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Inflammatory plasma proteins predict 
short-term mortality in patients with an acute 
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Abstract 

Background: The aim of this study was to investigate the association between inflammatory markers and 28-day 
mortality in patients with ST-elevation myocardial infarction (STEMI).

Methods: In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction 
Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflam-
matory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day 
mortality was investigated. The values of the biomarkers most significantly associated with mortality were standard-
ized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score 
was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by 
adding the standardized biomarker score to the standardized GRACE score.

Results: The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associ-
ated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivari-
able logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable 
predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 
0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC 
of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 
0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the 
superiority of the combined score over the GARCE score.

Conclusions: Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarc-
tion (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims 
to provide each patient with tailored therapy.
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Introduction
Prior studies investigated the prognostic performance 
of several biomarkers in acute myocardial infarction 
(AMI) patients [1–6]. Nevertheless, these studies mainly 
concentrated on nowadays well-known biomarkers like 
cardiac troponin I, N-terminal pro B-type natriuretic 
peptide (NT-proBNP), C-reactive protein, lipoprotein 
(a) and many more. These markers play important roles 
in the pathophysiology and diagnosis of AMI. Due to the 
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complexity of underlying pathophysiology in coronary 
artery disease (CAD), neither occurrence nor progression 
of CAD is understood completely. It is likely that addi-
tional pathophysiological processes are involved in the 
development of CAD or the occurrence of an AMI and 
its outcome respectively. In this context, science focusses 
on the detection and measurement of biomarkers that 
can differentiate between physiological and pathological 
processes in the body [7–9]. So the aim of this study was 
to identify previously unknown protein biomarkers that 
might be associated with short-term mortality after AMI 
and evaluate these with already known predictors.

Methods
Study population
This study was based on data from the population-based 
Augsburg Myocardial Infarction Registry which was 
established in 1984 as a part of the MONICA-project 
(Monitoring Trends and Determinants in Cardiovascular 
disease) and since then operated as KORA (Kooperative 
Gesundheitsförderung in der Region Augsburg) Myo-
cardial Infarction Registry [10]. The study area consists 
of the city of Augsburg, Germany, and the two adjacent 
counties comprising a total of approximately 680,000 
inhabitants. All patients aged between 25 and 84  years 
being admitted to one out of eight hospitals in the study 
area were consecutively registered. More detailed infor-
mation on case identification, diagnostic classification 
of events and quality control of the data can be found 
in previous publications [10, 11]. For the present study 
blood samples were taken from patients with ST-ele-
vation myocardial infarction admitted to the university 
hospital of Augsburg between May, 2009 and July, 2013 
(blood from patients was collected solely in this hospital). 
Out of all patients from which blood samples were taken, 
biomarkers of 398 consecutive patients were meas-
ured (mean age: 63.5 years (SD: 11.9), male: 73.1%). For 
3 patients there were missing values for the biomarkers, 
thus 395 cases were included in the analysis. All study 
participants gave written informed consent. Methods of 
data collection were approved by the ethics committee of 
the Bavarian Medical Association (Bayerische Landesär-
ztekammer) and the study was performed in accordance 
with the Declaration of Helsinki.

Data collection
Trained study nurses interviewed the participants dur-
ing hospital stay using a standardized questionnaire. To 
confirm the information provided by the patients and to 
collect additional information, the patients’ medical chart 
was reviewed. Demographic data, data on cardiovascu-
lar risk factors, medical history, comorbidities (includ-
ing diabetes), medication before and during hospital stay, 

as well as at discharge were collected from each patient. 
Furthermore, laboratory parameters including glu-
cose measurement, ECG and in-hospital course were 
determined.

Between 2009 and 2014 plasma samples were obtained 
within the scope of cardiac catheterization, which was 
in general performed immediately after hospital admis-
sion. Right at the beginning of the catheterization, EDTA 
blood samples were taken (arterial blood). This was 
immediately followed by the processing of the blood sam-
ples in the catheter laboratory (centrifugation, aliquoting 
and freezing at − 80 °C).

