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Abstract

Background: To facilitate the experimental search for novel maternal serum biomarkers in prenatal Down Syndrome
screening, we aimed to create a set of candidate biomarkers using a data mining approach.

Methodology/Principal Findings: Because current screening markers are derived from either fetal liver or placental
trophoblasts, we reasoned that new biomarkers can primarily be found to be derived from these two tissues. By applying a
three-stage filtering strategy on publicly available data from different sources, we identified 49 potential blood-detectable
protein biomarkers. Our set contains three biomarkers that are currently widely used in either first- or second-trimester
screening (AFP, PAPP-A and fb-hCG), as well as ten other proteins that are or have been examined as prenatal serum
markers. This supports the effectiveness of our strategy and indicates the set contains other markers potentially applicable
for screening.

Conclusions/Significance: We anticipate the set will help support further experimental studies for the identification of new
Down Syndrome screening markers in maternal blood.
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Introduction

For over two decades, prenatal screening for Down Syndrome

(DS) has been available to pregnant women. A screening

procedure usually consists of a risk calculation based on maternal

serum measurements and other parameters like nuchal translu-

cency and maternal age, after which women with a high predicted

risk can opt for invasive testing such as amniocentesis or chorion

villus sampling. Initially, the most commonly used method for risk

calculation was the second trimester triple test, which combines

serum levels for alpha-fetoprotein (AFP), unconjugated estriol

(uE3), and the free b subunit of human chorion gonadotrophin (fb-

hCG) with maternal age [1,2]. In recent years, this test has been

largely replaced by the first trimester combined test, which is based

on fb-hCG and pregnancy-associated plasma protein A (PAPP-A)

serum concentrations, ultrasound nuchal translucency (NT)

measurements and maternal age [3]. The latter test is the method

currently available to pregnant women in the Netherlands.

Despite international experimental effort to improve the DS

screening, both the Detection Rate (DR) and False Positive Rate

(FPR) can still significantly be improved upon. In the Netherlands,

the current DS screening has a DR of 75.9% and an FPR of 3.3%

[4]. Most research effort in this field is focused on finding new

biomarkers for which serum levels can be added to the risk

calculation algorithm. In recent years, proteomics methods for

large-scale protein quantitation have been employed to facilitate

the search for such biomarkers [5–10]. However, the performance

of candidate biomarkers obtained by such studies are not always

reproducible, and also established DS pregnancy biomarkers are

not always successfully confirmed in such studies, likely due to

issues related to technical sensitivity and reproducibility.

A recent study by our group used bead-based multiplexed

immunoassays to test 90 different analytes in first trimester

maternal serum samples for DS pregnancies and controls [7]. This

study identified seven new potential biomarkers that allow for a

more accurate first trimester risk prediction, while confirming the

long-known usefulness of PAPP-A. The set of 90 analytes was not

pregnancy- or DS- specific but based on a pre-fixed commercially

available set. We reasoned that with a set that is more focused on

markers relevant for pregnancy or DS, more and also more

specific biomarkers can be found. Hence, we set out to develop

such a set by analysis and integration of publicly available data.

The amount of information on genes and proteins in databases

is increasing rapidly, which allows for a bioinformatics approach

that involves automated collecting and combining information

from biological databases, known as data mining. Recent studies

using data mining for identification of blood based cancer

biomarkers showed the successfulness of this approach [11,12].
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Current DS screening protein biomarkers can be traced to

originate from two tissues, namely fetal liver (e.g. AFP) and the

placenta (e.g. fb-hCG, PAPP-A). The non-protein serum bio-

marker uE3, routinely used in 2nd trimester screening, is produced

by the placenta from its precursor dehydroepiandrosterone sulfate

derived from the fetal adrenal glands and liver [13,14]. Placental

markers can be assigned more specifically to the trophoblast cells,

which are involved in both the implantation of the embryo into the

endometrium as well as the production of hormones required for

establishing and sustaining pregnancy. Indeed, abnormal tropho-

blast differentiation has been observed in placentas of DS

pregnancies [15,16]. As the current screening biomarkers are all

derived from the two tissues mentioned (i.e. fetal liver and

placental trophoblast cells), we hypothesized that several novel

useful biomarkers can primarily be found to be derived from these

two tissues. To identify such protein biomarkers we combined data

from several publicly available sources.

