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The interaction between human immunodeficiency virus (HIV) and hematopoietic

stem/progenitor cells (HSPCs) has been of great interest. However, it remains unclear

whether HSPCs can act as viral reservoirs. Many studies have reported the presence

of latently infected HSPCs in the bone marrow of HIV-infected patients, whereas many

other investigators have reported negative results. Hence, further evidence is required

to elucidate this controversy. The other arm of HSPC investigations of HIV infection

involves dynamics analysis in the early and late stages of infection to understand

the impact on the pathogenesis of acquired immunodeficiency syndrome. Several

recent studies have suggested reduced amounts and/or functional impairment of

multipotent, myeloid, and lymphoid progenitors in HIV infection that may contribute to

hematological manifestations, including anemia, pancytopenia, and T-cell depletion. In

addition, ongoing and future studies on the senescence of HSPCs are expected to further

the understanding of HIV pathogenesis. This mini review summarizes reports describing

the basic aspects of hematopoiesis in response to HIV infection and offers insights into

the association of HIV infection/exposure of the host HSPCs and hematopoietic potential.

Keywords: human immunodeficiency virus, acquired immunodeficiency syndrome, hematopoietic

stem/progenitor cells, hematopoiesis, senescence

INTRODUCTION

Human immunodeficiency virus (HIV) infection causes acquired immunodeficiency syndrome
(AIDS). The depletion of memory CD4+ T cells preceding the manifestation of AIDS may be
mainly due to HIV infection of these cells. However, HIV may also cause reduced production
of naïve T cells by infection of CD4+ thymocytes. Although the dynamics of hematopoietic
stem/progenitor cells (HSPCs) in response to HIV infection remains unclear, it is well-established
that HIV infection is associated with hematological changes, such as anemia and pancytopenia
(Parinitha and Kulkarni, 2012; Durandt et al., 2019). Therefore, it is imperative to better elucidate
the contribution of altered hematopoietic potential to the disease. The aim of this mini review
was to discuss on factors affecting the physiology and pathology of HSPCs by reviewing past
publications describing the interactions between HIV and hematopoietic progenitor cells (HPCs)
in the bone marrow (BM) and thymus for better understanding the role of hematopoiesis in
the pathogenesis.
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HSPCs IN THE BM

Adult hematopoietic differentiation occurs in the BM.
Hematopoietic stem cells (HSCs) have long-term self-renewing
capacity and can differentiate to any type of blood cell
(Rieger and Schroeder, 2012). Although HSC niches have not
been fully defined (Morrison and Scadden, 2014), a recent
study indicated that HSCs reside in a perivascular niche and
are supported by various cytokines secreted by endothelial and
stromal cells (Ding et al., 2012). BMHSPCs consist of progenitors
for all blood cell lineages including those described in Figure 1

(Rieger and Schroeder, 2012). Proteomic and transcriptomic
analyses have reported many potential factors that may work in
concert in hematopoiesis, although the significance of individual
genes must be further clarified (Liu et al., 2006; Kim et al., 2009;
Starnes et al., 2010). Recent evidence indicates that inflammatory
signals, such as prostaglandin E2, nitric oxide, granulocyte

FIGURE 1 | A summary of recent topics regarding HIV-1 pathogenesis associated with subsets of hematopoietic stem/progenitor cells. CFU-GM,

granulocyte-macrophage colony-forming unit; GMP, granulocyte-macrophage progenitor; HSPC, hematopoietic stem progenitor cell; LP, lymphoid progenitor; MEP,

megakaryocyte–erythrocyte progenitor; pDC, plasmacytoid dendritic cell.

colony-stimulating factor, interferons, tumor necrosis factor, and
Toll-like receptor 4, may be involved in the emergence of HSPCs
(He et al., 2015; Luis et al., 2016).