Clinical chemistry measurement
Protein measurements of the 92 biomarkers were per-
formed on plasma samples using the Proseek® Multi-
plex Inflammation panel, developed by Olink Proteomics 
(Uppsala, Sweden) and based on the Proximity Exten-
sion Assay (PEA). In the supplementary material, we 
give a brief description of the methods used for protein 
level quantification. Further information on the process 
of measurement can be found in a previous publication 
[12] and directly at the website of Olink Proteomics [13]. 
The selection of the 92 biomarkers of the inflammation 
panel was predetermined by Olink Proteomics and can´t 
be chosen individually.

All other blood parameters were measured in clinical 
laboratory at the university hospital of Augsburg during 
hospital stay of the patients as part of the regular diagno-
sis and routine treatment.

Outcome
The endpoint used in this study was 28-day all-cause 
mortality. Information on mortality was obtained from 
the patients’ medical charts as well ascertained by regu-
larly updates on the vital status of all registered persons 
of the MI registry with data from the population regis-
tries. Death certificates were obtained from local health 
departments.

Statistical analysis
For the comparison of categorical variables, Chi-square 
tests were performed and the results were presented as 
absolute frequencies with percentages. For normally-
distributed continuous variables, Student’s t-tests were 
used. For continuous variables that were not normally-
distributed we used nonparametric tests. The results 
are presented as mean and standard deviation (SD) or 
median and inter-quartiles range (IQR).

Logistic regression models
First, we standardized the values for each biomarker 
(we centered and normalized the variable so that the 
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transformed variable had an expectancy value of 0 and 
a statistical variance of 1 for every biomarker). The 
standardization provides comparability between the 
92 biomarkers. To examine the associations between 
the biomarkers and 28-day mortality, we calculated 92 
logistic regression models, one for every biomarker. 
The first models were adjusted for sex and age. To con-
trol the effect of multiple testing, we FDR-adjusted the 
obtained p-values. In a subsequent step, we calculated 
the same logistic regression models and adjusted for sex, 
age, renal function according to GFR, diabetes mellitus, 
hypertension, hyperlipidemia and PCI (p-values also 
FDR-adjusted).

Based on these models, we identified biomarkers 
that were strongly associated with 28-mortality (FDR-
adjusted p-value < 0.01). We added the standardized val-
ues of the selected biomarkers to obtain a summed value, 
which then was used as a prediction score. To assess 
the predictive ability of the score, we compared it to the 
established GRACE score [14] serving as a reference. 
As we did not have all information in the exact defined 
manner, we tried to replicate the score as best as possible 
(for details see supplementary material). There were two 
main deviations from the original score: no information 
on Killip class was available, but we had information on 
left ventricular ejection fraction (LVEF), which we used 
instead. Furthermore, as only ST-elevation myocardial 
infarction cases were included in this study, every case 
was assigned to the ST deviation group. There were cases 
with missing values for the variables LVEF, cardiac arrest, 
elevated heart enzymes and heart rate at admission. As 
just ignoring these cases could potentially cause a selec-
tion bias, we conducted multiple imputation by chained 
equations. The number of iterations was 5 and the num-
ber of created imputed data sets was 5 as well. The impu-
tation process was performed with MICE-package (R 
statistic software). The subsequent analyses were calcu-
lated with the pooled results from the imputed data sets.

Subsequently, we calculated a combined score (GRACE 
score and biomarker score). Therefore, we standardized 
both scores (GRACE and the new developed biomarker 
score) and added both together. For the calculation of the 
biomarker score, 3 out of 398 patients had missing val-
ues. The missing values required to calculate the GRACE 
score were imputed (36 patients had at least one missing 
value for a required variable). Consequently, 395 cases 
were included for the ROC curve analysis of the GRACE 
score and combined total score.

ROC analysis
The predictive ability of the three scores—the new bio-
marker score, the original GRACE score and combined 
total score—was compared. We performed ROC analyses 

and calculated AUC for each score and compared the 
results using bootstrapping. Finally, we calculated con-
tinuous net reclassification improvement (cNRI) and 
integrated discrimination increment (IDI) to further 
compare the predictive abilities.