Methods

Analysis of Tissue-Specific Gene Expression Data
Human tissue-specific gene expression data were analyzed using

the Symatlas web-interface (http://symatlas.gnf.org) based on data

previously published by Su et al [17,18]. Symatlas data were

considered most useful for this study as it provides the largest

publicly accessible data collection on multiple tissues, including

both adult and fetal tissues. Tissue data used were both from the

Human GeneAtlas GNF1H (gcRMA-normalised) (79 tissues) and

the Human GeneAtlas U95A (44 tissues). Using the web-interface,

these data sets were queried for the number of genes highly

expressed in fetal liver or placenta, according to different

stringency levels. Such a stringency level consists of a minimal

ratio for the gene expression in a target tissue (in our case placenta

or fetal liver) compared to the median expression of that gene

across all tissues examined. Using various stringency levels, the

number of tissue-specific genes obtained for each stringency level

was determined for fetal liver as well as placenta. The resulting

data were imported into the statistical program R (www.r-project.

org) [19] and the data distribution was assessed to determine the

nonspecific underlying trend over lower stringency levels. This

revealed that for lower thresholds this trend could be approxi-

mated with a power law distribution, where a two-fold increase in

the threshold led to a four-fold decrease in the number of genes

expressed above that threshold. We refer to this trend as the

nonspecific underlying trend. For higher stringencies, the number

of genes began to decrease at a slower rate, indicating an

enrichment for tissue-specific genes over the nonspecific trend.

Based on this finding, a threshold was set that yielded

approximately 10 times more tissue-specific genes than could be

estimated based on the nonspecific underlying trend. In other

words, using the trend for nonspecific genes at lower stringency

levels, a stringency threshold was chosen that was high enough to

consider 90% of the genes highly expressed in either fetal liver or

placenta to be specifically derived from that tissue and not be a

statistical artefact. These genes were used in subsequent analysis

steps. The same approach was used to enrich fetal-liver-specific

genes compared to adult liver-specific genes.

Text-Mining
As text-mining is still a developing field, we wanted to include

more than one text-mining tool to restrict the chance of false

negatives. For that reason two applications were combined as they

use different approaches to search partially different databases,

and therefore can be considered complementary. The first of these

is Anni (http://www.biosemantics.org/anni/) [20], which pro-

vides an ontology- and thesaurus-based interface to Medline and

retrieves associations for several classes of biomedical concepts

(e.g. genes, drugs, and diseases). These concepts are given a

concept weight, which indicates their relevance to the applied

search term. The second application is Polysearch (http://wishart.

biology.ualberta.ca/polysearch) [21], which supports different

classes of information retrieval queries against several different

types of text, scientific abstract or bioinformatic databases such as

PubMed, OMIM, DrugBank, SwissProt, the Human Metabolome

Database (HMDB), the Human Protein Reference Database

(HPRD), and the Genetic Association Database (GAD). The

relevancy scores of the obtained genes or proteins are expressed as

Z scores, i.e. as standard deviations above the mean. The two

applications were searched for genes associated with the terms

‘‘trophoblast’’, ‘‘cytotrophoblast’’, and ‘‘syncytiotrophoblast’’.

Significance criteria for Anni were based on a minimally tenfold

enrichment over the statistically determined distribution of the

concept weight. For PolySearch, a Gaussian distribution was used,

based on the software documentation. Gene lists obtained for the

three terms were combined and subsequently manually adjusted to

resolve ambiguous or redundant gene symbols.

