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Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial 
biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochon-
dria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other 
mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded 
protein response, particularly in the context of the heart.
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Introduction

Mitochondrial quality control plays a key role in long-lived 
cells including cardiomyocytes and neurons. Non-dividing 
cells require mechanisms to replace or repair proteins, com-
plex assemblies of enzymatic machinery, and organelles, 
as well as membranes and potentially even DNA. In this 
review, we will focus on mitochondria, while acknowledging 
that repair/replacement mechanisms must also exist for other 
organelles including peroxisomes, lysosomes, endoplasmic 
reticulum, etc. While mitochondria are made up of protein 
assemblies, many of these are embedded in a lipid bilayer 
that requires ongoing maintenance, and uniquely, mitochon-
dria are the only organelle with their own genome; thus, 
the integrity of mitochondrial DNA (mtDNA) must also 
be maintained. In this review, we will focus primarily on 
mitophagy. Mitochondrial quality control involves selective 
elimination of damaged mitochondria, replacement by mito-
chondrial biogenesis, redistributing newly imported proteins 
across the mitochondrial network by fusion, and segregation 
of damaged portions of the mitochondrial network by fission 
prior to mitophagy.

When the heart is stressed, mitochondria are frequently 
observed to change size and shape. The processes that medi-
ate the fusion, fission and fragmentation of mitochondria 
comprise mitochondrial dynamics, and a competent mito-
chondrial dynamics system is essential for embryonic sur-
vival [1–3]. In general, mitochondria are regarded as existing 
on a binary spectrum between two extremes of fusion and 
fission. The common designations ‘elongated/tubular/fused’ 
and ‘fragmented/fissed’ are typically employed to describe 
these relative morphologic states, though more sophisticated 
descriptions also exist which incorporate interconnectedness 
along with size. The functional consequences of a fused 
mitochondrial network compared with a fragmented one are 
poorly understood; however, much of what is known about 
these morphologic states relates to how they interact with 
the mitochondrial quality control machinery.

Molecular regulation of mitochondrial 
dynamics

The fusion/fission machinery is composed of dynamin-like 
GTPase proteins which reside either in the cytoplasm or 
on the inner (IMM) and outer mitochondrial membranes 
(OMM). Dynamin-related protein 1 (Drp1, or DNM1L), 
mainly located in the cytoplasm, is the principal effector 
of fission. Drp1 is activated by post-translational modifica-
tions and is recruited to mitochondria where it interacts with 
resident OMM receptors Mff, MiD49 and MiD51 [4]. Active 
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Drp1 undergoes oligomerization, leading to membrane con-
striction with the process terminating with scission of the 
organelle mediated by Dynamin 2 [5]. Mitofusins 1 and 2 
(Mfn1/2) are OMM resident GTPases, while Optic Atrophy 
1 (Opa1) is located on the IMM. Collectively, they mediate 
mitochondrial fusion, though their regulation and function 
are incompletely understood. One reason for this discrepancy 
is that though a few target sites have been proposed, there are 
no established mechanisms of post-translational regulation 
of Mfn1/2 or Opa1, with the exception of proteolytic pro-
cessing of Opa1. Moreover, the distinction between fusion 
and fission apparatus is not cut and dried since although 
Opa1 is recognized as a fusion protein, it frequently partici-
pates in fragmentation when proteolytic degradation alters 
its fusion activity [6]. One striking feature of mitochondrial 
dynamics is that mitochondrial networks can rapidly transi-
tion from a fused to a fragmented state in response to stress, 
while conditions that promote mitochondrial fusion lead to 
much slower morphologic changes. Acute mitochondrial 
fragmentation is frequently observed under conditions of 
increased energy demands, following either physiological 
or pathological stimuli in the exercising or ischemic heart, 
respectively [7, 8]. There are several theories which may 
explain why more active mitochondria undergo fragmen-
tation. We have speculated that fragmentation may serve 
to increase surface area for nutrient and oxygen exchange, 
which will facilitate respiration—analogous to breaking up 
a long banquet table into smaller tables which increases the 
available seating. Alternatively, if membrane surface area 
is held constant during fragmentation, matrix volume will 
decrease, potentially elevating concentration of key solutes 
including  Ca+2 (Fig. 1). Another intriguing hypothesis is that 
heat generated by active mitochondria poses a thermal stress 
to these organelles, and that by increasing the mitochondrial 
membrane surface area in contact with cytosol, this ther-
mal energy can be more rapidly dissipated. Finally, there 
exists a large body of data to support a role for mitochondrial 
fission as a key step in the process of maintaining cellular 