Results
Table 1 displays the baseline characteristics for the total 
sample and stratified for 28-day survival.

Results of the logistic regression model adjusted for 
sex and age are displayed in Fig. 1. There were 9 protein 
biomarkers with adjusted p-values < 0.001: IL6 (Interleu-
kin 6), IL10 (Interleukin 10), IL8 (Interleukin 8), CST5 
(Cystatin D), MCP-1 (chemoattractant protein-1), ST1A1 
(Sulfotransferase 1A1), FGF-21 (Fibroblast growth factor 
21), FGF-23 (Fibroblast growth factor 23), and 4E-BP1 
(Eukaryotic translation initiation factor 4E-binding pro-
tein 1). The results of the multivariable adjusted logis-
tic regression models are displayed in Fig.  2. The same 
9 parameters remain producing the strongest p-val-
ues < 0.01. For all other parameters, the adjusted p-values 
were > 0.01. In Table 1 of the supplementary material, the 
results of the logistic regression models are displayed 
numerically including the full names of all biomarkers 
that were measured.

The values of 9 parameters identified in the logistic 
regression models are displayed in Fig.  3. The plots are 
stratified for 28-day survival. Patients who died within 
the first 28-days after infarction had higher values for all 
9 parameters compared to patients who survived the first 
28 days.

Figure 4 shows the ROC curves of the biomarker score 
and the total score in comparison to the GRACE score. 
For each ROC curve, the number of events (= deaths 
within 28 days) was 28 and the number of controls was 
367. The AUC of the biomarker score was 0.7859 [CI: 
0.6735–0.89] and for the GRACE Score 0.7961 [CI: 
0.6965–0.8802] (p-value for difference in AUC values: 
0.84). The AUC of the combined total score was 0.8305 
[CI: 0.7269–0.9187] (p-value for difference in AUC val-
ues compared to GRACE score: 0.144). The comparison 
of the GRACE score with the biomarker score revealed 
no significant superiority of one score over the other with 
a cNRI of 0.113 (CI: -0.268–0.493, p-value: 0.561) and 
an IDI of 0.047 ((CI: -0.033–0.127, p-value: 0.25). The 
combined total score on the other hand showed a sig-
nificantly better discrimination compared to the GRACE 
score alone with a cNRI of 0.566 (CI: 0.192–0.94, p-value: 
0.003) and an IDI of 0.083 (CI: 0.016–0.149, p-value: 
0.015). Table 2 displays the AUC values for the individual 
biomarkers (ranging from 0.6914 [MCP-1] up to 0.7713 
[FGF-23]); confirming the results of the logistic regres-
sion models by proofing a very good discrimination for 
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each individual biomarker. In the supplementary material 
we report the AUC values for the individual components 
of the GRACE score (Additional file 1: Table S2).

Since for every patient included in this analysis a 
cardiac catheterization was performed, but not every 
patient was treated by PCI, a subgroup analysis includ-
ing only patients who received PCI treatment was 

performed (supplementary material: logistic regres-
sion models: Additional file 1: Figure S2; ROC analyses: 
Additional file  1: Figure S3). Even though the results 
indicated very slightly attenuated associations between 
the biomarkers and 28-day mortality, the general asso-
ciation remains significant confirming the results 
obtained by the analyses using the total sample.

Table 1 Baseline characteristics for the total sample and stratified 28-day survival

* Cut off value of the labaratory was 0.14

Total sample
(n = 398)

28 days survived 
(= 370)

Died within 28 days 
(n = 28)

p-value Missing 
values

Age (mean, SD) 63.5 (11.9) 63.1 (11.9) 69.5 (10.7) 0.0056 0

Male 291 (73.1) 272 (73.5) 19 (67.9) 0.6673 0

Comorbidities

 Hypertension 303 (76.1) 279 (75.4) 24 (85.7) 0.3154 0

 Diabetes mellitus 107 (26.9) 97 (26.2) 10 (35.7) 0.3832 0

 Hyperlipidemia 219 (55) 208 (56.2) 11 (39.3) 0.1237 0

 BMI (kg/m2) 26.8 (24.3–29.9) 26.9 (24.4–29.8) 26.8 (24.1–30.3) 0.995 24

 BMI > 30 kg/m2 88 (23.5) 84 (23.2) 4 (33.3) 0.6398 24

Smoking status 0.324 25

 Current smoker 157 (42.1) 149 (41.4) 8 (61.5)

