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Abstract: A new method of supramolecular polymerization at
the water–oil interface is developed. As a demonstration, an
oil-soluble supramonomer containing two thiol end groups
linked by two ureidopyrimidinone units and a water-soluble
monomer bearing two maleimide end groups are employed.
Supramolecular interfacial polymerization can be imple-
mented by a thiol–maleimide click reaction at the water–
chloroform interface to obtain supramolecular polymeric
films. The glass transition temperature of such supramolecular
polymers can be well-tuned by simply changing the polymer-
ization time and temperature. It is highly anticipated that this
work will provide a facile and general approach to realize
control over supramolecular polymerization by transferring
the preparation of supramolecular polymers from solutions to
water–oil interfaces and construct supramolecular materials
with well-defined properties.

Supramolecular polymers refer to polymers in which
monomers are held together through highly directional
noncovalent interactions, such as hydrogen bonding, host–
guest interactions, p–p interactions, and metal coordina-
tion.[1–15] Owing to the dynamic nature of the noncovalent
interactions, supramolecular polymers exhibit unique proper-
ties such as reversibility, stimuli-responsiveness, self-healing,
and good processability.[16–30] Over the past decades, signifi-
cant advances have been made in developing methods of
supramolecular polymerization, from spontaneous to control-
lable and living supramolecular polymerization.[31–38] Further-
more, supramolecular polymers have displayed potential
applications in many interdisciplinary fields, such as molec-
ular muscles,[39–41] self-healing materials,[42–44] self-healing
organic electronics,[45,46] heterogeneous catalysis,[47] degrad-
able drug nanocarriers,[48] and stimuli-responsive supramolec-
ular gels.[49–51]

Supramolecular polymers are normally prepared in
homogenous media, which requires the monomers to be
dissolved in the same solvent. It is highly desirable to develop

new methods of supramolecular polymerization for immis-
cible monomers. For instance, when one monomer is water-
soluble and the other is oil-soluble, traditional homogenous
supramolecular polymerization cannot work. Thus, there
exists urgent and wide demand to develop supramolecular
interfacial polymerizations (for example, at the water–oil
interface) to face this challenge. Considering that the molar
ratio of the monomers needs to be strictly controlled in order
to fabricate supramolecular polymers with high molecular
weight in homogenous media, we can envision that interfacial
polymerization could be insensitive to the molar ratio of
monomers.[52–54] Therefore, supramolecular interfacial poly-
merization may provide a new and facile method of fabricat-
ing supramolecular polymers with controlled compositions
and structures.

Herein we aim to introduce a new and controllable
strategy to fabricate supramolecular polymeric materials
through supramolecular interfacial polymerization. Inspired
by traditional interfacial polymerization, two monomers with
opposite solubility are designed to be dissolved in two
immiscible solvents. To endow the polymers with supra-
molecular characteristics, one monomer can be a supramono-
mer, which is constructed by noncovalent interactions but
able to polymerize by conventional methods of polymeri-
zation.[55–58] Using the mild and highly efficient click reaction
as the polymerization approach,[59] two monomers can be
linked together at the water–oil interface, leading to the
formation of supramolecular polymers. Compared with con-
ventional method of fabricating supramolecular polymers in
solution, supramolecular interfacial polymerization has many
advantages, such as easy operation, insensitivity to the molar
ratio and concentration of monomers, and feasibility for
immiscible monomers, to name a few. Therefore, we antici-
pate that supramolecular interfacial polymerization may
become a powerful method to construct supramolecular
materials with well-defined properties.