Assessing Applicability for Blood-Based Detection
To determine if putative biomarkers identified by gene expression

analyses and/or text mining are potentially blood-detectable, they

were cross-checked against two different data resources. Proteins

were considered blood-detectable if they had at least one of the Gene

Ontology (GO) annotation terms ‘‘extracellular region’’, ‘‘extracel-

lular region part’’, or ‘‘extracellular space’’; or if they were included in

the Human Plasma Proteome (HPP) list. GO (http://www.

geneontology.org) [22] annotations are partially based on computa-

tional predictions whereas the HPP list [23] is based on a

combination of experimental methodologies. The latter approach

revealed some blood-detectable proteins not predicted by Gene

Ontology, but lacked some low-abundance proteins including protein

hormones [23]. As with the text-mining tools, these approaches were

therefore considered complementary and results were combined.

Results

Identification of Tissue-Specific Candidate Genes
The DS screening biomarkers currently implemented in the first

trimester combined test or the second trimester triple test are derived

from two tissues, namely fetal liver and placental trophoblasts.

Therefore, the first step in our data mining approach consisted of

identifying genes specifically expressed in either one of these two

tissues (see Fig. 1 for an overview of the various selective steps).

The tissue-related gene expression resource Symatlas was

searched for genes expressed in either fetal liver or placenta, at

a level that is a (user-definable) multiple of the median expression

for that gene across all tissues. By using various threshold levels

and statistical analysis, we found that at a gene expression

threshold of 30 times the median tissue expression, ten times more

genes were identified by the Symatlas query than were expected

based on the nonspecific trend. This applied to fetal liver as well as

placenta. Therefore, we used this criterion to select genes that have

a high probability of being specific for these individual tissues. This

approach resulted in 158 proteins specific for fetal liver and 229

for placenta, respectively (Fig. 1).

Applying Additional Relevance Criteria
The second step consisted of further prioritizing our set of genes

by ensuring that the genes selected in step 1 are not only highly

Novel Down Syndrome Biomarkers
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expressed, but are also sufficiently relevant for the tissues

mentioned. In the case of fetal liver-specific genes, we again used

Symatlas to ensure that the expression in fetal liver exceeded at

least ten times that of adult liver, thus narrowing down the list

from 158 to 51 genes (Fig. 1). For placenta-specific genes we used

two complementary textmining tools (Anni and Polysearch) to

select genes related to three trophoblast-related search terms

(trophoblast, cytotrophoblast, syncytiotrophoblast). For Anni,

genes with a concept weight .0.0001 (based on yielding ten

times more terms than expected for a nonspecific distribution) and

for Polysearch genes with a Z value.1.6 for at least one of the

terms were selected. This way, 181 genes were found, 50 of which

were also found to overlap with the previous selection of 229

placenta-specific genes (Fig. 1). We applied a different filtering

method for the two tissues because Symatlas does not include gene

expression data specific to trophoblasts or its two subtypes,

whereas text mining was less able to make a distinction between

proteins related to fetal or adult liver.

The 51 fetal liver-specific genes, and 50 trophoblast-related

genes were subsequently analyzed for detectability in blood.

Selection of Blood-Detectable Markers
For implementation of a biomarker in a routine human

screening program, it is essential that it can be detected in serum

or plasma. For the markers selected by the previous steps, we

examined which ones had a Gene Ontology annotation as being

extracellular, or were part of the experimentally derived Human

Plasma Proteome list compiled by Anderson et al. [23]. This final

selection step resulted in 49 individual blood-detectable markers

(Fig. 1, Table 1). For fetal liver and placenta, these numbers were

19 and 31, respectively, with IGF2 being part of both sets (Fig. 1,

Table 1).