 Ex-smoker 106 (28.4) 103 (28.6) 3 (23.1)

 Never smoker 110 (29.5) 108 (30) 2 (15.4)

Clinical characteristics

 Prehospital time in minutes (median, 
IQR)

115 (198) 120 (212.5) 77.5 (57) 0.002716 29

 Prehospital cardiac arrest 24 (6.2) 17 (4.7) 7 (26.9)  < 0.001 11

 Systolic blood pressure at admission 
(median, IQR)

140 (125–160) 144.0 (129.25–160) 127.5 (93.5–140)  < 0.001 0

 Diastolic blood pressure at admission 
(median, IQR)

80 (68.5–95.5) 80 (70–96) 67 (60–72.5)  < 0.001 3

 Heart rate at admission
(median, IQR)

76 (66–89) 76 (66–88.25) 80 (64.5–90) 0.4599 3

Left ventricular EF  < 0.001 16

 > 50% 180 (47.1) 172 (47.8) 8 (36.4)

 41–50% 85 (22.3) 83 (23.1) 2 (9.1)

 31–40% 88 (23) 84 (23.3) 4 (18.2)

  ≤ 30% 29 (7.6) 21 (5.8) 8 (36.4)

Kidney function  < 0.001 0

 eGFR ≥ 60 ml/min/1.73 m2 275 (69.1) 266 (71.9) 9 (32.1) - -

 eGFR 30—59 ml/min/1.73 m2 109 (27.4) 91 (24.6) 18 (64.3) - -

 eGFR < 30 ml/min/1.73 m2 14 (3.5) 13 (3.5) 1 (3.6) - -

Treatment

 PCI 363 (91.2) 340 (91.9) 23 (82.1) 0.1585 0

 Bypass therapy 36 (9.7) 36 (9.7) 5 (17.9) 0.2975 0

 Lysis therapy 3 (0.8) 2 (0.5) 1 (3.6) 0.5126 0

Laboratory values

 Troponin I at admission* (median, IQR) 0.59 (0.09–5.91) 0.56 (0.09–4.975) 3.41 (0.2875–12.275)  < 0.001 7

 peak CRP (median, IQR) 0.38 (0.29–1.0325) 0.370 (0.29–0.975) 0.575 (0.29–1.5425) 0.474 2
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Discussion
In this study, we investigated the association of 92 bio-
markers with short-term mortality, i.e. death of any cause 
in the first 28-days, in acute ST-elevation myocardial 
infarction patients. The biomarkers most significantly 
associated with short-term mortality were IL-6, IL-10, 
IL-8, MCP-1 (mainly inflammatory markers), FGF-21, 
ST1A1, 4E-BP1 and CST5 (classified by OLINK as car-
diovascular markers) and FGF-23 (classified as a cancer 
marker). For some of these nine markers prior studies 
also found associations with short-term mortality in 
AMI patients, in particular IL-6, FGF-23 and FGF-21 (see 
below).

Interleukins IL-6, IL-8 and IL-10
While the interleukins IL-6 and IL-8 are classified as 
pro-inflammatory cytokines [15, 16]; IL-10 is suspected 
to have predominantly anti-inflammatory effects [17]. 
A systematic review by Kristono et  al. summarized a 
potential association between inflammatory cytokines 
and long-term adverse outcomes in acute coronary syn-
dromes, including studies analyzing the cytokines IL-6, 
IL-8 and IL-10 [18]. They concluded that some studies 

reported significant associations between individual 
cytokines (including IL-6, IL8 and IL-10) and MACE 
(major adverse cardiovascular events); but they also 
found considerable heterogeneity in the methods and 
results of the studies included their review [18]. They 
furthermore suggested that a combination of multiple 
cytokines might have a better association with MACE 
than individual cytokines [18].