homeostasis through the sequestration and subsequent elimi-
nation of damaged mitochondria by mitophagy.

The OMM allows selective transport of metabolites and 
connects the mitochondria to neighboring organelles. The 
IMM contains two separate compartments, the intermem-
brane space and the matrix, that are uniquely characterized 
by their cristae structures. The cristae provide the sites of the 
respiratory chain that are stabilized by the phospholipid car-
diolipin (CL) whose IMM binding is required for the func-
tion of the ADP–ATP translocator, supercomplex stability, 
and cytochrome c oxidase [9, 10]. Under mitochondrial dys-
function, however, the CL pool undergoes significant change 
to alter mitochondrial dynamics and trigger mitophagy. CL 
exhibits further structural roles within the IMM to increase 
mitochondrial size: genetic mutation of the cardiac and skel-
etal muscle tafazzin results in 80% deficiency of CL synthe-
sis and metabolism which is thought to contribute to cardio-
myopathy in Barth Syndrome patients [11]. CL deficiency 
is further observed to cause cristae disorganization within 
cardiomyocytes and fibroblasts, ultimately giving way to 
decreased CL biosynthesis and initiation of mitophagy 
[12, 13]. In canonical mitophagy, CL serves as a signal for 
autophagic proteins to recognize dysfunctional mitochondria 
for degradation [14]. The mechanism of CL exposure from 
the IMM to OMM for cytosolic protein recognition remains 
in question, whether CL is translocated or perhaps external-
ized to the OMM during mitophagy.

One mechanism proposed for CL remodeling is the trans-
location of CL by phospholipid scramblases (PLS) that 
mediate translocation of phospholipids between the mem-
brane bilayer. PLSCR3 is specifically enriched in the IMM 
and is important for maintenance of mitochondrial mass 
and respiration, yet is also required for sensitivity for cyt 
c release and CL mobilization [15]. UV irradiation nearly 
doubles the amount of CL on the OMM in a model of WT 
vs. mutant PLSCR3 HEK293 cells, suggesting that PLSCR3 
facilitates CL transport. Another IMM protein NDPK-D has 
recently been demonstrated to facilitate CL mobilization 
upon mitochondrial uncoupling with CCCP in murine lung 
epithelial cells and human HeLa cells [16]. Interestingly, 
Kagan et al. discovered a novel interaction of NDPK-D with 
OPA1, implicating a close relationship of fission–fusion in 
PLS-mediated CL translocation.

Another proposed mechanism of exposure of CL is 
through OMM pores formed by Bax/tBid interaction [17, 
18]. Evidence for membrane permeabilization by these 
apoptosis family member proteins comes from a combi-
nation of studies using mutagenesis [19], surface plasmon 
resonance [20], and glycosylation mapping [21] to deter-
mine the precise membrane-binding interactions. Specifi-
cally, during apoptosis, proteolysis of Bid by caspase-8 [22] 
or calpain [23] generates the active truncated form of Bid 
(tBid). The processed tBid interacts with Bax to promote Fig. 1  Surface area: volume relationship in mitochondria
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the formation of pore-like structures in the OMM, enabling 
cytochrome c release from the IMM and potentially allowing 
cytosolic proteins to interact with CL on the inner mem-
brane [24]. This can be amplified through a feedback cycle 
of CL interaction with procaspase-8 to facilitate processing 
to caspase-8 which can then process more Bid to tBid [25].

