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Abstract: Selenium (Se) is an essential micronutrient for mammals, and its deficiency seriously
threatens human health. A series of biofortification strategies have been developed to produce
Se-enriched foods for combating Se deficiency. Although there have been some inconsistent results,
extensive evidence has suggested that Se supplementation is beneficial for preventing and treating
several chronic diseases. Understanding the association between Se and chronic diseases is essential
for guiding clinical practice, developing effective public health policies, and ultimately counteracting
health issues associated with Se deficiency. The current review will discuss the food sources of Se,
biofortification strategies, metabolism and biological activities, clinical disorders and dietary reference
intakes, as well as the relationship between Se and health outcomes, especially cardiovascular disease,
diabetes, chronic inflammation, cancer, and fertility. Additionally, some concepts were proposed,
there is a non-linear U-shaped dose-responsive relationship between Se status and health effects:
subjects with a low baseline Se status can benefit from Se supplementation, while Se supplementation
in populations with an adequate or high status may potentially increase the risk of some diseases.
In addition, at supra-nutritional levels, methylated Se compounds exerted more promising cancer
chemo-preventive efficacy in preclinical trials.

Keywords: selenium biofortification; chronic diseases; baseline selenium status; methylated sele-
nium compounds

1. Introduction

Selenium (Se) is essential for the maintained health of mammals, and its deficiency is
common and a serious issue worldwide. The World Health Organization (WHO) shows
that there are more than 40 countries and regions globally that suffer from Se deficiency [1].
Approximately 51% of the regions in China have soil that is Se deficient [1]. Se deficiency
is a serious hazard to human health and prone to various chronic diseases, such as Keshan
disease, Kashin-Beck disease, cardiovascular disease (CVD), diabetes, cancer, inflammatory
diseases, subfertility, and viral infections. Therefore, the biofortification strategies to
produce Se-enriched foods can help overcome Se deficiency and improve human health.
Ample existing evidence has suggested that Se compounds have a protective impact against
chronic diseases. Several factors affecting the beneficial activities of Se compounds have
been identified, including the baseline Se status, the dosage and forms of Se. A better
understanding of the relationship between Se and chronic diseases will help develop more
precise solutions to combat the health problems caused by Se deficiency.

2. Food Sources of Se
2.1. The Overview of Se Contents and Forms in Different Foods

According to results of the ANIBES (“Anthropometry, Intake, and Energy Balance
in Spain”) study in Spain, the daily Se intake of the whole population is between 14 and
265 µg/day, with a mean level of 75 ± 1 µg/day [2]. Cereals and grains were the main
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contributors (46.5%) to Se intake, while animal foods provided the second portion of Se.
Fish accounted for 16.7%, meat and meat products 14.9%, milk and dairy products 7.2%,
and eggs 5%. All these groups provided more than 85% of the Se intake [2]. Finally,
ready-to-eat meals, vegetables, pulses, fruits, sugars, sweets, and non-alcoholic beverages
contributed to a small part of the dietary Se intake.

Generally, the Se concentrations in the different foods followed this descending order:
animal-based foods > vegetables > cereals > fruits. In addition, the Se content in foods
depends to a great extent on Se content in the soil where plants and animals grow. The mean
Se content in cereals and animal foods, including meat, fish, milk, and eggs, respectively,
ranges from 0.0021–2.11 mg/kg and 0.0042–2.46 mg/kg in China [1]. Vegetables contain a
relatively small amount of Se, and its contents in the edible parts of different vegetables in
China range from 0.0008 to 5.37 mg/kg, with a mean of 0.067 mg/kg [1]. The Se contents in
the different vegetables are in the descending sequence: cruciferous vegetables > liliaceous
vegetables > legumes > solanaceous vegetables > leafy vegetables. Cruciferous vegetables,
garlic, and onions are considered high-Se-accumulating vegetables and can be Se-enriched
from <0.5 mg/kg up to 140–300 mg/kg [3]. Brazil nuts rank at the top of ten products
containing the largest quantity of Se [4].

The predominant dietary Se forms can be divided into inorganic Se, selenate and selen-
ite, and organic Se, selenome-thionine (SeMet), selenocysteine (SeCys) and
Se-methylselenocysteine (MSeC). For inatance, MSeC is the main Se form in Se-enriched
broccoli, garlic, and onions [5,6]. The predominant species of Se in cereals and bread are
SeMet and SeCys [7]. The percent composition of Se species in Se-enriched wheat grains [8],
Se-enriched pork [9], and Se yeast has also been identified [10]. The chemical structures
of these dietary Se compounds and their percent compositions in Se-enriched foods are
summarized in Figure 1.
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Figure 1. Se biofortification strategies, predominant dietary Se forms, and their percent compositions in Se-enriched foods.
Plant-based biofortification mainly consists of (a) genetic biofortification and agronomic biofortification, including (b) and
(c). Genetic biofortification approaches include breeding and genetic engineering, which can transfer the Se-enriched genes,
such as ATP-sulfurylase (APS) and selenocysteine methyltransferase (SMT), to plants. Different sources of Se are available
for feed supplements for domestic animals to produce Se-biofortified animal foods (d), including inorganic (mainly selenite
or selenate), organic (mainly Se yeast), and nanoforms of Se; Adding Se, such as selenite, to culture media of microbes (e) to
manufacture Se-enriched foods, such as Se yeast.
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2.2. Se Biofortification

Considering the large-scale Se deficiency in the world, relying on only a few Se-rich
regions to achieve the enrichment of natural Se resources, it is unable to meet the demand for
Se supplementation. Therefore, people take advantage of a series of biofortification strategies
to develop Se-enriched foods. Se biofortification is a biotechnological strategy that increases
the Se content in agricultural products by plant breeding, genetic engineering, or agronomic
practices [11]. Generally speaking, plant-based biofortification is the most effective and
commonly used approach, especially in staple crops. In addition, Se-biofortified animal
foods produced by animals fed Se-enriched feed may be another important way to increase
dietary Se intake. Microorganisms can also be biological conversion factors for Se enrichment.
Se biofortification not only increases the Se content but also enhances the nutritional value of
foods. The overview of Se biofortification strategies is shown in Figure 1.