Discussion

The aim of this study was to design a set of new potential blood-

detectable biomarkers for prenatal DS screening by computational

data mining, that is more focused on DS screening than currently

available commercial multiplex kits or high-throughput methods

for whole proteome analysis. By combining data from different

(publicly available) data sources into a three-stage approach

(summarized in Fig. 1), we identified 49 of such protein markers

(Table 1). Our combined list contains three biomarkers that are

currently widely used in either first- or second-trimester DS

screening, namely AFP, PAPP-A and fb-hCG. This demonstrates

that the method used is able to identify relevant DS screening

biomarkers. In addition, the list contains several other proteins

which have been examined for their potential as DS screening

biomarkers by several research groups, such as the inhibin chains

INHA and INHBA [24–27], the (protein-identical) placental

lactogen genes CSH1 and CSH2 [28], placental growth hormone

(GH2) [29–31], placental growth factor (PGF) [32], IGFBP1 [30],

or PP13 (LGALS13) [33]. For five of these proteins (INHA,

CSH1, CSH2, GH2, PGF), significant differences in concentration

exist between DS and euploid pregnancies, and therefore these

can be used as a biomarker in DS screening. Additionally, two

collagen-related markers, COL1A1 and COL3A1, (as well as

IGFBP1) have been described to have different amniotic fluid

levels in DS pregnancies [10] and it is conceivable that this also

applies to the corresponding maternal serum levels although this

remains to be established.

While identifying AFP, PAPP-A as well as fb-hCG as DS

screening biomarkers, our approach failed to identify the second

trimester biomarker unconjugated estriol (uE3). However, as uE3

is not a protein biomarker, it is not supported by our strategy

based on gene expression and protein data integration. Another

biomarker that our approach failed to detect but has been

described in the literature is ADAM12. This protein is both highly

expressed in placenta and extracellular, but failed the criteria used

in the textmining step. It should be noted, however, that most

recent studies find this biomarker to be informative only before 10

weeks of gestation, so the applicability of this protein is already

limited [34–38]. The finding that two complementary textmining

methods did not find sufficient evidence for association of

ADAM12 with trophoblasts can either indicate that current

literature databases only provide weak evidence for this associa-

tion, or that both textmining tools were not successful in detecting

an existing association. As textmining is a developing field, both

options are plausible. A recommendation for future studies of this

kind might therefore be to consider including further textmining

tools based on additional search algorithms.

Among the 49 proteins in Table 1, several overrepresentations

of biological processes can be observed. Among the fetal liver-

derived genes the five collagen genes are most apparent, but there

are also a number of proteins related to innate immunity such as

C5, PF4, PPBP, S100A8, and S100A9. These immunological

proteins can be ascribed to the central role the fetal liver has in

fetal hematopoiesis. For the placental trophoblast-derived proteins

Figure 1. Schematic representation of the steps employed in
our data mining strategy and the number of genes selected
after each step.
doi:10.1371/journal.pone.0008010.g001
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Table 1. Identified candidate Down Syndrome (DS) biomarkers.

Symbol Chrom Description (synonym) Potential

Fetal liver-derived markers

AFP 4 alpha-fetoprotein In use

ANGPTL3 1 angiopoietin-like 3

C5 9 complement component 5

COL1A1 17 collagen, type I, alpha 1 Indications

COL1A2 7 collagen, type I, alpha 2

COL2A1 12 collagen, type II, alpha 1

COL3A1 2 collagen, type III, alpha 1 Indications

COL5A2 2 collagen, type V, alpha 2

DEFA3 8 defensin, alpha 1

DLK1 14 delta-like 1 homolog

ELA2 19 elastase 2, neutrophil

GPC3 X glypican 3

IGF2 11 insulin-like growth factor 2 (somatomedin A)

PF4 4 platelet factor 4 (CXCL4)

PPBP 4 pro-platelet basic protein (CXCL7)

RRM2 2 ribonucleotide reductase M2 polypeptide

S100A8 1 S100 calcium binding protein A8 (calgranulin A)

S100A9 1 S100 calcium binding protein A9 (calgranulin B)

SPTA1 1 spectrin, alpha, erythrocytic 1

Placental trophoblast-derived markers

ADM 11 adrenomedullin

ALPP 2 alkaline phosphatase, placental

CDH1 16 cadherin 1, type 1, E-cadherin

CDH11 16 cadherin 11, type 2, OB-cadherin

CGA 6 glycoprotein hormones, alpha polypeptide

CGB5 19 chorionic gonadotropin, beta polypeptide (bHCG) In use

CRH 8 corticotropin releasing hormone

CSH1 17 chorionic somatomammotropin hormone 1 (placental lactogen) Biomarker

CSH2 17 chorionic somatomammotropin hormone 2 Biomarker

EBI3 19 epstein-barr virus induced gene 3

EGFR 7 epidermal growth factor receptor

FN1 2 fibronectin 1

GH1 17 growth hormone 1

GH2 17 growth hormone 2, placenta-specific growth hormone Biomarker

IGF2 11 insulin-like growth factor 2 (somatomedin A)