Mitochondrial dynamics and mitochondrial 
quality control

For damaged mitochondria to be removed from the cell, they 
must be engulfed by the autophagosomal double-membrane 
structure as the phagophore is elongating. Mitochondrial 
dynamics and mitochondrial quality control are intimately 
linked in the heart: Several mitochondrial membrane fusion/
fission proteins also interact with autophagy adaptors and 
effectors [26, 27]; furthermore, genetic ablation of fusion/
fission proteins frequently leads to disordered mitochondrial 
autophagy [28–30].

While a clear picture of the contributions of fusion and 
fission to mitochondrial quality control has yet to emerge, 
it is generally assumed that during these processes, there 
is a sorting of mitochondrial components which segregates 
damaged proteins and organellar components away from the 
rest of the mitochondrial network. The concept of asym-
metric mitochondrial fission was first described by the 
Shirihai group in β cells [31]. Dividing mitochondria were 
observed to exhibit different membrane potentials and those 
with higher membrane potentials were found to be more 
likely to fuse with other mitochondria. This of course begs 
the question of whether and how membrane potential could 
differ along the length of a mitochondrion prior to fission. 
That has recently been addressed by work [32] showing that 
individual mitochondrial cristae can have differing mem-
brane potential; thus, it may be possible to have one region 
of a mitochondrion with high membrane potential (intact 
functioning individual cristae) and another region with low 
membrane potential (loss of cristae junctions and proton 
pumping capacity). After fission, mitochondria with lower 
membrane potential remained separate from the network 
and eventually are targeted for mitophagy, and thus, it was 
hypothesized that fission enables selection of mitochondria 
prior to autophagy. Healthy mitochondria would be capa-
ble of reintegration into the network, while damaged mito-
chondria would be unable to maintain adequate membrane 
potential and would subsequently be targeted for autophagic 
degradation. One mechanism for ensuring this is mediated 
by PINK1/Parkin, in which low membrane potential allows 
the accumulation of PINK1 on the outer membrane due to 
failure of protein import (which requires adequate membrane 
potential), and recruitment of Parkin, which ubiquitinates 
OM proteins. Ubiquitylation of Mfn1/Mfn2 prevents the 

mitochondrion from rejoining the network. It follows that 
during fusion, or in the interval between fission events, mito-
chondria sequester their healthy or damaged components to 
opposing poles of the mitochondria. Asymmetric fission of 
mitochondria has yet to be demonstrated in the intact heart, 
possibly in part due to the challenge of resolving mitochon-
dria in adult cardiomyocytes using live microscopic tech-
niques. Mitochondrial dynamism may operate differently in 
the heart than the evidence from cultured models suggests; 
some investigators have questioned the existence of net-
works of mitochondria in cardiac myocytes [33]. Recently 
however, Glancy et al. employed focused ion beam scan-
ning electron microscopy to generate a three-dimensional 
model of cardiac mitochondria [34]. Their model proposed 
that multiple sub-networks of mitochondria exist in a cardio-
myocyte, connected to the larger network via specific inter-
mitochondrial junctions. Using live imaging, the authors 
further proposed that physical separation from the network 
occurs in malfunctioning mitochondria, leading to retraction 
of elongated mitochondria into condensed structures. It is 
reasonable to hypothesize that these separating mitochondria 
are undergoing fission, and we might, therefore, predict that 
there is increased mitochondrial autophagy activity in the 
electrically separated sub-networks. Recently, mitochondrial 
fusion events were demonstrated for the first time in adult 
ventricular cardiomyocytes [35]. Interestingly mitochondrial 
fusion rates decreased rapidly in culture in association with 
a decrease in calcium transient-driven contractile activity. 
Here, electrical uncoupling of the cardiomyocyte appeared 
to result in loss of fusion activity and in the previously men-
tioned Glancy report, electrical uncoupling of mitochondrial 
sub-networks had the same effect—suggesting that sustained 
cardiomyocyte–mitochondrial electrical coupling is impor-
tant for maintaining mitochondrial fusion activity.