2.2.1. Agronomic Biofortification

Agronomic biofortification is to increase the nutrient (such as Se) concentration in the
edible parts of main crops via fertilizers [12]. Agronomic biofortification mainly includes
Se addition to soil and Se foliar fertilization, while the fertilizers typically used are selenate-
or selenite-based fertilizers. Applied inorganic Se is metabolized to various organic forms
by plants, and the structures and amounts depend on the species of plants, and then these
plant Se metabolites are consumed by humans and animals.

In general, selenate (SeVI) and selenite (SeIV) are easily transported through the
plant cuticle, and metabolized by the sulfur assimilatory pathway. Firstly, catalyzed
by ATP sulfatase and APS reductase, Se (VI) is reduced to Se (IV). Then, Se (IV) can
be further converted to selenides (Se-II). Some selenides are metabolized to SeCys by
cysteine synthase, which can be transformed into MSeC or SeMet, under the action of
Se-methyltransferase or by trans-sulfurylase, respectively [10].

Most studies have shown selenate to be more effective than selenite, which may be
because plants absorb more selenate, with the same Se supplementation amount [13]. For
example, the total Se content in leek plants was 982 ± 159 mg/kg and 104 ± 33 mg/kg,
respectively, grown on selenate and selenite-fertilized soil, showing a 10-fold difference [14].
The total Se concentration in 50 µM selenate and selenite-treated broccoli sprouts was 179
and 98 mg/kg dry weight, respectively, showing an over 1.8-fold difference [15]. Foliar
fertilization is more efficient than soil fertilization [16]. For instance, Se content in control
lettuce leaves was 46 µg/kg, while treating plants with 100 mg/L Se achieved 784 µg/kg
(for soil application), 1708 µg/kg (for foliar application) [17]. Moreover, some beneficial
rhizosphere microbes can enhance the soil’s Se phytoavailability [18]. The addition of
beneficial rhizosphere microbes to soil might help to improve the Se biofortification of crops.

2.2.2. Genetic Biofortification

Genetic biofortification includes classical breeding and modern genomic approaches.
The purpose is to select and develop plant varieties with high Se accumulation capacity
according to the difference of Se absorption, which may be related to the differential ex-
pression and affinity for Se over S of root sulfate transporters [19,20]. Several genes with
positive outcomes for Se biofortification have been targeted by genetic engineering, primar-
ily consisting of sulfate transporters and S-assimilation enzymes, such as ATP-sulfurylase
(APS) and selenocysteine methyltransferase (SMT), which is also the key enzyme to form
MSeC [21]. The APS transgenics contained 2.5-fold higher shoot Se levels than wild-type
Indian mustard [22]. The overexpression of SMT in tobacco plants increased the total Se
and MSeC accumulation, and the total Se content in SMT-overexpressing tobacco (~3.8-fold
higher) and control plants were 1.87 mg/kg and 0.49 mg/kg, respectively [23].

2.2.3. Se-Biofortified Agricultural Products

Foliar spray and soil application increased the total and organic Se content in cereals.
Furthermore, Se-fortified cereals present various nutritional benefits, for example, antioxi-
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dants, amino acids, phenols, anthocyanins, and sugars increased [24]. The consumption of
Se-biofortified wheat products increased Se intake by 12–35 µg/day, increased glutathione
peroxidase activity in the blood, and the concentrations of lipid peroxidation products
decreased in the serum of volunteers [25]. Although the statistical significance was not
indicated, the risk factors of CVD improved slightly, with the overall cholesterol decreased
by 10.3%, triglycerides decreased by 14.5%, and the low-density lipoprotein decreased by
15.1% [25,26].

In addition, the researchers also studied the Se fortification of vegetables. Spraying
lettuce with Se improved its growth, antioxidant capacity, Se content and yield quality [17].
The application of Se significantly increased the antioxidant capacity, the total phenol, and
rosmarinic acid content in basil leaves during harvest [27]. The content of antioxidant
flavonoids, naringenin chalcone, and kaempferol increased, and cinnamic acid derivatives
decreased in the Se-biofortified tomatoes [28]. Among the crops that can accumulate Se,
the Brassicaceae family has received more attention since they are Se-hyperaccumulating
plants. Se-fortified broccoli showed higher amounts of phenolic compounds, increased
antioxidant and antiproliferative activity, presenting cytocidal activity for a glioma line,
especially the seedlings [29].

The most commonly used Se biofortification technology in fruits was foliar spray.
Spraying with Se enhanced the Se content and the nutritional quality in fruits and their
derivates. Fruit Se concentration increased from 0.1 µg/kg to 242µg/kg when Se was foliar
sprayed at 1.5 mg/L, and meanwhile, the antioxidant enzyme activity, the fruit quality,
and the storability of apples were also markedly amplified [30]. Se nanoparticles (Se NPs),
as a foliar spray, significantly increased the total sugars, phenolic compounds, antioxidants,
and anthocyanins in pomegranates [31]. The foliar Se fertilization of olive trees enhanced
the Se content and the antioxidant compounds in extra virgin olive oil (EVOO), such as
chlorophylls, carotenoids, phenols, and SeMet, which increased the oxidative stability and
shelf-life of EVOO [32].

Various experiments have shown that dietary Se supplementation increased the Se
concentration in meat and improved the meat quality, such as enhancing glutathione
peroxidase activity and the oxidative stability [33], preserving its texture and sensory char-
acteristics [34], altering the lipid metabolism, and decreasing the cholesterol content [35].

Se-enriched foods that rely on microorganisms to transform and produce Se elements
include Se-enriched yeast, Se-enriched edible fungi, and Se-enriched probiotics, which
are prepared by adding inorganic Se additives, such as sodium selenite, to their corre-
sponding media. In addition, Se-enriched yeast and Se-enriched probiotics can be used for
manufacturing food products such as beer, yogurt, or cheese.