THE ROLES OF HSPCs IN T-LINEAGE
DIFFERENTIATION

T-lineage differentiation in the thymus is dependent on a

supply of CD34+ progenitors from the BM (Kondo et al.,

1997). Early lymphoid progenitors (LPs) are thought to reside

in distinct niches from those of HSCs (Ding and Morrison,
2013). CD34+CD38dim, but not CD34+CD38+, cells can

migrate to the thymus and commit to the T cell lineage

(Res et al., 1996). Transcriptional regulation of the lymphoid
commitment of HSPCs is complex (Laurenti et al., 2013). Notch

1 and its ligands play essential roles in T-lineage commitment
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(Radtke et al., 2004). For example, Delta-like 1 (DL1) enhances
the repopulation capability of human CD34+CD38− cells in the
BM and contributes to the generation of thymus-repopulating
T-cell precursors (Ohishi et al., 2002). In addition, Delta-like 4
(DL4) induces Notch signaling in the thymus (Hozumi et al.,
2008). Accordingly, the stable expression of DL1 or DL4 by OP9
cells allows for the differentiation of human HSPCs to T cells in
vitro (La Motte-Mohs et al., 2005; Mohtashami et al., 2010). C-
X-C chemokine receptor type 4 (CXCR4) also plays a critical role
in the localization and differentiation of T-lineage progenitors in
the thymus (Plotkin et al., 2003).

HSPC-ASSOCIATED HEMATOLOGICAL
CHANGES IN HIV INFECTION

Hematological changes in HIV-infected patients may be at least
partly associated with abnormalities in the BM (Dhurve and
Dhurve, 2013; Durandt et al., 2019). Because HSPCs generally
have limited surface expression of CD4, their abnormalities in
HIV infection could be largely explained as an indirect effect
of HIV infection, rather than the results of direct infection of
HSPCs (Louache et al., 1992; De Luca et al., 1993; Maciejewski
et al., 1994; Marandin et al., 1996; Koka et al., 1999). Although
antiretroviral therapy (ART) generally improves hematopoiesis
in HIV-infected patients (Baillou et al., 2003), the immune
function in some patients is insufficient despite successful ART;
therefore, such patients are referred to as immunological non-
responders (Corbeau and Reynes, 2011; Takuva et al., 2014; Rb-
Silva et al., 2019). Indeed, the recovery of CD4+ T cell counts
after successful ART may depend on the recovery of CD34+ cell
counts (Sauce et al., 2011).

Lymphopoiesis, myelopoiesis, megakaryopoiesis, and
erythropoiesis may be altered during the course of HIV
infection (Figure 1). HIV-1 infection may cause defective
myelopoiesis/erythropoiesis as well as the accumulation of
myeloid/erythroid precursors (Costantini et al., 2009, 2010).
Ineffective platelet production noted in HIV-infected patients
(Cole et al., 1998) might be due to a negative impact of HIV
on the differentiation of megakaryocyte lineages, leading to
thrombocytopenia (Costantini et al., 2006; Sundell and Koka,
2006). The V3 loop region of the HIV-1 gp120 envelope
protein was described as a potential inhibitor of megakaryocyte
differentiation (Zhang et al., 2010). Furthermore, studies have
suggested the influence of HIV-1 gp120/CD4 interaction on
CD34+ megakaryocytic/erythroid progenitors (Gibellini et al.,
2007; Morini et al., 2016).

THE BIOLOGICAL FUNCTIONS OF HIV
CORECEPTORS

HIV-1 uses C–C chemokine receptor type 5 (CCR5) and CXCR4
as coreceptors (Weiss, 1996). CCR5 is expressed on the surface
of memory CD4+ T cells and causes the massive depletion of
this cell type following HIV-1 infection of the host (Mattapallil
et al., 2005). Recent evidence suggests that CCR5 is involved
in inflammation (Kitade et al., 2012; Barashi et al., 2013; Duan

et al., 2014) because the lack of a functional CCR5 allele is
associated with the severity of viral infection, possibly due to
altered immune responses (Lim et al., 2008). On the other
hand, the pathological roles of CCR5 in various infectious
and non-infectious diseases, e.g., autoimmune diseases, have
been suggested (Vangelista and Vento, 2017). For example,
the depletion of CCR5 was associated with attenuation of
the adverse effects of inflammation (Muntinghe et al., 2009),
and blockade of CCR5 inhibited leukocyte trafficking and
reportedly reduced inflammation in a murine model of colitis
(Mencarelli et al., 2016). Thus, these findings address the roles of
CCR5 in health and disease.