To this end, as a proof-of-concept, we designed and
prepared two types of monomers containing maleimide
groups and thiol groups (Scheme 1). The water-soluble
monomer (noted as MA-C12) was synthesized and charac-
terized by 1H NMR and ESI-MS. The oil-soluble supramo-
nomer (UPy-SH)2 containing two thiol end groups was
formed by the dimerization of ureidopyrimidinone (UPy)
units on the basis of quadruple hydrogen bonds. By dissolving
MA-C12 in the water phase and (UPy-SH)2 in the chloroform
phase, supramolecular polymers could be obtained at the
water–oil interface by the thiol–maleimide click reaction.
Moreover, it was hoped that the chain structure of supra-
molecular polymers could be tuned by changing the inter-
facial reaction conditions.
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To confirm the formation of supramonomers, 1H NMR
and ESI-MS were performed. As indicated by 1H NMR, the
NH signals of UPy showed a downfield shift (between 10.0
and 13.5 ppm), suggesting the formation of quadruple hydro-
gen-bonded supramonomers (Supporting Information, Fig-
ure S3). The ESI-MS showed molecular ion peaks with mass-
to-charge ratios of 625.34 [(UPy-SH)2 + H]+ and 647.32
[(UPy-SH)2 + Na]+, which are in good accordance with the
calculated molecular weights of supramonomers with one
positive charge. All of the above results prove that owing to
the strong quadruple hydrogen-bonding interaction between
UPy units, the supramonomers with well-defined composition
and structure can be successfully constructed in the chloro-
form phase. Moreover, the supramonomers are stable at the
temperature of 60.0 88C (Supporting Information, Figure S6),
exhibiting good thermal stability for further supramolecular
interfacial polymerization.

We explored whether the thiol–maleimide reaction could
occur at the water–oil interface. In a typical experiment of the
supramolecular interfacial polymerization, an aqueous solu-
tion of MA-C12 (0.20 mol L@1, 0.60 mL) was carefully added
onto the surface of a solution of the supramonomer (UPy-
SH)2 in CHCl3 (0.20 molL@1, 0.60 mL). A brown-colored film
formed at the water–oil interface within one minute (Sup-
porting Information, Figure S5). The brown film was free
standing, which was removed for characterization by
1H NMR and ESI-MS. As shown in Figure 1, the disappear-
ance of the maleimide proton peak (d = 7.1 ppm) and the
almost disappearance of the thiol proton peak (d = 2.4 ppm),
and the appearance of a new peak (d = 4.1 ppm) belonging to
the addition product of thiol and maleimide indicated that the
two monomers underwent the click reaction at the interface
of the two phases. Moreover, from the ESI-MS, a molecular
ion peak with a mass-to-charge ratio of 579.37 was detected,

which agrees well with the calculated molecular weight of the
product of thiol–maleimide reaction with two positive
charges. Therefore, linear supramolecular polymers are
formed by the thiol–maleimide click reaction at the interface.

We have relied on FTIR spectra and solid-state 1H NMR
to confirm that the quadruple hydrogen bonds exist in the
solid films. The existence of N@H stretching vibration around
3222 and 3125 cm@1 (Supporting Information, Figure S8) in
the FTIR spectra suggested the formation of self-comple-
mentary hydrogen bonds. Moreover, direct evidence for the
presence of quadruple hydrogen bonds in the solid films was
provided by solid-state 1H NMR. As shown in Figure 2,
a high-resolution solid-state 1H NMR spectrum was obtained
with the aid of magic-angle spinning (MAS) and the high

Scheme 1. a) Chemical structures of the designed water-soluble monomer MA-C12 and oil-soluble supramonomer (UPy-SH)2 ; b) a diagram of
supramolecular interfacial polymerization at the water–oil interface.

Figure 1. 1H NMR spectra (400 MHz, [D6]DMSO) of a) the water-
soluble monomer MA-C12, b) the product at the water–oil interface,
and c) the oil-soluble monomer UPy-SH.
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spinning frequency of 60 kHz on a 600 MHz spectrometer.
The three characteristic amide proton peaks in the downfield
region (between 9.0 and 13.0 ppm) were clearly differentiated
from the aromatic and aliphatic protons due to the high
spinning frequency. The downfield shifts of the amide protons
indicated the existence of quadruple hydrogen bonds in the
solid state. These results confirm that the solid films formed at
the water–oil interface are supramolecular polymers whose
building blocks are connected by the quadruple hydrogen
bonds of UPy units.

The degree of polymerization of the obtained supra-
molecular polymer was estimated by end-group analysis
measured by 1H NMR. The degree of polymerization of the
solid supramolecular polymer was estimated to be 52,
corresponding to the molecular weight of 68 kDa. This
result confirms that supramolecular polymers with high
molecular weight can be successfully fabricated by supra-
molecular interfacial polymerization.