Many potential pathophysiological pathways, which 
might convey a potential association between these 
cytokines and the outcome of AMI patients are described 
in the scientific literature. IL-6 for example is more and 
more commonly used as a long-term marker of inflam-
mation. It is suspected to be a cardiovascular risk fac-
tor and to be correlated with endothelial dysfunction 
and subclinical atherosclerosis [19]. As an example, the 
authors of a meta-analysis concluded, that chronic use of 
phosphodiesterase inhibitors in in type 2 diabetes melli-
tus patients has a beneficial effect on endothelial function 
conceivably by a reduction of IL-6 serum levels [20]. For 
IL-8, a study by Shetelig et al. found that high levels were 
associated with larger infarct size and lower LV ejection 
fraction in STEMI patients [21]. In a study on IL-10, Jung 
et  al. claimed, that IL-10 improves cardiac remodeling 

Fig. 1 Results of the logistic regression models adjusted for sex and age. P-values were FDR-adjusted. Names of the markers are presented for all 
markers with FDR-adjusted p-values below 0.05
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after AMI by stimulating M2 macrophage polarization 
and fibroblast activation [22]. The authors of another 
study concluded, that IL-10 inhibits inflammation and 
attenuates left ventricular remodeling after myocardial 
infarction via activation of STAT3 and suppression of 
HuR [23]. Further studies suggested a multitude of other 
biochemical pathways that might be involved in the com-
plex relationship between these three cytokines and myo-
cardial infarction [24–32].

Fibroblast growth factor family
In the present study, two representatives of the fibroblast 
growth factor family, FDF-21 and FDF-23, were highly 
associated with 28-day mortality after AMI. Prior publi-
cations on FGF-23 suggested an association between ele-
vated FGF-23 levels and cardiovascular events in general 
and mortality in CAD in particular [33–37]. Though, the 
authors of a meta-analysis on this topic concluded, that 
the association might be non-causal [38]. In a rat model, 
Andrukhova et al. found that the induction of myocardial 
infarction in rats led to an elevation of FGF-23 levels [39], 
which strongly indicates a general association between 
AMI and FGF-23. Though, results of their study might 

rather suggest that AMI causes an elevation of FGF-23 
levels and not the other way round. The results of the 
presents study would further indicate, that FGF-23 eleva-
tions are not only associated with the event itself, but also 
with adverse outcome after AMI.

For FGF-21, several prior studies suggested, that FGF-
21 inhibits inflammation and fibrosis after AMI and 
therefore might improve cardiac remodeling [40–42]. A 
review proposed FGF-21 as a new cardiomyokine which 
is crucial for maintaining cardiac function and has posi-
tive effects on the heart in the context of pathological 
conditions [43]. Therefore, we should have expected to 
find an inverse correlation between FGF-21 and mortal-
ity, which we didn´t. One possible explanation might be 
that very high levels of FGF-21 indicate great myocardial 
damage with a pronounced counter-regulation. There-
fore despite having a protective effect, high FGF-21 levels 
are associated with higher mortality since they represent 
greater myocardial damage. This hypothesis is supported 
by a small study from China, which revealed significantly 
higher FGF-21 levels in AMI patients compared to non-
AMI control patients, indicating that high FGF-21 levels 
are independently associated with AMI [44].

Fig. 2 Results of the multivariable adjusted logistic regression models. P-values were FDR-adjusted. Names of the markers are presented for 
all markers with FDR-adjusted p-values below 0.05. Adjusted for: sex, age, renal function according to GFR, diabetes mellitus, hypertension, 
hyperlipidemia, PCI



Page 7 of 12Schmitz et al. Journal of Translational Medicine          (2022) 20:457  