While there is evidence in cell models that piecemeal 
or bit-by-bit mitophagy is able to effectively sequester and 
degrade a portion of a mitochondrion, leaving the remaining 
organelle intact [36], it appears that the process of mitochon-
drial autophagy is generally impaired when mitochondria 
are more fused. In adult hearts lacking Drp1, mitochondria 
were elongated and dysfunctional [29]. Our unpublished 
data affirm this finding: dominant negative Drp1 suppressed 
basal autophagy and that induced by simulated ischemia/
reperfusion (sI/R) in HL-1 cells, while wild-type Drp1 
overexpression increased autophagy and decreased apopto-
sis in response to sI/R injury [Anne Hamacher-Brady and 
Roberta Gottlieb, unpublished data]. In Drp1-null hearts, 
mitochondria-associated p62 was increased, suggesting that 
while the initiation of mitophagy was enhanced, autophagic 
flux was impaired, and further in vitro studies using shRNA 
to silence Drp1 indicated that mitochondrial translocation to 
lysosomes was impaired even under basal conditions [29]. 
It is intuitive that there will be a greater cost to the cell 
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to manufacture an autophagosome to encircle and engulf a 
larger fused mitochondrion than a smaller one; however, the 
relationship between fission and autophagy is likely more 
complex.

In addition to consideration of fission, it is important to 
understand the importance of fusion in mitochondrial qual-
ity control. Global constitutive knockout of both mitofusins 
results in embryonic lethality [3]. When both mitofusins 
are conditionally deleted in the heart, fusion activity is 
ablated, mitochondria appear smaller, and exhibit impaired 
rates of oxygen consumption [37]. Disruption of mitochon-
drial fusion in skeletal muscle through conditional deletion 
of Mfn1/2 (MLC1f promoter) results in accumulation of 
mtDNA point mutations and deletions and mtDNA deple-
tion, resulting in muscle atrophy and impaired function 
[38]. Interestingly, the resulting energy deficit is accompa-
nied by proliferation of small mitochondria with profoundly 
reduced mtDNA content (250 copies of mtDNA per nuclear 
genome in double KO vs 3500 copies in wild-type). Cardiac-
restricted deletion of Mfn1/2 results in a similar proliferation 
of abnormal-appearing mitochondria, severe cardiomyo-
pathy, and death by postnatal day 16 [39]. Hearts of these 
mice also exhibited mtDNA depletion. Interestingly, induc-
ible cardiac-restricted deletion of Mfn1/2 exhibited mito-
chondrial dysfunction and poor cardiac contractility but a 
reduction in infarct size after acute I/R injury [40]. While 
disruption of fusion or fission individually is associated with 
significant mitochondrial dysfunction, the combined dele-
tion of Mfn1/Mfn2 and Drp1 in the heart results in longer 
survival than either Mfn1/2 DKO or the Drp1 KO, but the 
mice eventually develop a unique hypertrophy associated 
with accumulation of mitochondria, impaired mitophagy, 
and mtDNA depletion [28].

Canonical mitophagy

The best-characterized process for mitophagy is accom-
plished through the actions of PINK1/Parkin/P62. The 
genes encoding PINK1 and Parkin are strongly implicated 
as mediators of familial and sporadic Parkinson’s disease 
[41], and the first studies showing the interaction between 
these proteins in vivo identified a role of Parkin in restor-
ing mitochondrial morphology and function downstream 
of PINK1 in mutant models of Drosophila melanogaster 
[42–44]. Further investigations confirmed PINK1–Parkin 
interactions in mammalian cells [45]. In this well-studied 
process, PINK1 is constitutively imported into the mitochon-
drion, where it is degraded by PARL in the intermembrane 
space [46] or Lon protease (LonP1) in the matrix [47].In 
the absence of adequate mitochondrial membrane poten-
tial PINK1 kinase is stabilized on the outer mitochondrial 
membrane [48]. As PINK1 accumulates, it phosphorylates 