2.3. Se Nutritional Fortifiers and Se Fortified Foods

In addition to Se in natural foods, Se can be also used as nutritional food fortifiers
in formulating milk powder, rice, and its products, wheat flour and its products, cereal
flour and its products, bread, biscuits, and milk beverages. The approved forms are
sodium selenite, sodium selenate, selenoprotein, Se-enriched edible fungus powder, MSeC,
selenized carrageenan, and Se yeast. There are strict requirements for additive amounts;
for example, the United States Food and Drug Administration (FDA) recommends that the
Se level in infant formula is 2–7 µg/100 kcal [36].

3. Se Nutritional Status Assessment, Metabolism, Bioavailability and
Biological Functions

It is a challenging task to evaluate the Se nutritional status. Se exists in multiple
locations of the body, including blood, hair, and nails. Although the Se content in the blood
is used as a major biomarker, it only represents short-term exposure to Se [37]. Toenail Se
content can reflect long-term external exposures, and compared with fingernails and hair,
the possibility of exposure to external contamination is smaller [38]. Therefore, toenails
have more potential for assessing Se’s nutritional status in epidemiologic studies of Se and
chronic diseases than other biomarkers.
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Se content in foods does not represent the amount available to organisms, and the
absorption of Se from foods depends on its bioavailability. The chemical form is a vital
factor affecting Se bioavailability. Generally, organic Se compounds are more bioavailable
for animals and humans than inorganic species. As for inorganic Se, selenite is more largely
transformed into organic metabolites than selenate [39]. SeCys and MSeC are more easily
digested by the gastrointestinal tract than SeMet [40]. Moreover, Se in plant foods is more
bioavailable than Se in animal foods [41].

The metabolism of Se in the human organism is shown in Figure 2. The predominant
Se species in food can be divided into inorganic Se, selenate, and selenite, and organic Se,
including SeMet and SeCys. All these forms of Se can be metabolized to hydrogen selenide
(H2Se), which is involved in the selenoprotein synthesis and methylation excretion of
Se [4,42,43]. SeMet can participate in synthesizing general proteins instead of methionine
or being converted into SeCys via trans-sulfurization. SeCys can be transformed into
H2Se by β-lyase. Inorganic Se can be converted to H2Se through reductive metabolism.
H2Se can be converted into Selenocysteinyl-tRNA, a crucial transport RNA, to synthesize
selenoproteins. When the intake of Se exceeds the need for selenoprotein synthesis (higher
than nutritional requirements), H2Se is methylated to methylselenol, a key anti-cancer
metabolite. With higher intake levels, methylselenol is methylated to dimethylselenide and
trimethylselonium ion, which are excreted via respiration and urine, respectively. H2Se
can also be converted into selenosugars for excretion via urine. Different from the Se
compounds mentioned above, MSeC can be directly metabolized into methylselenol by
β-lyase [4]. Exogenous methylseleninic acid (MSeA) can be directly reduced by thioredoxin
reductase (TXNRD) to methylselenol. Therefore, at supra-nutritional levels (higher than
nutritional requirements), MSeC and MSeA are more promising anti-cancer agents.

Se exerts various biological functions primarily via selenoproteins, especially sele-
noenzymes, such as regulating thyroid hormone metabolism, antioxidant system, oxidative
metabolism, and immune system. The antioxidant properties of selenoproteins are mainly
due to some selenoenzymes, such as glutathione peroxidases (GPXs), which catalyze reduc-
ing hydrogen peroxide, phospholipid peroxides, and lipid peroxides into harmless water
and alcohols, protecting cells from oxidation damage. SeCys is considered the 21st amino
acid participating in ribosome-mediated protein synthesis, and it is also an integral part of
selenoprotein activity. The UGA codon mediates the specific incorporation of SeCys into
selenoproteins [44]. Currently, about 25 selenoproteins have been found in mammals and
humans [45]. Of these, the functions of some are clearly characterized, such as GPXs, TXN-
RDs, iodothyronine deiodinases (DIOs), methionine sulfoxide reductase B1 (MSRB1), and
selenophosphate synthetase 2 (SEPHS2). The functionality of some non-enzyme members
is also gradually better understood [46]. Table 1 lists the mammalian selenoproteins, tissue
distribution, and localization, as well as their functions. The selenoproteins are designated
according to the official nomenclature [47].
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Table 1. Mammalian selenoproteins with characterized functions. Based on Labunskyy et al., 2014; Davis et al., 2012; Avery
and Hoffmann, 2018; Gladyshev et al., 2016 [44–47].

Selenoprotein
(Abbreviation)

Tissue Distribution a Localization Functions

Glutathione peroxidase 1
(GPX1)

Blood, kidney, liver, placenta Cytosol Reduces cellular H2O2 and
lipid peroxides

Glutathione peroxidase 2
(GPX2)

Gastrointestinal tract, liver,
mammary

Cytosol Reduces peroxide in the gut

Glutathione peroxidase 3
(GPX3)

Epididymis, kidney, plasma Plasma Reduces peroxide in blood

Glutathione peroxidase 4
(GPX4)

Liver, testis Cytosol; mitochondria;
nucleus

(testis-specific)

Reduces phospholipid
peroxide

Glutathione peroxidase 6
(GPX6)

Embryos, olfactory epithelium Cytosol Reduces cellular H2O2 in the
olfactory epithelium
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Table 1. Cont.

Selenoprotein
(Abbreviation)

Tissue Distribution a Localization Functions

Thioredoxin reductase 1
(TXNRD1)

Heart, kidney, liver Cytosol Regenerates reduced
thioredoxin

Thioredoxin reductase 2
(TXNRD2)

Adrenal gland, heart, kidney,
liver

Cytosol Catalyzes a variety of reactions,
specific for thioredoxin and

glutaredoxin systems

Thioredoxin reductase 3
(TXNRD3)

Testis, heart, kidney, liver Mitochondria Reduces the oxidized form of
thioredoxin and glutaredoxin 2

Iodothyronine deiodinase 1
(DIO1)

Kidney, liver, thyroid Plasma membrane Important for systemic active
thyroid hormone levels

Iodothyronine deiodinase 2
(DIO2)

Brain, brown adipose tissue,
pituitary

Endothelial reticulum Important for local active
thyroid hormone levels

Iodothyronine deiodinase 3
(DIO3)