MCP-1, CST5, ST1A1 and 4E-BP1
Another four biomarkers, i.e., MCP-1, CST5, ST1A1 and 
4E-BP1, were strongly associated with 28-day mortality 
and consequently were included in the biomarker score. 
MCP-1 is a chemokine that regulates migration and infil-
tration of monocytes/macrophages [45]. A review article 
on cardiac repair after myocardial infarction reported, 
that early recruitment of pro-inflammatory monocytes 
is mediated through activation of the MCP-1/CCR2 axis 

and that in mice, MCP-1 inhibition exhibits a reduced 
infarct size and monocyte infiltration [46]. Next to a 
reduction of IL-6 serum levels as described above, it has 
been reported that phosphodiesterase-5 inhibitors like 
sildenafil also reduce MCP-1 levels in men with diabetes 
[47] and affect circulating monocytes and tissue inflam-
matory cell infiltration [48]. Another study including 
87 AMI patients and 82 controls found higher levels of 
MCP-1 in the AMI group compared to a control group 

Fig. 3 Boxplots of the 9 biomarkers which had the strongest association with 28-day mortality. The plots are stratified for patients who survived 
the first 28 days and those who did not. For all markers, the values were higher in the group of patients who died within 28 days after AMI. P-values 
were calculated using t-tests and were FDR-adjusted
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[49]. Additionally, they reported, that the highest MCP-1 
levels were observed in patients with poor prognosis, 
which agrees with results of the present study.

For the remaining biomarkers CST5 (Cystatin D), 
ST1A1 and 4E-BP1 we couldn´t find prior studies that 
investigated a potential association between these bio-
markers and AMI or AMI-related mortality, so we can-
not compare our results to previously reported results. 
Further studies are needed to confirm the relationship 
of these newly detected protein biomarkers with adverse 
outcome after STEMI.

It could be conjectured, that the association between 
the nine biomarkers and short-term mortality after 

STEMI might be driven by the delay between symptom 
onset and PCI: patients with longer therapeutic delay 
have longer ischemic times which increases the plasma 
levels of the biomarkers at cardiac catheterization and at 
the same time adversely affects the outcome after AMI. 
Therefore we calculated the multivariable adjusted logis-
tic regression models as described in the results section 
but added prehospital delay as an additional covari-
able (see Fig.  1, supplementary material). Although this 
influences the results of the model to a limited extent, it 
shows that therapeutic delay does not play a superior role 
in the association between the investigated biomarkers 
and short-term mortality.

Another important issue to consider is the well-known 
interconnection of pathological inflammatory processes 
with obesity and obesity-related diseases such as diabe-
tes mellitus type 2. A general example for this association 
is an obesity-related increased susceptibility to infectious 
diseases [50], which also became visible in the context 
of the Covid-19 pandemic. But there is also increasing 
evidence that the link between obesity and inflamma-
tion plays a major role in metabolic and cardiovascular 
diseases [51–53]. For instance, in a review paper Tarsi-
tano et  al. discussed the specific relation between epi-
cardial adipose tissue and its pro-inflammatory role in 
several cardiovascular diseases [54]. It has moreover been 
reported, that specific cardio-protective agents like Phos-
phodiesterase-5 inhibitors can positively affect the course 
of the diseases by modifying underlying inflammatory 

Fig. 4 ROC curves for the biomarker score (on the left) and the combined total score (on the right) in comparison to the GRACE score (blue curve). 
The displayed p-values were obtained from comparing the AUC values via bootstrapping

Table 2 Results of the ROC analyses for each individual 
biomarker

Biomarker AUC [95% CI]

IL-6 0.7431 [0.6181–0.8516]

IL-8 0.7513 [0.6535–0.8434]

IL-10 0.7087 [0.5913–0.8215]

FGF-21 0.7461 [0.6518–0.836]

FGF-23 0.7713 [0.6699–0.866]

ST1A1 0.7169 [0.5992–0.8243]

MCP-1 0.6914 [0.5747–0.807]

4E-BP1 0.7183 [0.5973–0.8284]

CST5 0.767 [0.6648–0.8653]
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processes [55, 56]. Against this background, one could 
have assumed that obesity in terms of an elevated BMI 
might be strongly involved the relationship between the 
inflammatory biomarkers and short-term mortality after 
AMI. Nevertheless, in the present study we found almost 
no differences for BMI between the groups and conse-
quently no evidence indicating and substantial impor-
tance of BMI/obesity for the reported associations.