multiple protein targets including ubiquitin [49, 50] [50, 51]; 
phosphoubiquitin activates and recruits Parkin, a cytosolic 
E3 ubiquitin ligase [50–54]. A recent study demonstrated 
that PINK1 also has a direct role in Parkin phosphorylation 
and subsequent activation [55]. Following Parkin activation 
and translocation, cytosolic p62 translocates to the mito-
chondria and binds to the polymerized ubiquitin through 
its ubiquitin-binding domain, and works as an adaptor con-
necting the damaged mitochondria to membrane of the 
autophagosomes through its LC3-interacting region (LIR), 
contributing to mitophagy completion [56]. PINK1 phos-
phorylation of ubiquitin and other targets can recruit NDP52 
and optineurin to initiate Parkin-independent (but ubiquitin-
dependent) mitophagy [57].

Optineurin, first isolated by yeast two hybrid screening in 
1998, is a 67-KDa protein implicated in many inflammatory 
conditions including cardiac ischemic disease. Optineurin 
is known to be involved in multiple processes of the cell 
such as autophagy [58], cell division [59], protein traffick-
ing [60] and inflammatory signaling [61]. Optineurin can 
regulate mitophagy both through ubiquitin-dependent and 
-independent mechanisms. Optineurin interacts with LC3 
through its LIR domain and this interaction is facilitated 
with phosphorylation by TBK1 at Ser177 [58]. In response 
to mitochondrial depolarization, TBK1 undergoes activat-
ing phosphorylation in a Parkin-PINK1 dependent manner 
[62], which facilitates optineurin recruitment to the dam-
aged mitochondrion [57]. Following recruitment, optineu-
rin binds with polyubiquitin chain through its Ub-binding 
domain (UBD) in ABIN proteins and NEMO (UBAN). 
Active TBK1 also phosphorylates optineurin at Ser473 and 
Ser513, stimulating the latter’s interaction with ubiquitin 
[63]. Optineurin also induces autophagosome formation by 
recruiting autophagy-associated proteins, namely the Atg12-
5–16L1 complex [64]. In the ubiquitin-independent mecha-
nism of optineurin, LC3 family members play an important 
role by recruiting optineurin to mitochondria by ubiquitin-
like Atg8 protein. This further leads to a positive feedback 
loop mechanism of Atg8 lipidation [65]. We also recently 
documented the importance of optineurin in hypothermia-
mediated cardioprotection [66]. Here, we showed that myo-
cardial hypothermia applied after ischemia and reperfusion 
activated mitophagy and enhanced autophagic flux, reflected 
by downregulation of mitophagy markers including optineu-
rin, parkin, and polyubiquitin chains in heavy membrane 
fraction. This event was accompanied by increased short 
form OPA1, MFF and DRP1. This process is summarized 
in Fig. 2.