Brain, placenta, skin Plasma membrane Inactivates thyroid hormone

Methionine sulfoxide
reductase B1 (MSRB1)

Liver, kidney Cytosol Reduces methionine-
R-sulfoxide residues in
proteins to methionine

Selenophosphate synthetase 2
(SEPHS2)

Kidney, liver, testis Cytosol Synthesis of selenophosphate

Selenoprotein F (SELENOF) Liver, prostate Endoplasmic reticulum (ER) Involved in protein folding

Selenoprotein H (SELENOH) Unknown b Nucleus Involved in redox sensing and
transcription

Selenoprotein I
(SELENOI)

Unknown b Membrane Involved in phospholipid
biosynthesis

Selenoprotein K (SELENOK) Unknown b ER membrane Modulates Ca2+ influx that
affects immune cell function;

component
of ER-associated degradation

Selenoprotein M (SELENOM) Brain ER Protein folding in ER

Selenoprotein N (SELENON) Brain, heart, liver, muscle ER membrane Proper muscle development

Selenoprotein O (SELENOO) Unknown b Mitochondria Unknown c

Selenoprotein P (SELENOP) Liver, plasma Plasma Se transport and antioxidant
function

Selenoprotein S
(SELENOS)

Unknown b ER membrane Involved in ER-associated
degradation

Selenoprotein T
(SELENOT)

Unknown b ER and Golgi Involved in redox regulation
and cell anchorage

Selenoprotein V (SELENOV) Testes Cytosol Unknown c

Selenoprotein W (SELENOW) Brain, muscle, testes Cytosol Necessary for muscle function
a Selected rodent and human tissues in which selenoprotein expression is relatively high. b Protein expression is unknown. However,
mRNA has been detected in several tissues. c Function is unknown. Discovered by in silico analysis.

4. Chronic Diseases
4.1. Cardiovascular Disease

CVD is currently the most prominent causative factor for human mortality and the
greatest threat to human health worldwide. The earliest research on the role of Se in the
cardiovascular (CV) system can be traced back to Keshan disease, a type of congestive
cardiomyopathy that occurred in regions in China suffering from Se deficiency before
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1980, and can be entirely prevented by sodium selenite supplementation [48]. A series
of prospective observational studies showed a possible non-linear, U-shaped relationship
between the baseline Se status and CVD incidence. Within a narrow blood Se range of 55–
145 µg/L [49,50], the Se concentration exhibited a significant negative association with CVD
risk. Several meta-analyses of previous randomized controlled trials (RCTs) demonstrated
that Se supplementation was not effective on CVD prevention [50,51].

However, some evidence showed that Se supplementation plays a positive role in
CVD prevention. One randomized controlled trial showed that the baseline Se status in
UK pregnant women was relatively low, increasing the risk of pregnancy-induced hy-
pertension, while Se treatment as selenized yeast (60 µg/day) greatly reduced the risk
of pre-eclampsia and pregnancy-induced hypertension [52]. According to another study
on Swedish elderly citizens, long-term supplementation with Se yeast (200 µg/day) and
coenzyme Q10 reduced CV mortality and increased cardiac function [53]. Subsequent
analysis of whether the functions of Se and coenzyme Q10 supplementation depends on
the baseline Se status showed that supplementation played a role in protecting the heart in
people with low baseline Se levels (≤85 µg/L) [54]. Possible related mechanisms involved
in the protective effects of Se on the CV system include reduced oxidative stress and inflam-
mation [55,56]. Additionally, plenty of laboratory studies suggested that optimal Se intake
could prevent atherosclerosis, the pathological basis of CVD, by reducing oxidative stress,
infection, endothelial dysfunction, vascular cell apoptosis, and vascular calcification [48].
Selenoproteins may be related to the prevention of arteriosclerosis, including GPX1, GPX3,
GPX4, TXNRD, SELENOP, and SELENOS [48].

In summary, the results of randomized controlled experiments so far are inconsistent,
and the protective effect of Se on CVD is still inconclusive, but it was found that subjects
with low baseline Se concentrations could benefit from Se supplementation. To determine
whether Se is beneficial for CVD prevention, larger and more extensive clinical trials are
needed. Some factors, such as the dose and forms of Se, the baseline Se status, and the
selenoprotein genotype of the target population [48], should be considered when designing
a prevention strategy.

4.2. Metabolic Diseases
4.2.1. Diabetes Mellitus

Diabetes mellitus (DM) has become one of the major challenges of public health in the
21st century. Type 2 diabetes mellitus (T2DM) is the most common form of DM, accounting
for 90%-95% of DM cases [57]. Indeed, in the 1990s, selenate exhibited anti-diabetic and
insulin-mimetic effects in vivo and in vitro studies [58]. However, later observational stud-
ies and RCTs showed that the relationship between Se and T2DM is highly complex. The
role of Se in preventing T2DM is still inconclusive and is limited to very few human studies.

A meta-analysis based on previous observational studies found a U-shaped non-linear
dose-responsive relationship between serum Se and T2DM. Therefore, in individuals with
low (<97.5 µg/L) and high serum Se contents (>132.50 µg/L), it was found that there
was a positive correlation between serum Se and T2DM [59]. These results indicated
that Se deficiency and Se excess are potential risk factors in the development of T2DM.
The Nutritional Prevention of Cancer trial (NPCT) showed that Se yeast supplementation
(200 µg/day) increased the incidence of T2DM in subjects with the highest baseline Se
levels (>121.6 ng/mL) [60]. The Se and Vitamin E Cancer Prevention Trial (SELECT) also
found that Se increased T2DM risk, although this was statistically nonsignificant [61]. It
should be noted that the median baseline plasma Se level in SELECT (136 µg/L) was
higher than in the NPCT (113 µg/L) [43]. Furthermore, these were generally cancer trials
in which T2DM was only a secondary endpoint. The synthesis of results from several RCTs
revealed that Se supplementation at a low Se status appears to have no adverse effects,
while Se supplementation in well-nourished populations may potentially increase the risk
of T2DM [62].
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4.2.2. Thyroid Diseases

The thyroid gland contains the highest amount of Se among all tissues. Thyroid tissues
express a number of selenoproteins such as GPXS, TXNRDS, and DIOS, which play an
important role in thyroid hormone metabolism and anti-oxidative stress.