IGFBP1 7 insulin-like growth factor binding protein 1 Examined

INHA 2 inhibin, alpha Biomarker

INHBA 7 inhibin, beta A (activin A, activin AB alpha polypeptide) Examined

INSL4 9 insulin-like 4

LGALS13 19 lectin, galactoside-binding, soluble, 13 (PP13) Examined

PAPPA 9 pregnancy-associated plasma protein A, pappalysin 1 In use

PGF 14 placental growth factor Biomarker

PLAC1 X placenta-specific 1

PLAU 10 plasminogen activator, urokinase

PRL 6 Prolactin

PSG5 19 pregnancy specific beta-1-glycoprotein 5

SERPINB2 18 serpin peptidase inhibitor, clade B, member 2

SERPINE1 7 serpin peptidase inhibitor, clade E, member 1 (PAI1)

SPP1 4 secreted phosphoprotein 1 (osteopontin)

Novel Down Syndrome Biomarkers
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the majority act as hormones or growth factors, and in addition

four proteins (PLAU, SERPINB2, SERPINE1, TIMP3) are

involved in tissue remodeling. Both these processes are associated

with the role of placental trophoblasts in the production of

hormones required for establishing and sustaining pregnancy as

well as the implantation of the embryo into the endometrium.

Given that most of the identified markers are associated with a

small number of biological processes, it becomes likely that these

pathways might also harbor other potential DS screening markers

that do not meet the criteria used in our approach or for which

insufficient data are available.

As Down syndrome is caused by a (partial) trisomy of chromosome

21, it seems counterintuitive that none of the markers in Table 1 are

located on chromosome 21. Although it might be expected that genes

on this chromosome are expressed at an approximately 1.5-fold

higher level compared to other genes and could therefore act as

suitable biomarkers, this assumption does not fully hold in

comparative studies [39–41]. Furthermore, proteomic studies

including our own found no increased presence of chromosome 21

proteins among the differentially expressed proteins [5–10]. More-

over, although partial trisomy 21 is sufficient for DS, efforts to

associate DS with a smaller chromosomal region have excluded the

possibility of a single region being responsible for all aspects of the

phenotype [42–45]. Additionally, several characteristics of a DS

phenotype are also found for other types of aneuploidy, indicating

that the higher expression of genes located on chromosome 21 is only

linked indirectly to DS phenotype and mainly acts through

disregulation of genes on other chromosomes. This can also explain

why current DS screening biomarkers are not located on

chromosome 21 and the pregnancy screening biomarkers in use

are also predictive for other chromosomal aberrations such as

Edwards syndrome (trisomy 18) and Patau syndrome (trisomy 13).

This actually creates the possibility that some of the markers

mentioned in Table 1 are not only applicable to DS screening, but

also to pregnancies with other types of fetal aneuploidy.

By means of integrative data mining we have derived a set of

candidate Down Syndrome screening biomarkers. As the first two

filtering steps are both based on a minimally ten-fold enrichment

or induction over the corresponding background, we expect the

number of false positives, i.e. not relevant markers, to be low. This

is corroborated by the presence of eight proteins in our set that are

in use or can be used as biomarker for DS screening and five other

proteins for which this has been studied. However, before

biomarkers can be tested in a large-scale cohort study, additional

serum analysis experiments will be necessary to validate which of

these candidate biomarkers have differential levels in DS versus

normal pregnancies. Furthermore, we cannot predict beforehand

at what gestational age biomarkers are most discriminatory

between normal and DS pregnancies, and as a result, whether

they can be integrated in late first or early second trimester

screening. If this proves not to be the case, the usability of the new

biomarkers in a routine, large-scale population screening program

as applied in The Netherlands will be rather low. These further

experimental validations of the new DS screening biomarkers

identified by our data mining approach will evidently be the

subject of future follow-up studies.
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