Because the heart is a high-energy demanding organ, 
high-efficiency mitochondrial quality control pre-
serves the functionality of the cardiomyocytes, and one 
would expect that PINK1/Parkin/p62 pathway would 
be involved in this regulation. Further experiments 
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in mouse embryonic cardiomyocytes and fibroblasts 
revealed that Mfn2, an outer membrane fusion protein, 
gets phosphorylated by PINK1 and functions as a Par-
kin receptor [27]. Despite the existence of studies show-
ing that Parkin-mediated mitophagy is dispensable for 
basal mitophagy in tissues of high metabolic demand, 
including the heart [67], further in vivo experiments sup-
ported the in vitro investigations regarding the role of 
Parkin in mitophagy. More specifically in cardiac disease, 
it was observed that Parkin accumulated in the border 
zone of wild-type infarcted mice but not in their Parkin-
knockout (KO) counterparts, suggesting that Parkin 
is essential for mitophagy activation under myocardial 
stress [68]. Cardiac hypertrophy was also identified as 
a consequence of PINK1 knockout in mice, and PINK1 
protein is drastically decreased in heart failure [69]. 
Further experiments revealed that cardiac hypertrophy 
as a consequence of diabetic cardiomyopathy induced 
by a high-fat diet was attenuated by but not exclusive of 
Parkin-mediated mitophagy, accompanied by attenuation 
of ventricular diastolic dysfunction [70]. Our group spe-
cifically demonstrated for the first time the critical role 
of Parkin/p62-mediated mitophagy in cardioprotection 
in an ischemic preconditioning model in mouse hearts 
[71]; subsequently, this mechanism was also validated 
in human atrial tissue during cardiopulmonary bypass 
heart surgery [72]. No evidence was found for the par-
ticipation of Parkin in the clearance of mitochondria 
with damaged mtDNA in the cardiac aging process, as 
showed by Woodall et al. [73]. However, not only Parkin 
is essential for mitochondrial homeostasis during cardiac 
stress conditions but also it was found to be crucial for 
mitochondrial plasticity and metabolic reprogramming 

from carbohydrates to fatty acid oxidation in the perinatal 
mouse heart [74]. Moreover, Parkin was also implicated 
in the regulation of mitochondrial biogenesis in neurons 
through interaction with PGC-1α and ubiquitination of 
PINK1-phosphorylated PARIS (Parkin Interacting Sub-
strate), which has a role in repressing PGC-1α. This 
mechanism, however, has not yet been analyzed in the 
heart. All these findings suggest that Parkin is a multi-
functional protein with an essential role in maintaining 
mitochondrial quality control in different tissues through 
diverse mechanisms such as mitophagy, mitochondrial 
metabolic reprogramming and mitochondrial biogenesis.

A study by Hood’s group of age-related deterioration of 
skeletal muscle showed that exercise-induced mitophagy 
was mediated by Parkin, and that with aging, Parkin lev-
els increased while mitochondrial respiration decreased 
[75]. The impaired respiration was worse in Parkin KO 
mice and was accompanied by increased ROS production 
in aged Parkin KO mice. Despite elevated Parkin protein 
in aged mice, its translocation to mitochondria after exer-
cise was attenuated, in contrast to increased translocation 
in young mice. They also observed an inverse relationship 
between PGC-1α and PARIS, the repressor.

Ubiquitin‑independent mitophagy

In ubiquitin-independent mitophagy, autophagy receptors 
bind directly to dysfunctional mitochondria through the 
proteins present on the OMM, which link the dysfunc-
tional mitochondria to autophagosomes. These receptors 
include Bnip3 (Bcl-2/adenovirus E1B interacting pro-
tein 3) and FUNDC1 present on OMM. These receptors 