A cross-sectional observational study found that the prevalence of thyroid diseases
(hypothyroidism, subclinical hypothyroidism, autoimmune thyroiditis and enlarged thy-
roid) in Se-deficient areas was significantly higher than that in Se-rich areas [63]. Several
studies have already demonstrated the benefits of Se supplementation on autoimmune
thyroid disorders. A systematic review and meta-analysis of 16 controlled trials showed
that Se supplementation significantly reduced thyroid autoantibody levels in patients with
chronic autoimmune thyroiditis [64]. The presence of thyroid autoantibodies is relatively
high in women of childbearing age, and pregnant women positive for thyroid peroxidase
antibodies are prone to develop postpartum thyroid dysfunction (PPTD) and permanent
hypothyroidism [65]. A prospective, randomized, placebo-controlled study suggested that
SeMet supplementation (200µg/day) during pregnancy and in the postpartum period
reduced the incidence of PPTD and hypothyroidism [66]. A recent multicenter, random-
ized, double-blind, placebo-controlled trial also demonstrated that SeMet supplementation
(83µg/day) during pregnancy and after delivery reduced autoantibody titer during preg-
nancy and postpartum thyroiditis recurrence [67]. Se is also effective in Graves’ disease;
Se administration significantly improved quality of life, reduced ocular involvement, and
slowed the progression of the disease in patients with mild Graves’ orbitopathy [68].
Despite recommendations only extending to patients with Graves ophthalmopathy, Se
supplementation is widely used by clinicians for other thyroid phenotypes. More solid
clinical evidence is awaited to determine the role of Se in thyroid disorders. Ongoing and
future trials might help identify individuals who can benefit from Se supplementation,
based, for instance, on individual Se status or genetic profile [69].

4.3. Chronic/Acute Inflammations

Epidemiological data suggest that Se deficiency is positively related to the prevalence
of atherosclerosis, rheumatoid arthritis, and viral infections, including HIV/AIDS, and
chronic inflammation is the main cause of the disease. Se supplementation in patients
with these chronic disorders improved their health status and quality of life [70]. Epi-
demiological studies have shown that there is an inverse relationship between Se levels
and inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis,
which can be transformed into colon cancer. Furthermore, laboratory studies have also
demonstrated that dietary Se alleviated gastrointestinal inflammation and restored ep-
ithelial barrier integrity [71]. Se supplementation increased body weight, colon length,
and the survival of mice after treatment with dextran sodium sulfate (DSS) and decreased
colitis-associated inflammation [72]. In addition, dietary Se protected against chronic
inflammation-induced colon cancer (CICC) in preclinical animal models [73]. Significant
associations between the Se status and incidence or severity of asthma have not been
consistently demonstrated in human studies. As with the epidemiological data, the re-
sults of intervention studies aimed at determining the efficacy of Se supplementation in
reducing the incidence or severity of asthma has also been unclear [74]. However, mouse
models for asthma have provided more definitive results suggesting that the benefits of Se
supplementation may depend on the initial Se status of individuals [75].

Se deficiency has been associated with the pathogenicity of several viruses. In addition,
several selenoproteins, including GPXs and TXNRDs, seem to play an important role in
different virus replication patterns. Finally, the Se nutritional status of the host may also
lead to the transformation of the virus genome from benign or low pathogenic to high
virulent [76]. When Se-deficient virus-infected hosts were supplemented with dietary Se,
the viral mutation rates diminished, and immune competence to combat viral infections was
enhanced [77], which has been proved for at least influenza virus type A and Coxsackievirus
B3 (CVB3), and HIV/AIDS [78].
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The novel coronavirus infection (COVID-19) seriously threatens human health globally.
Recent studies have revealed the potential role of Se in COVID-19 prevention and treatment.
A Se deficiency is evident in COVID-19 patients with acute respiratory tract infections [79].
Se levels are associated with mortality risk or cure rate from COVID-19. A cross-sectional
study of COVID-19 patients conducted in Germany showed that the serum level of Se
was significantly higher in samples from surviving COVID-19 patients as compared with
non-survivors [80]. Another retrospective analysis also determined that the recovery rate
from COVID-19 had a significantly positive association with hair Se levels in patients
in China [81]. The ecological study demonstrated that intake levels of Se are inversely
associated with higher COVID-19 incidence and/or mortality [82]. Serum zinc (Zn) and
serum Se transporter selenoprotein P concentrations within the reference ranges indicated
high survival odds in COVID-19 [83]. Early nutritional interventions with Zn, Se, and
Vitamin D might protect against COVID-19 and mitigate the course of COVID-19 [84].
Further clinical trials are required to evaluate the beneficial effects of Se supplementation
on COVID-19. In addition, small molecular organic Se compound ebselen exhibited
promising anti-COVID-19 activity in vitro experiments [85].

4.4. Cancer
4.4.1. Human Studies on Se and Cancer

• Epidemiological studies on Se exposure and cancer risk

Many epidemiological studies analyzed the association between Se exposure and
cancer risk, but the results have not been consistent. Several epidemiological studies have
shown that there is a negative correlation between Se exposure and risk of some cancer
types, but null and direct relations have also been reported. A meta-analysis and meta-
regression of RCTs, case-control, and cohort studies found that high serum/plasma Se
and toenail Se exposure reduced the risk of breast cancer, lung cancer, esophageal cancer,
gastric cancer, and prostate cancer, but it had nothing to do with colorectal cancer, bladder
cancer, and skin cancer [86]. Several observational longitudinal studies showed that the
risk for site-specific stomach, colorectal, lung, breast, bladder, and prostate cancers was
reduced, which was related to the highest Se exposure level compared with the lowest [87].
However, a systematic review of epidemiological studies showed that Se exposure was
associated with a possible higher risk of keratinocyte carcinoma [88].

