCTs, while in all nasal sectors
(nasal, superonasal, and inferonasal), SS-OCT showed
significantly better performance than SD-OCT. In the
advanced glaucoma group, the peripheral estimation
error of SS-OCT was significantly better than that of
SD-OCT, but there was no significant difference in
the central region. In the normal and early glaucoma
groups, SS-OCTwas significantly better than SD-OCT
in both the central and peripheral regions.

Figure 5 shows the pointwise errors (RMSE) for
SD-OCT and SS-OCT. SS-OCT (middle column)
generally showed more error with respect to bright-
ness than SD-OCT (left column), especially in subjects
with normal vision and patients with early glaucoma.
However, as the glaucoma progressed, the images
became darker, and the difference between the two
devices disappeared. The number of points showing
non-significant differences (right column, darker color)
between the two types of OCT was 2 (3.84%) for
normal subjects, 6 (11.53%) for patients with early
glaucoma, and 27 (51.9%) for patients with advanced

Figure4. Regional estimation error. Cent, central; IN, inferonasal; IT,
inferotemporal; N, nasal; SN, superonasal; Peri, peripheral; ST, super-
otemporal; T, temporal. An asterisk (*) denotes a significant differ-
ence between Zeiss and Topcon.

glaucoma. As glaucoma progressed, there were more
of these points in the nasal periphery of the VF.

A multiple linear regression analysis was performed
to identify factors associated with estimation error
(Table 5). The outcome variable was estimation error
(RMSE) for both the Zeiss SD-OCT and Topcon SS-
OCT. Age, axial length, central corneal thickness, OCT
signal strength, and VF MD were included as covari-
ates. For both the SD-OCT and SS-OCT data, only VF
MD was significantly associated with estimation error.
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Figure 5. Pointwise RMSE between ground truth and the estimated value. In left and middle column, the darker the color is, the higher
estimation error. Right column shows pointwise P values (the darker colormeans insignificant) comparing twoOCTs (Wilcoxon’s signed rank
test). SS-OCT, swept source OCT.

Table5. Multiple Linear RegressionAnalysis forAssoci-
ation Between Estimation Error and Various Factors

β P Value

Zeiss SD-OCT
Age –0.106 0.205
Axial length 0.026 0.739
Central corneal thickness –0.039 0.547
Macula OCT signal strength –0.079 0.356
ONH OCT signal strength 0.029 0.722
VF MD –0.493 <0.001

Topcon SS-OCT
Age –0.045 0.530
Axial length –0.050 0.479
Central corneal thickness –0.014 0.814
OCT signal strength –0.063 0.292
VF MD –0.612 <0.001

Table contains the results of two multiple linear regres-
sionmodels. The outcome variables are estimation error (root
mean squared error) of Zeiss SD-OCT and estimation error of
Topcon SS-OCT. Eachmodel includes age, axial length, central
corneal thickness, OCT signal strengths, VF MD factor as a
covariate. The ‘Enter’method was used.

Discussion

The present study found that SS-OCT showed a
significantly higher accuracy than SD-OCT, except for
the advanced glaucoma group. The estimation error
became significantly worsened as glaucoma progressed
in both OCTs. In the regional comparison, the estima-
tion error of SS-OCT was significantly lower than
that of SD-OCT in almost all sectors except for only
the inferonasal sector in the normal subject and early
glaucoma groups.

Several previous studies have estimated the VF
from OCT images using non-deep learning methods.
Tan et al.26 developed a mathematical formula that
converts RNFL thickness into “actual VF MD,”
which shows better reproducibility than “actual VF.”
However, actual VF MD is a global index. In another
study, Zhang et al.27 used multiple linear regression
to estimate the 10-2 and 24-2 VFs simultaneously
from a combined OCT image (similar to our study).
In contrast with our study, however, their method
predicted the probability of normality. The 10-2 and
24-2 VF estimates exhibited 82.2% agreement. In
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another study based on a conventional artificial intelli-
gence method, Guo et al.28 used a “nine-field-per-eye”
protocol, in which the patient fixated on a 3 × 3 grid
of spots (total of nine OCT images). They constructed
four topological structure–function maps and used a
support vector machine algorithm to calculate the VF
from those maps. Among the four predefined maps,
the one showing the best performance had an RMSE
of 5.42 dB. Thus, the performance was good for some
of the structure–function maps. The highest prediction
error among the maps was 7.24 dB.

Recently, researchers have begun to use deep learn-
ing algorithms to estimate the VF from OCT data.
Christopher et al.16 attempted to estimate the VF
from SD-OCT images using a deep learning method.
Among ONH en face images, peripapillary RNFL
thickness maps, and confocal scanning laser ophthal-
moscopic images, the best performance was achieved
by the ONH en face image, with a prediction error
of 2.5 dB. Although our method could estimate the
entire VF, their deep learning model estimated the
VF both globally and in terms of individual sectors,
without a comparison among OCT sources. Sugiura
et al.29 described another deep learning method. As in
our study, their deep learning architecture used both
GCIPL and RNFL images as input, but the RNFL
thickness maps were obtained in macular areas. Their
method was designed for application to the entire
Humphrey 10-2 VF. The RMSE value obtained was
6.16 dB. Additionally, Yu et al.30 developed a deep
learning architecture to estimate global indices of the
VF (MD and PSD) from OCT images. As in our study,
the architecture used by Yu et al. incorporated both
macular cube images andONHRNFL thicknessmaps,
obtained by a Zeiss SD-OCT instrument. The median
error in the VF MD was 1.57 dB.