CXCR4 is specific for stromal cell-derived factor 1 (SDF-1,
also known as CXCL12). SDF-1 is produced by BM stromal
cells, including CXCL12-abundant reticular cells (Nagasawa,
2015), and allows the homing of HSCs to BM. The interaction
between SDF-1 and CXCR4 is essential for hematopoiesis
(Karpova and Bonig, 2015). In addition, the SDF-1/CXCR4 axis
has multiple essential roles in life (Murphy and Heusinkveld,
2018), such as embryonic (Mcgrath et al., 1999) and vascular
(Takabatake et al., 2009; Kim et al., 2017) development,
while providing support for the survival and migration of
neoplastic cells (Chatterjee et al., 2014). The polymorphisms
of SDF-1 might affect the ability to prevent HIV-1 infection
(Winkler et al., 1998; Kuipers et al., 1999). However, the
effect of SDF-1 polymorphisms on the susceptibility of the
host to HIV-1 infection might be moderate (Ding et al.,
2018). In contrast to the popularity of the topics of CXCR4
as an HIV-1 coreceptor and SDF-1 as an inhibitor of
HIV-1 infection (Arenzana-Seisdedos, 2015), relatively few
articles have addressed the intrinsic functions of SDF-1 and
CXCR4 in the pathogenesis of HIV-1 infection and AIDS
(Ikegawa et al., 2001; Tsukamoto, 2018).

POTENTIAL MECHANISMS UNDERLYING
THE LOSS OF OR CHANGES IN HSPCS IN
RESPONSE TO HIV INFECTION OF THE
HOST

Various potential mechanisms underlying changes in HSPCs
during HIV infection have been suggested, such as reduced
c-Mpl (thrombopoietin receptor) expression on HSPCs (Koka
et al., 2004), elevated plasma SDF-1 levels (Ikegawa et al.,
2001), and altered BM niches (Moses et al., 1996). HIV-1
infection results in increased levels of inflammatory cytokines,
affecting dynamics and functions (Bordoni et al., 2017) or
inducing Fas-mediated apoptosis (Isgro et al., 2004) of HSPCs
(Figure 1). Importantly, HSPCs require inflammatory signals
in their development (Luis et al., 2016), and therefore may
contribute to inflammation (Fischer and Agrawal, 2013). A
recent study reported the emergence of a CD34+CD226(DNAM-
1)brightCXCR4+ LP subset in association with chronic HIV
infection and inflammation, reflecting altered dynamics of
natural killer (NK) cells and α/β T cells (Bozzano et al., 2015;
Figure 1). Finally, there has recently been an emerging trend to
interpret some hematopoietic changes during the course of HIV
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infection as the accelerated senescence of HSPCs (Appay and
Sauce, 2017; Fali et al., 2018; Fastenackels et al., 2019).

Humanized mouse models provide important resources for
the analysis of BM HSPCs following HIV-1 infection. For
example, in studies with humanized mice challenged with
CXCR4-tropic HIV-1NL4−3, CD34

+ cells were depleted and/or
exhibited impaired ex vivo myeloid and erythroid colony-
forming capacities (Jenkins et al., 1998; Koka et al., 1998).
Moreover, the reduction in BMHSPC counts in humanized mice
was observed even after CCR5-tropic HIV-1 infection (Arainga
et al., 2016). Other research groups have reported that the loss of
CD34+ cells in CCR5-tropic HIV-1 infectionmight be dependent
on plasmacytoid dendritic cells (pDCs) (Li et al., 2017) or
correlated with CXCR4 expression (Tsukamoto, 2018; Figure 1).
Therefore, it is important to further investigate changes such as
altered expression of cytokines in pDCs and other cells residing in
BM in HIV infection. The latter could implicate the involvement
of SDF-1/CXCR4 axis in the pathogenesis such as accelerated
turnover of HSPCs.

THE IMPACT OF HIV ON T-LINEAGE
DEVELOPMENT

The involvement of the thymus in HIV pathogenesis has
been investigated (Ye et al., 2004). HIV-1 may cause
thymocyte depletion mediated by an indirect cytopathic
effect and infection of CD3−CD4+CD8− progenitor cells
(Su et al., 1995). In an in vitro model imitating the thymic
environment, thymocyte maturation was inhibited by HIV
infection of the CD44+CD25−CD3− cell lineage (Knutsen
et al., 1999). Early ART might preserve the lymphopoiesis
capability of the host (Bordoni et al., 2015b, 2018; Rb-
Silva et al., 2019) and reverse reduced thymic function
(Withers-Ward et al., 1997; Levine et al., 2001).