Several epidemiological studies demonstrated a non-linear U-shaped dose-responsive
association. When plasma/serum Se concentration was between 120 and 160 ng/mL, the
risk of some types of cancer, including prostate cancer, was reduced compared with a low
plasma Se status, <120 ng/mL. Above 160 ng/mL, the cancer-protective effect is likely to
diminish, and the risk of certain types of cancer may increase [3]. Although some observa-
tional studies indicated an inverse relationship between Se exposure and the risk of certain
types of cancers, they cannot be considered evidence of a causal relationship and display
many limitations, including exposure misclassification and unmeasured confounding [89].
Accordingly, RCTs are considered next.

In addition, hepatocellular carcinoma patients undergoing liver transplantation (LT)
displayed a notable Se deficiency, and Se status was higher in survivors than non-survivors.
Serum Se status may serve as a prognosis marker of LT, and thus, adjuvant Se supplemen-
tation may support convalescence [90].

• Human intervention studies with Se

RCTs assessing the impact of Se supplementation on cancer risk have found inconsis-
tent results. The Linxian General Population Nutrition Intervention Trial (NIT) reported
that the total cancer mortality was significantly reduced in adults who received beta
carotene, vitamin E, and Se supplementation [91]. The NPCT found that the supplementa-
tion of Se as selenized yeast (200 µg/day), which contains mostly SeMet, did not have a
significant impact on the incidence of basal cell or squamous cell carcinoma, but led to a
significant decline in the total cancer mortality, overall cancer incidence, and incidences
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of lung, colorectal, and prostate cancers [92]. The NPCT also suggested that the incidence
of prostate cancer (PCa) decreased significantly only among the subjects with low serum
Se levels (<121.6 ng/mL), and there was no risk reduction in subjects with high serum Se
concentrations (>121.6 ng/mL) [93].

Following the NPCT, a series of phase III clinical trials against prostate and lung
cancer was carried out in North America, including SELECT, SWOG9917 [94], ECOG
NBT [95], and ECOG5597 [96]. The primary endpoint of all these trials is cancer incidence,
but none of them show the efficacy of SeMet or Se-yeast. In fact, follow-up analyses of
SELECT showed that Se supplementation increased the risk of high-level PCa among men
with a higher Se status [97]. The Se and Celecoxib (Sel/Cel) Trial found that selenized
yeast supplementation (200 µg/day) did not prevent the overall recurrence of colorectal
adenoma, but the recurrence rate decreased by 18% among participants with advanced
adenoma [98].

Major reasons for the failure of these studies were associated with the baseline Se
levels of subjects, the dose levels and forms of Se supplementation. The baseline Se levels
of subjects for these newer trials were higher than in NPCT, which prevented people
from deriving additional benefits from Se supplementation. In addition, cell culture and
animal models did not support the dose and forms of Se selected for human clinical trials.
In prostate cancer cells, 100–500 µM SeMet was needed to suppress growth and induce
apoptosis [99]. Such a high level of oral supplement dose cannot be achieved. SeMet did
not have an inhibitory effect against human PCa xenografts [100].

In summary, although the results of RCTs so far are inconsistent and the protective
effect of Se against cancer is still uncertain, it was revealed that subjects with a low baseline
Se status could advantage from Se supplementation. To determine the outcome of Se on
cancer prevention, more extensive clinical trials are necessary. The dose and chemical form
of Se, the baseline Se level of the subjects, and cancer type/grade are all important factors
related to the impact of Se on cancer.

4.4.2. Preclinical Studies on the Anticarcinogenic Effects of Different Forms of Se

A wealth of preclinical data demonstrates that methylated Se compounds, which can
directly generate methylselenol, exhibit more efficient anti-cancer activities than other Se
compounds that are metabolized through the H2Se pool meanwhile lacking the genotoxicity
produced by inorganic Se.

MSeC and MSeA are typical methylated Se compounds. MSeC is directly converted
to methylselenol via β-lyase. MSeA is reduced to methylselenol by nonenzymatic and
enzymatic processes involving GSH and NADPH [101]. MSeC was more active than
selenite or SeMet in tumor inhibition in a chemically induced breast cancer model in
rats [102]. MSeA and MSeC exerted dose-dependent inhibition of human PCa xenograft
growth, and both were more potent than SeMet and selenite [100]. MSeA significantly
reduced the metastatic pulmonary yield of Lewis lung carcinoma (LLC); however, SeMet
did not [103]. Furthermore, MSeA inhibited cancer cell growth and induced apoptosis
more effectively than MSeC in cell culture models [101]. That may due to the β-lyase
present in the intestine, liver, kidney, mammary gland, and other animal tissuses [104], and
MSeC may not be metabolized into methylselenol in vitro.

Se NPs have recently emerged as promising anti-cancer agents. Se NPs significantly
inhibited human esophageal cancer xenograft growth via suppressing tumor angiogenesis
and activating the immune system [105]. Tellurium-Se nanoparticles almost completely
eradicated human hepatocellular carcinoma and lung cancer xenografts [106]. In addition,
Se from Se-rich food sources exhibited optimal chemo-preventive efficacy. Se-enriched milk
significantly lowered colonic tumor incidence and tumor multiplicity [107]. Se-enriched
malt inhibited the angiogenesis of hepatocarcinoma [108].
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4.4.3. Possible Mechanisms for Anticarcinogenic Actions of Se

A better mechanistic understanding of the biochemical effects and molecular targets
of Se will provide an in-depth perspective for analyzing the results of clinical trials and
designing new trials [109]. Possible mechanisms of the effects of Se against cancer are
summarized in Figure 3.
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Apoptosis induction is a mechanism mediating the anticancer activity of Se. MSeA
exposure caused caspase-mediated apoptosis in DU145 human PCa cells, which was
associated with decreased phosphorylation of Protein Kinase B (AKT) and extracellular
regulated kinase1/2 (ERK1/2) [110]. Selenite induced p53 Ser-15 phosphorylation and
caspase-mediated apoptosis in LNCaP human PCa cells [111]. MSeA can also enhance
the apoptosis induced by chemotherapeutic drugs or biologics in various cancer cell types
through inhibition of survival molecules such as survivin, Bcl-xL [112], and Mcl-1 [113,114].
MSeA exposure caused a profound G1 arrest in DU145 cells, which was associated with
increased expression of p27kip1 and p21cip1 [110]. The induction of cancer epithelial
cell apoptosis and inhibition of cell proliferation by Se in vivo is related to the decreased
expression of cyclin D1, increased levels of p27kip1, and c-Jun NH2-terminal kinase (JNK)
activation [115].