Fig. 2  Canonical and alternative mitophagy pathways
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contain one or more LIR (LC3-interacting region) [76] 
which bind to LC3 or GABARAP (gamma-aminobutyric 
acid receptor-associated protein) present on the phago-
phore. This interaction is regulated by phosphorylation 
status of the receptors; for example, Bnip3 phosphoryla-
tion on Serine residues 17 and 24 enhances binding to 
LC3B and GATE-16 [77]. Bnip3 is a hypoxia-inducible 
protein and a member of the proapoptotic Bcl-2 family, 
possessing a BH3 domain. Bnip3 integrates into the OMM 
via a carboxy terminal transmembrane (TM) domain and 
interacts with LC3 through the amino terminal domain 
[78]. Bnip3 was initially reported to induce cell death 
[79] through outer mitochondrial membrane permeabili-
zation and cytochrome c release [80] as well as triggering 
the mitochondrial permeability transition pore (mPTP). 
Increasing evidence also implicate its role in cell survival 
by inducing autophagy [81, 82] and competition with Bec-
lin1 for Bcl-2/Bcl-xL. Our group showed that Bnip3-medi-
ated autophagy was mPTP independent [83]. Stress such 
as hypoxia induces mitochondrial quality by mitophagy 
through Bnip3 [82, 84]. Bnip3′s dual roles in cell fate 
suggest it is a pivotal regulator in disease processes [85, 
86]. The Bnip3 promoter contains a consensus sequence 
for HIF-1α binding where it acts as transcription factor 
to drive Bnip3 expression [87]. One of the mechanisms 
shown to restrict Bnip3 expression in hypoxic conditions 
is methylation in the promoter region [88] which decreases 
the interaction between HIF-1α and the Bnip3 promoter. 
Chaanine et al. (2013) showed that Bnip3 knockdown pre-
vented apoptosis, fibrosis, adverse cardiac remodeling and 
improved diastolic and systolic function in a heart failure 
model [89]. Overexpression of Bnip3 induces mitochon-
drial fragmentation in cardiomyocytes. Bnip3 has also 
been shown to interact with VDAC resulting in oligomer-
ization of VDAC and mitochondrial dysfunction [89]. 
However, induced overexpression of Bnip3 did not lead 
to cardiomyocyte apoptosis in neonatal mice hearts [90]. 
Increasing reports support Bnip3′s dual roles to induce 
apoptosis and mitophagy; while phosphorylation may be 
one mechanism, other as yet unidentified processes may 
also regulate Bnip3′s prosurvival/proapoptotic functions.

Another mitophagy adapter protein, FUNDC1, is also 
shown to interact with LC3 to induce mitophagy in response 
to hypoxia [91]. FUNDC1 maintains the mitochondria-ER 
contact sites and promotes mitochondrial calcium uptake 
[92]. FUNDC1 interaction with LC3 is enhanced by phos-
phorylation at serine 17 by ULK1; mitochondrial phospho-
glycerate mutase, PGAM5, dephosphorylates FUNDC1 [93, 
94]. FUNDC1 knockout mice showed cardiac dysfunction 
and increased mitochondrial fission and cell death [95]. 
FUNDC1 interacts with Opa1, and its dephosphorylation 
promotes dissociation, leading to mitochondrial fission via 
interaction with DNM1L and culminating with mitophagy 

[96]. Many studies suggest the importance of FUNDC1 in 
regulating mitochondrial quality control and cardiac injury 
[97–99]; however, the detailed mechanism and interacting 
partners of FUNDC1 remain to be elucidated.

As a highly energetic organ, the heart heavily relies on 
properly functioning mitochondria to maintain normal 
function. Cardiac insults such as ischemia not only lead to 
mitochondrial dysfunction, but also excessive reactive oxy-
gen species production and cell death. As such, the heart 
has been shown to be equipped with a number of alternate 
modes of mitochondrial clearance. Aside from the more 
traditional and well-characterized PINK/Parkin-mediated 
mitophagy pathway, another mechanism was recently iden-
tified revolving around Ulk1, Rab9, Rip1 and Drp1. Saito 
et al. reported that in a mouse model of coronary artery 
ligation, mitophagy was briskly activated in the heart [100]. 
Interestingly, mice with ATG7 knocked-out maintained this 
elevation in mitophagy; whereas, mitophagy was blunted 
when Ulk1 was knocked out. In this setting, Ulk1 appeared 
to play a predominant role in mediating mitophagy and 
expectedly, the absence of Ulk1 also corresponded with 
increased infarct size. They went on to show that these 
Ulk1-mediated autophagosomes originate from previously 
reported trans Golgi membranes enriched with Rab9 rather 
than LC3. Indeed, inhibiting Golgi membranes with bre-
feldin A revealed that mitophagy mediated by Ulk1 and 
Rab9 was impaired by brefeldin A, whereas conventional 
Parkin-mediated autophagy was unaltered by the drug. The 
authors showed that Rip1 induced the activating phospho-
rylation of Drp1 at S616 which triggered mitochondrial fis-
sion. Ulk1 was suggested to phosphorylate Rab9 at S179 
which supported Rab9 and Rip1 interactions resulting in 
Drp1 phosphorylation. The authors suggest that these four 
proteins form a complex which indicates how mitochondrial 
fragments become trafficked into Ulk1-mediated autophago-
somes (Fig. 2). This pathway appears to be important for car-
diac homeostasis in diabetic cardiomyopathy [70], wherein 
Parkin is downregulated [101].