In a BLT (BM, liver, and thymus) mouse model, HIV-1 Nef
enhancedHIV-1 replication and caused depletion of CD4+CD8+

thymocytes (Zou et al., 2012). In another humanized mouse
model, HIV-1 infection caused perturbation of cytokine mRNA
expression in infected thymocytes. For instance, mRNA levels
of interleukin (IL)-6, interferon-γ, and IL-2 were increased,
whereas macrophage inflammatory protein (MIP)-1β expression
was decreased. On the other hand, HIV infection of human
stromal cells increased IL-6 levels, whereas SDF-1 expression
levels were unaffected (Koka et al., 2003).

There have also been several reports on the T-lineage
differentiation of HPCs, although it may be difficult to interpret
all the data collectively. T-lineage progenitors express CXCR4
and are susceptible to CXCR4-tropic HIV infection (Berkowitz
et al., 1998). In a study, BM cells infected with HIV before
ART initiation had reduced amounts of CD34+ cells, but not
CD34+CD7+ LPs (Muller et al., 2002). Although the data
are intriguing, the study lacked information of absolute cell
counts, so their notions were not firmly concluded except for
reduced CD34+ frequencies. In another study of BM samples
from HIV-infected ART-treated immunological non-responders,
clonogenic capability and the sizes of primitive HSPCs were

altered, which were associated with reduced production of
IL-2, increased production of TNF-α, and increased stromal
production of IL-7 (Isgro et al., 2008). Another study using a
lentiviral vector expressing HIV-1 Nef showed that Nef may
impair the differentiation of HSPCs to CD3ε+CD5+CD1a+

T/NK precursors (Dorival et al., 2008).
In a recent study, BM-derived HSPCs from HIV-infected

patients exhibited reduced T-cell differentiation potential and
increased production of pro-inflammatory cytokines, indicating
that they are also produced by non-LPs. However, it remains
unclear whether pro-inflammatory cytokine secretion is the
cause or consequence of impaired T cell differentiation potential
(Bordoni et al., 2017; Figure 1). Also, in a macaque model,
following challenge with simian immunodeficiency virus, BM-
derived CD34+ cells exhibited reduced T-lineage differentiation
potential in vitro without significant changes in phenotypic
analysis of CD34+ subsets (Thiebot et al., 2005). Another recent
study suggested that CD34+CD7+CXCR4+ cells may be depleted
in response to CXCR4-tropic HIV-1 infection in a coculture of
HIV-infected umbilical cord-derived CD34+ and OP9-DL1 cells
(Tsukamoto, 2019b; Figure 1). Despite the evidence of LPs during
HIV-1 infection, our understanding of the impact of HIV-1 on
LPs remains limited.

DIRECT HIV INFECTION OF HSPCs

HSPCs have limited surface levels of HIV receptors and
coreceptors compared with differentiated CD4+ cells.
CD34+CD133+ umbilical cord-derived HSCs may have
further limited expression levels of CD4, CXCR4, and CCR5
(Hariharan et al., 1999). In an in vitro culture study, BM-derived
CD34+CD38− primitive HPCs were exposed to HIV-1 or
HIV-2, but infection was not observed (Weichold et al., 1998).
In another study, HIV-1 exposure had no effect on the in
vitro expansion/proliferation dynamics of HSPCs (Kaushal
et al., 1996). However, accumulating evidence has implicated
HIV-susceptible subsets of HSPCs in patients (Louache et al.,
1994; Zauli et al., 1994; Chelucci et al., 1995, 1999). In addition,
peripheral blood CD34+ cells expressing CXCR4/CCR5 are
susceptible to diverse strains of HIV-1 (Ruiz et al., 1998).
Another study found that BM CD34+CD4+ cells are depleted
in HIV-infected patients (Banda et al., 1999). Moreover, the
HIV-1 Gag protein was expressed by BM HSPCs isolated
from HIV-infected patients (Carter et al., 2010). A recent
study of patient samples revealed that some HSPC subsets
express high levels of CD4 and may harbor both CCR5-tropic
and CXCR4-tropic HIV genomes (Sebastian et al., 2017).
Furthermore, HSPCs latently infected with cytomegalovirus
may have enhanced susceptibility to HIV-1 infection (Cheung
et al., 2017). To confirm this evidence, another study using
humanized BLT mice demonstrated HIV-1 infection of
HPCs in vivo. These infected HPCs remained capable of
differentiating to myeloid cells in vitro, albeit with reduced
efficacy (Nixon et al., 2013; Figure 1).