Discrimination and prediction scores
We found that the predictive ability of our calculated bio-
marker score is comparable to that of the well-established 
GRACE score. With AUC values of 0.7859 and 0.7961 
both scores showed proper and comparable discrimina-
tion between cases (patients who died within 28  days) 
and controls. When both scores were combined to a total 
score, the predictive ability could be further increased 
(AUC of 0.8305) and according to cNRI and IDI the com-
bined score added predictive ability to the GRACE score. 
Considering the results of the multivariable adjusted 
logistic regression models, it can be concluded that these 
nine markers are independently associated with short-
term outcome after AMI.

These results may have two major implications. First, 
these markers could be measured in order to estimate a 
patient’s risk of adverse outcome, which then could be 
considered by physicians in therapy decisions. Currently, 
however, these markers are very rarely determined in the 
medical context and their measurement is time consum-
ing and expensive, which makes them unfavorable candi-
dates for early risk stratification unless a method for easy 
determination (e.g., an ELISA test) will be established.

Second, the markers found to have good predictive 
ability for short-term outcome might not only be asso-
ciated with 28-day mortality but actually be causally 
related to mortality after AMI. If this would be the case, 
tailored treatment and pharmacological interventions 
might improve the outcome in AMI patients. Foremost, 
drugs that block the biological marker itself or that act 
on the corresponding receptors should be considered as 
a promising approach. Hartman et  al. for instance gave 
a translational overview of anticytokine therapy in car-
diovascular disease and after AMI [57]. They concluded, 
that promising results were mainly seen in experimental 
studies and in smaller clinical studies, but only one larger 
RCT showed positive results on outcome so far. But from 
our point of view the other biomarkers identified in this 
study would also deserve to be further investigated with 
regards to potential benefits of medical therapies. Never-
theless, to this day there is a lack of studies and evidence 
whether such new pharmacological approaches would 
indeed favorably affect the underlying pathophysiology 
of CAD and whether new drugs would improve outcome 

after AMI. The results reported in this study provide new 
starting points towards drug development and for future 
personalized treatment of AMI patients. Researchers 
in this field should strongly feel encouraged to further 
explore the possibilities that are revealed by this study.

Strengths and limitation
This study is characterized by some strengths. First, this 
study is based on patients from the population-based 
myocardial infarction registry Augsburg with consecutive 
enrollment, which minimizes the effect of selection bias. 
Blood samples were uniformly taken immediately before 
the PCI intervention, guaranteeing highest consistency 
in blood sampling. Moreover, for every case there was a 
large number of additional information which we used 
for proper adjustment in the logistic regression models 
and allowed us to imitate the established GRACE score 
to compare predictive abilities.

Nevertheless, there are also some limitations. No vali-
dation cohorts from other registers are available for our 
analyses, preventing validation of the associations—in 
particular for the newly identified protein markers—
found in this study. Moreover, as this study is based solely 
on observational data, we cannot draw any conclusions 
about causality (including the possibility of reverse cau-
sality). Even though the 92 markers measured in this 
study cover a broad spectrum of important and prom-
ising inflammatory markers, there are more inflamma-
tory markers and plasma proteins that may have been of 
great importance in this context. Additionally, we might 
not have considered all relevant confounders. Further-
more, as this study included only STEMI patients with 
age between 25 and 84 years, the results may not be gen-
eralized to all age groups or ethnic groups as well as to 
Non-ST-elevation ACS events. Finally, as majority of the 
study cohort was male, it is not entirely clear whether the 
results can also be applied to female AMI patients. Prior 
studies have shown important differences in pathophysi-
ology and response to treatment for both sexes in cardio-
vascular diseases [58, 59]; though the number of female 
patients in this study is insufficient for a valid subgroup 
analysis to address this limitation.

Conclusion
Several inflammatory protein biomarkers were strongly 
related to adverse outcome after AMI. Combined to a 
biomarker score, they showed proper predictive ability 
for 28-mortality after ST-elevation myocardial infarction. 
Adding the biomarker to the established GRACE score 
improved the discrimination with an AUC of 0.8305. 
Even though conclusions about a causal relationship 
cannot be drawn, these biomarkers might provide novel 
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possibilities for drug development and individualization 
of therapy regimes in STEMI patients.
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