Angiogenesis is a basic and necessary component of tumor growth, development
and metastasis. MSeA reduced the secretion levels of vascular endothelial growth factor
(VEGF) in breast cancer cells and inhibited the growth of xenograft [116]. MSeA reduced
the metastatic spread of PCa cells to the lungs by downregulating hypoxia-inducible factor-
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1α (HIF-1α) and its downstream targets VEGF and glucose transporter 1 (GLUT1) [117].
MSeA inhibited angiogenesis not only by down-regulating the expression of integrin β3
but also by disorganizing the clustering of integrin β3 [118]. Matrix metalloproteinase-2
(MMP-2) and matrix metalloproteinase-9 (MMP-9) degrade the extracellular matrix and
basement membrane [119], correlated with tumor invasion and metastasis. The urokinase
plasminogen activator (uPA) system plays a role in the invasion and metastasis of cancer
cells. Dietary supplementation with MSeA reduced spontaneous metastasis of LLC in
male C57BL/6 mice by inhibiting the uPA system and reducing angiogenesis [103,120].
Selenite inhibits the invasion of tumor cells via decreasing expression of MMP-2, MMP-9,
and uPA [121].

Se has been found to potentiate anti-tumor immunity. SeNPs enhanced γδ T cell
anti-tumor cytotoxicity, and cytotoxicity related molecules including natural killer cell
group 2 member D (NKG2D), CD16, and IFN-γ were upregulated, but meanwhile, pro-
grammed death protein 1 (PD-1) expression of γδ T cells was downregulated [122]. MSeA
sensitized ovarian cancer cells to T-cell mediated killing by decreasing programmed death
ligand 1 (PD-L1) and VEGF Levels [123]. Stimulation of DNA damage repair is another
key mechanism of the cancer-preventive function of Se. Possible mechanisms by which
Se enhance DNA damage repair including increasing the synthesis of antioxidant seleno-
proteins such as GPXs and TXNRDs [124]. Significantly, p53 can maintain genetic stability
through removing DNA-damaged cells and activating DNA repair machinery [125]. SeMet
facilitated DNA repair through activating p53 by redox regulation [126].

The androgen receptor (AR) is a vital driver and a common therapeutic target for PCa.
MSeA suppressed the AR expression and AR signals to downregulate prostate-specific
antigen (PSA) in human PCa cells [127]. The signaling of estrogen receptor (ER) is very
important for the development of breast cancer. MSeA has been proven to disrupt ER
signaling in human breast cancer cells [128]. In addition, MSeA effectively suppressed
aromatase activation in human breast tumor cells [129], which makes it a potential chemo-
preventive agent for breast cancer in postmenopausal obese women. Autophagy also
plays an important role in Se-induced cell death. In malignant tumor cells, selenite in-
duced superoxide-mediated mitochondrial damage and subsequent autophagic cell death,
autophagy-related (ATG) proteins, ATG6 and ATG7, involved in this process [130]. Under
hypoxic conditions, the reductive stress induced by H2Se promoted cell autophagy via
regulating the redox of human high-mobility group protein B1 (HMGB1), and excessive
autophagy leads to autophagy-associated cell death in human hepatocellular carcinoma
HepG2 cells [131].

4.4.4. Se and Cancer Adjuvant Therapy

The cancer chemo-preventative effect of Se has been demonstrated in many experi-
mental models. In addition, combining Se with conventional cancer therapy, especially
chemotherapy and radiation, has achieved encouraging results in both preclinical studies
and a series of human trials. Se has been confirmed to augment the anti-cancer efficacy of
chemotherapy and radiation. In addition, some experiments have found that Se supple-
mentation is the potential for protecting against toxicity and the side effects of radiotherapy
(RT) and chemotherapy.

• Enhancing antitumor efficacy

Extensive preclinical experiments have shown the therapeutic potential of Se as an
apoptotic enhancer of various chemotherapy drugs, including cisplatin [132,133], oxali-
platin [134], irinotecan [135], paclitaxel [112,136], etoposide [136], SN-38 [136], doxoru-
bicin [137], TRAIL [138,139], and ABT-737 [113]. The combined SeMet and ionizing radia-
tion treatment resulted in the increased cell termination of human lung cancer cells [140].
MSeA has also been demonstrated to sensitize head and neck squamous cell carcinoma
(HNSCC) to radiation, potentially by inducing lipid peroxidation [141]. Few clinical studies
have evaluated the impact of Se supplementation during chemotherapy or radiation on
treatment efficacy. Researchers have found that Se supplementation with chemotherapy
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significantly improved clinical outcomes, including an increased tumor response rate and
prolonged overall survival time in patients with non-Hodgkin lymphoma (NHL) [142].
Another multi-center, phase III trial showed that selenite supplementation increased the
blood Se levels in Se-deficient patients while reducing the number of episodes and severity
of diarrhea cases caused by RT [143]. Although the overall survival rate showed an upward
trend, there was no significant change in the disease-free survival at a median follow-up of
67 months [144].

• Reduction in toxicity

Extensive preclinical data have demonstrated that various Se compounds reduced
the toxicity of radiation, as well as the organ-specific toxicity of multiple chemotherapy
agents. MSeC provided great protection against organ-specific toxicity induced by clinical
chemotherapeutics in nude mice, which included diarrhea, stomatitis, alopecia, bladder,
kidney, and bone marrow toxicities [135]. MSeA protected normal cells from cytosine
arabinoside or doxorubicin chemotherapy and radiation toxicity while enhancing their
therapeutic effects against malignant cells [145]. Human studies also indicated that Se sup-
plementation reduced the risk of side effects from chemotherapy and RT. Two randomized
phase III clinical studies showed that adjuvant Se supplementation successfully decreased
RT-induced diarrhea in patients with carcinomas of the uterus and prevented the ageusia
and dysphagia due to RT in patients with head and neck cancer [146]. Supplementation
with Se also reduced the side effects of chemotherapy in cancer patients, especially by
improving the conditions of patients with fatigue, nausea, and poor physical performance,
and improving the function of kidney and liver [147]. However, the potential beneficial
effects of adjuvant Se supplementation on cancer therapy may depend on the Se dosage
and species, as well as the type of treatment and cancer. For example, in cancer patients
treated with irinotecan, large superdoses (>2000 µg/day) of SeMet to increase the plasma
Se to >15–20 µM did not seem to provide any additional benefits to the patient and did not
decrease the toxicity of the treatment [148].