Regarding molecular mechanisms preventing HIV infection
except limited (co) receptor expression, a recent study suggested
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a post-entry mechanism to allow HSPCs to restrict HIV-1
replication prior to conversion of viral RNA into DNA and
integration into the host genome (Griffin and Goff, 2015).
Variations of tripartite motif-containing protein 5 may also
influence the infection efficiency of lentiviruses in human and
rhesus HSPCs (Evans et al., 2014). CCR5-ligand β-chemokines,
including RANTES and MIP-1β, produced by HSPCs may
modify the susceptibility of these cells to CCR5-tropic HIV-1 Env
(Majka et al., 1999, 2000).

Some studies on HIV infection of HSPCs have relied on
in vitro stimulation of cells with 50–100 ng/mL of individual
stem cell factors, thrombopoietin, or FMS-like tyrosine kinase
3 ligand to overcome the low permissiveness of these cells
to retrovirus/lentivirus infection (Santoni De Sio and Naldini,
2009). Such stimulation may enhance gene expression of the
HIV-1 receptor and coreceptors, leading to overestimation
of HIV infection/replication levels in HSPCs (Zhang et al.,
2009). A method to achieve reproducible in vitro infection
of HSPCs with CXCR4-tropic HIV-1 with RetroNectin-coated
plate, but without strong cytokine stimulation, has been proposed
(Tsukamoto and Okada, 2017).

HSPCs AS VIRAL RESERVOIRS

There is no consensus on whether HSPCs are a major HIV
reservoir (Von Laer et al., 1990; Stanley et al., 1992; Neal
et al., 1995; Kandathil et al., 2016). A relatively recent study
of BM HSPCs from eight patients following long-term effective
ART found no HIV DNA in the collected cells (Josefsson
et al., 2012), suggesting that HIV reservoir surveys of purified
CD34+ cells may fail to exclude HIV-contaminated CD4+

T cells (Durand et al., 2012). In contrast, accumulating data
support latent HIV infection of HSPCs. Moreover, some
BM HSPCs may remain latently infected after successful
treatment (Bordoni et al., 2015a). Another study suggested that
multiple subsets of HSPCs may be latently infected with HIV-
1, including immature (CD34+CD38−CD45RA−) progenitors,
which are more likely to persist and serve as latent reservoirs
following ART (Mcnamara et al., 2012). Humanized mouse
models have also been utilized to investigate CD34+ HIV
reservoirs. A previous study revealed that the HIV-infected
HSPCs may serve as long-term HIV reservoirs in the BM
of humanized mice, leading to production of HIV-integrated
CD3+ T cells (Carter et al., 2011). Taken together, HSPCs
might constitute significant HIV reservoirs, which should be
further investigated.

While it remains unclear whether infected HSPCs contribute
to residual viremia after ART (Onafuwa-Nuga et al., 2010;
Mcnamara and Collins, 2011), a recent article reported
that HSPCs in suppressed patients harbor functional HIV
proviral genomes that often match residual peripheral viral
RNA (Zaikos et al., 2018). If these findings are confirmed,
HSPCs might be finally regarded as long-term viral reservoirs,
because they are long-lived cells with regulated susceptibility
to apoptosis (Durdik et al., 2017). Thus, precise identification
of HSPC subsets harboring functional HIV proviral copies

could further facilitate these findings and clarify the role
of HSPCs in HIV persistence even after successful ART.
Furthermore, it is interesting to assess whether early initiation
of ART could prevent the establishment of viral reservoirs
in HSPCs.