In the present study, the estimation error of SS-
OCT was significantly lower than that of SD-OCT.
This outcome is probably because the scanning area
of SS-OCT is wider than that of SD-OCT. SS-OCT
covers an area of 12 × 9 mm (width × height), whereas
SD-OCT covers 6 × 6 mm of peripapillary area and
6 × 6 mm of macular area. This wider area should
contain much more information than the area in SD-
OCT and could better reflect the structural damage
corresponding to the functional loss. Hood et al.31
reported that a single wide scan in SS-OCT contains
the information needed to diagnose early glaucoma
with excellent sensitivity and specificity. In another
study,32 structural changes shown on SS-OCT can
detect or estimate VF damage even in preperimetric
glaucoma.

However, in patients with advanced glaucoma, we
found no significant performance difference between

the two types of OCT. The training dataset for
advanced glaucoma was smaller than that for early
glaucoma, somore extensive training of the deep learn-
ing model was possible for early glaucoma. However,
even with sufficient training data, the performance
with respect to advanced glaucoma may not be greatly
improved because the quality of data is also problem-
atic: previous studies demonstrated a saturation effect
in the structure–function relationship in advanced
glaucoma, because of remnant glial cells and blood
vessels providing a degree of thickness of the macula
even after total loss of visual function.33 This remnant
thicknessmay hamper estimation of theVF fromOCT-
derived measurements of RNFL and ganglion cell
layer thickness. As shown in Supplementary Table S1,
the mean absolute VF total threshold value differ-
ence between two consecutive examinations (i.e., the
intraclass variability) was relatively large consider-
ing the range of estimation error, and increased as
glaucoma progressed. Thus, a large proportion of
the estimation error was attributable to the intrinsic
variability of the VF examination per se. This finding
may explain why the two OCT devices performed
similarly.

Glaucomatous changes typically begin in the
peripheral field.34 In this study, a pointwise compar-
ison of estimation error showed that nearly one-
half of the peripheral points exhibited higher error
and no performance difference between the two
types of OCT in patients with advanced glaucoma.
Moreover, most retinal ganglion cell damage occurs in
the early stage glaucoma. In advanced glaucoma,
few retinal ganglion cells remain. Although the
VF exhibits considerable alterations, changes in
RGCs are small. This factor causes great difficulty
in the detection of RNFL thickness changes using
OCT.35

In the present study, the central region was signif-
icantly better estimated than the peripheral region in
normal and early glaucoma, not advanced glaucoma.
Hood et al.36 reported that a 24-2 VF is based on
a 6° grid, which can miss glaucomatous damage in
the central macular region. In some previous studies,
a 10-2 VF, which uses a narrower grid (2° grid),
may help to better detect the preserved central island
and glaucoma progression, especially in advanced
glaucoma.37,38 Thus, in advanced glaucoma, 24-2 VF
have limited accuracy, especially in the central region,
andmismatches between estimated and actual VFsmay
become larger. If we train another deep learning model
to estimate the central VF area with a 10-2 VF, the
estimation accuracy may be improved.

The limitation of this study is the training data
imbalance between both OCTs. Despite our best efforts
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to make it even, SD-OCT images contained a smaller
number of moderate to severe glaucoma cases (38.1%)
than SS-OCT images did (46.2%). The imbalance was
not large, but could influence the relatively lower
performance of SD-OCT. Another limitation of our
model is that the estimation performance worsened as
glaucoma progressed. We are preparing further studies
to improve this problem by augmenting the informa-
tion, such as angio-OCT or slab images, in SS-OCT
reports. Finally, in our study, the OCT signal strength
did not significantly affect the performance of the deep
learning model, probably because only good-quality
OCT images were included in the test data set. In future
studies, the impact of OCT signal strength should be
evaluated.

In conclusion, our deep learning model estimated
the VF 24-2 better with SS-OCT images than with SD-
OCT images. As glaucoma progressed, the estimative
performance worsened in both OCTs. In the regional
analysis, SS-OCT showed significantly better perfor-
mance in almost all sectors than SD-OCT in normal
and early glaucoma. In advanced glaucoma, SS-OCT
showed significantly better performance than SD-OCT
in only the peripheral region.

Data Availability

All data are provided with supporting informa-
tion file. Please refer ‘datasheet.xlsx’ spreadsheet. All
python source code, trained model, and test images
are available on Github web site: https://github.com/
climyth/VFbyOCT-Comparison.
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