4.5. Fertility

Observations from previous studies (both animal and human) show that Se is essential
for spermatogenesis and male fertility. In terms of the potential molecular mechanisms, Se
plays a structural role in sperm and has bearings on sperm motility, chromatin integrity,
and fertility rates. In addition, the adequate transport of Se for the synthesis of certain
selenoproteins in the testes is vital for proper spermatogenesis and steroid biosynthe-
sis [149]. Sodium selenite treatment can prevent adult male Wistar rats from testicular
damage induced by varicocele [150]. It can be clearly seen from previous studies (both
animal and human) that Se is essential for optimal reproduction in females [151]. One
multi-center prospective cohort study found that lower maternal plasma concentrations of
Se were associated with longer pregnancy and lower birth rate [152]. The exact molecular
mechanisms through which Se modulate female reproduction is still unclear.

5. Clinical Disorders and Dietary Reference Intakes

The intake range between Se deficiency and toxicity is relatively narrow. It is recom-
mended that the minimum intake is 40 µg/day. Deficiency symptoms, including immunity
loss, viral infections, and reproductive barriers, are obvious when the intake is less than
11 µg/day [153]. In total, 100–200 µg Se per day is needed to reduce genetic damage
and cancer progression for humans [153]. The clinical features of Se toxicity, or selenosis,
including hair and nail brittleness and loss, gastrointestinal disturbances, skin rash, garlic
breath, fatigue, irritability, keratosis, rickets, and nervous system disorders, appeared at a
Se intake of 900 µg/day [154].

The Se concentration in the environment has aroused global concern, with the main
environmental pollutant Se forms being SeO4

2− and SeO3
2− due to high water solubil-

ity. It has long been known that Se was capable of antagonizing mercury (Hg) toxicity.
Recently, Hg also was reported to display detoxification towards highly toxic dosages of
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Se [155]. A porous polymer network designed based on Hg/Se antagonism detoxification
mechanism almost completely removed toxic anions (SeO4

2− and SeO3
2−) and metals

(Hg2+) in water [156]. Microbial reduction played a crucial role in the detoxification of
Se excess. Extracellular polymeric substances reduced selenite to insoluble and less toxic
elemental Se and enhanced microbial detoxification towards selenite in water [157]. A
rhizosphere microbe, Azospirillum brasilense, was able to efficiently reduce toxic selenite to
Se0S0-nanoparticles, which may contribute to decreasing Se toxicity in soil and water [158].

Dietary reference intakes (DRIs) are a set of reference values for evaluating whether
the dietary nutrient supply meets human needs, whether there is a risk of excessive intake
and if it is beneficial in preventing certain chronic diseases. It usually includes estimated
average requirement (EAR), referring to the nutritional amount that will maintain a specific
biochemical or physiological function in half the people of a given age and sex group;
recommended nutrient intake (RNI), which is the average daily amount of a nutrient
considered enough to meet the known nutritional needs of almost all healthy people and a
goal for dietary intake for individuals; adequate intake (AI), which is the average amount
of a nutrient that seems to be sufficient to maintain a certain level and a value used as a
guide for nutrient intake when an RNI cannot be determined; and tolerable upper intake
level (UL), that is, the maximum nutrient intake that appears safe for most healthy people
and beyond which there is an increased risk of adverse health effects [159].

Different countries or organizations set different DRIs. WHO/FAO set the RNI of Se
for adults as 26–34 µg/day [1]. The RNI of Se for adults is set at 55 µg/day in the USA
and Canada [160]. The Chinese Nutrition Society recommended 60 µg Se intake daily for
adults [161]. The UL for Se through diet or supplements for adults is set at 400 µg/day [70].
DRIs are also different for various age and sex groups. For example, in China, the RNI of
Se for children is 25–55 µg/day, for teenagers, adults, and the old is 60 µg/day, in addition,
for pregnant women is 65 µg/day and for lactating women is 78 µg/day. Se tolerance
varies among people of different ages; the UL of Se for children is 100–300 µg/day, for
teenagers is 350 µg/day, and for adults is 400 µg/day. Moreover, the recommended intake
levels of Se are 75 µg for men and 60 µg for women per day in the UK [3].

6. Conclusions and Perspectives

Ample evidence exists suggesting that Se has a protective effect on the CV system,
diabetes, some types of cancer, inflammatory diseases, viral infection, and subfertility.
However, the relationship between Se and human health is complex, as exemplified by the
observation that the effects of Se supplementation trials are dependent on baseline Se status,
the dose and forms of Se. There is a U-shaped non-linear dose-responsive relationship
between Se status and health effects. Subjects with a low baseline Se status could benefit
from Se supplementation, while those with an adequate or high status might be affected
adversely. In terms of epidemiological studies, toenails are more desirable as a biomarker
of the Se status. In addition, at supra-nutritional levels, the methylated forms of Se exerted
more promising cancer chemo-preventive activities in preclinical trials. To define more
precise relationships between Se and health effects, more clinical and preclinical trials are
necessary. The following issues need to be addressed in the future:

• The baseline Se range suitable for Se supplementation still needs to be defined;
• The accurate markers for the assessment of Se status remain to be established;
• We should pay more attention to the relationship between toenail Se and chronic

diseases in the future;
• How to enrich the methylated forms of Se in foods is a direction worth exploring;
• The anti-cancer activities of methylated Se compounds remain to be investigated in

clinical studies;
• Novel mechanisms for anticarcinogenic actions of Se need to be further explored, and

the key mechanisms remain to be identified.
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