PROTECTION OF HSPCs AGAINST HIV
INFECTION

Presently, the best method for treating HIV-infected individuals
in terms of protection of HSPCs is to initiate ART as early
as possible regardless of the disease stage (World Health
Organization, 2015). By interrupting HIV pathogenesis early
during infection, it is expected that existing CD4+ T cells
and HSPCs as well as the host’s hematopoietic capacity will
be preserved for long (Bordoni et al., 2015b). However, more
treatment options might be helpful for patients who are
diagnosed in the chronic phase and/or those who manifest
the characteristics of immunological non-responders against the
current ART regimens (Rb-Silva et al., 2019).

CXCR4 may be targeted to protect HSPCs against CXCR4-
tropic HIV-1 infection, because they express CXCR4 and are
considered susceptible to CXCR4-tropic HIV-1 infection. For
example, the µ-opioid agonist DAMGO (C26H35N5O6) was
found to downregulate CXCR4 expression and prevent HIV-
1 infection of BM HSPCs (Strazza et al., 2014). On the other
hand, a clinical study reported that the CXCR4 antagonist
plerixafor was not successful for the treatment of HIV-infected
patients (Hendrix et al., 2004). Because systemic administration
of plerixafor is associated with adverse effects, especially to
patients with cardiovascular diseases, further development of
CXCR4-tropic HIV-1 entry inhibitors with weaker affinity to
CXCR4 than plerixafor is needed (Berg et al., 2018). Other entry
inhibitors such as ibalizumab, a humanized monoclonal anti-
CD4 antibody that inhibits the binding of HIV gp120, might also
be highly effective in preventing HSPCs from infection (Emu
et al., 2018). It is unclear whether CCR5-tropic HIV-1 entry
inhibitors such as maraviroc are effective in protecting HSPCs
because HIV-1 is considered to use CXCR4 to enter those cells
(Carter et al., 2011). However, those entry inhibitors can lower
viral burden by protecting CCR5+ memory CD4+ T cells and
lead to lower risks for indirect damages to HSPCs.

The significance of CXCR4 in HIV-1 infection is not
necessarily limited to its function as an HIV-1 coreceptor.
For example, it is unclear how the biological roles of CXCR4,
including the SDF-1/CXCR4 signaling pathway in the BM and
thymus, affect hematopoiesis in response to HIV infection.
It has been indicated that elevation of plasma SDF-1 levels
may be associated with disease progression (Ikegawa et al.,
2001). Another study suggested the use of granulocyte colony-
stimulating factor to increase CD34+ and CD4+ cell counts
in HIV-infected patients (Nielsen et al., 1998). In addition,
a recent humanized mouse study indicated the involvement
of CXCR4 in the loss of BM HSPCs in CCR5-tropic HIV-1
infection (Tsukamoto, 2018; Figure 1). These results must be
further investigated to elucidate whether the loss of HSPCs
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following HIV-1 infection can be alleviated by interrupting the
SDF-1/CXCR4 signaling pathway.

Recent studies indicate HSPCs as an ideal target for anti-
HIV gene therapy aimed to protect hosts’ hematopoietic potential
(Kitchen et al., 2011; Savkovic et al., 2014). For detailed
discussions on recent advances in the field, see a recently
published review by this author Tsukamoto (2019a).

CONCLUDING REMARKS

Despite previous efforts and accumulating data to better clarify
the interactions between HIV-1 and HSPCs, studies on their
involvement in HIV pathogenesis are ongoing. The contribution
of latently infected HSPCs to viral persistence should be better
described. Regarding HSPC subsets, recent evidence supports
the influence of HIV-1 on myeloid progenitor cells. On the
other hand, among various steps in T-lineage development, the
functional and numerical alteration of CD34+ LPs in HIV-
1 infection needs to be further elucidated to improve the
current understanding of the degree of impaired CD4+ T-cell
generation on peripheral CD4+ T-cell loss and AIDS onset.

Humanized mouse models and in vitro models including OP9-

DL1/OP9-DL4 coculture systems could be used for further
analysis of HSPCs in HIV infection in this context. Further
investigations in these fields will collectively enhance our
understanding on the significance of protecting HSPCs in
HIV infection.
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