To study the properties of the supramolecular polymers,
X-ray diffraction (XRD) and thermogravimetic analysis
(TGA) were conducted. As shown in the Supporting Infor-
mation, Figure S11, the diffraction pattern of a solid supra-
molecular polymer sample displayed diffuse diffraction with-
out any sharp Bragg peaks, indicating that the as-prepared
films were amorphous polymers. From the TGA curves
(Supporting Information, Figure S12), the thermal decompo-
sition temperature at 5% weight loss of the supramolecular
polymer was 238 88C; above this temperature the decomposi-
tion rapidly accelerated. In contrast, the thermal decompo-
sition temperatures at 5 % weight loss of the two monomers
were 206 88C and 293 88C, respectively. Therefore, the supra-
molecular polymers are amorphous polymers with good
thermal stability.

To understand whether the chain structure of the supra-
molecular polymers could be modulated through supramolec-
ular interfacial polymerization, the glass transition temper-
ature (Tg) of the supramolecular polymers prepared under
different conditions was determined by differential scanning
calorimetry (DSC). As shown in Figure 3, at the reaction
temperature of 8 88C, increasing the reaction time from 10 min

to 1.0 h, the Tg of the supramolecular polymers increased
from 73.1 88C to 79.4 88C. This could be due to the elongation of
the supramolecular polymer chains with the extension of
polymerization time. It is noteworthy that when the inter-
facial reaction was further prolonged to 3.0 h, the Tg of the
supramolecular polymers slightly increased from 79.4 88C to
83.7 88C, suggesting that the increase of supramolecular
polymer chain became slow when the reaction time was
longer than 1.0 h. This result indicates that the Tg of the
supramolecular polymers can be well-modulated by tuning
the reaction time of the supramolecular interfacial polymer-
ization.

Figure 2. Solid-state 1H NMR spectrum of the solid films (600 MHz,
spinning frequency of 60 kHz).

Figure 3. DSC curves and Tg of the supramolecular polymers prepared
with different reaction times while keeping the reaction temperature of
8 88C.

Figure 4. DSC curves and Tg of the supramolecular polymers prepared
at different reaction temperatures while keeping the reaction time at
1.0 h.
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We also wondered whether the Tg of the supramolecular
polymers could be controlled through tuning the reaction
temperature. To answer this question, the supramolecular
polymers were prepared at different temperatures. As shown
in Figure 4, the Tg of the supramolecular polymers increased
from 79.4 88C to 93.7 88C when increasing the reaction temper-
ature from 8 88C to 60 88C while keeping the same reaction time
of 1.0 h. It seems as if the higher temperature accelerates the
interfacial reaction rate, thus leading to the formation of
supramolecular polymers with longer chains. We can there-
fore conclude that the Tg of the supramolecular polymers
fabricated by supramolecular interfacial polymerization can
be well-controlled by simply changing the reaction time and
temperature.

An additional advantage of this method for fabricating
supramolecular polymers is that the supramolecular poly-
meric films could be formed at the water–oil interface with
different concentrations of MA-C12 (for example,
0.05 molL@1 to 0.40 molL@1) and (UPy-SH)2 (0.05 molL@1 to
0.40 molL@1). Furthermore, the supramolecular polymeric
films could be successfully fabricated with the molar ratios of
MA-C12 and (UPy-SH)2 from 8:1 to 1:8, suggesting the molar
ratios of monomers need not to be strictly equal in the
supramolecular interfacial polymerization. Moreover, the
supramolecular polymeric films can be depolymerized by
destroying the quadruple hydrogen bonds in DMSO.

In conclusion, we have demonstrated that supramolecular
interfacial polymerization is a facile and controllable method
for fabricating supramolecular polymers. Supramolecular
interfacial polymerization was here employed to fabricate
supramolecular polymers through thiol–maleimide click reac-
tion; many other mild and highly efficient reactions are
expected to be applicable to this approach. By marrying
supramolecular polymer chemistry to conventional interfacial
polymerization, this line of research enriches the method of
supramolecular polymerization to polymerize immiscible
monomers in a controlled manner. It is anticipated that this
facile strategy could be utilized in fabricating supramolecular
materials with controllable properties, structures, and func-
tions.
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