One might wonder why multiple mitophagy pathways 
may exist in the heart. Because the heart is highly reliant 
on healthy high functioning mitochondria, mitochondrial 
quality control machinery is crucial for maintaining cellu-
lar homeostasis. Therefore, mammals may have developed 
multiple context-dependent but only partially redundant 
mitophagy mechanisms.

Quality control of the mitochondrial genome

Disruption of mitochondrial dynamics consistently impacted 
mtDNA integrity; it is, therefore, essential to consider 
mtDNA in any discussion of mitochondrial quality con-
trol. As mtDNA is continuously exposed to reactive oxygen 
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species as a byproduct of respiration (about 1–2% of elec-
trons go to superoxide generation [102]), and because it is 
not shielded by histones, it is vulnerable to damage, mak-
ing ongoing maintenance or culling of deleterious mtDNA 
an essential element of cellular homeostasis. Mitochondria 
contain multiple copies of circular double-stranded DNA 
(mtDNA), which encodes tRNAs (22), rRNAs (2), and pol-
ypeptides (13) essential for oxidative phosphorylation. As 
almost the entire sequence encodes proteins or structural 
RNAs, a mutation anywhere in the ~ 16,000-bp sequence is 
likely to have consequences. mtDNA is not encased in his-
tones but is condensed into nucleoids with TFAM, which 
also plays a role in mtDNA replication and transcription 
[103].

mtDNA repair depends on polymerase gamma (which 
also is responsible for mtDNA replication) and 8-oxogua-
nine DNA glycosylase (mOGG1). Defects in mtDNA repair 
lead to multiple disorders including heart failure [104]. 
Recently, the DNA repair nuclease MRE11A was linked 
to mitochondrial dysfunction including release of mtDNA 
into the cytosol where it triggered inflammasome activa-
tion and pyroptosis [105]. Another enzyme, DNA2, which 
functions in removal of single strand DNA during mtDNA 
replication or Long Patch Base Excision Repair pathway, has 
been linked to familial and sporadic forms of mitochondrial 
myopathy [106]. Doubtless many other enzymes can affect 
mtDNA integrity and repair, and their impaired function 
may eventually culminate in heart failure. Defects in mtDNA 
maintenance have been reviewed recently [107].

The mitophagy/mito-biogenesis/fusion/fission program 
has been suggested to be able to compensate for mtDNA 
damage that results in impaired respiratory function, based 
on elegant mathematical modeling of the process [108]. 
A key aspect was the requirement for excluding depolar-
ized mitochondria from participation in fusion events. 
Parkin ubiquitinates multiple outer membrane proteins 
including mitofusin 1 and 2 [109, 110], causing their deg-
radation by the proteasomal system, thereby preventing 
subsequent fusion events, and simultaneously promoting 
mitophagy. With aging, mtDNA damage increases, but it is 
not completely established whether this is due to attenuated 
mitophagy (which decreases with age).

Mitochondrial unfolded protein response

Proper folding of proteins is essential for cellular homeo-
stasis as aggregation of newly synthesized or imported mis-
folded proteins. Protein misfolding results in loss of indi-
vidual protein functionality but also affects multi-protein 
complexes, leading to deleterious consequences for the cell 
[111]. To efficiently regulate protein folding processes, cells 
have developed distinct but highly integrated quality control 

mechanisms in the cytosol, endoplasmic reticulum and mito-
chondria. Cytosolic response to misfolded proteins relies 
heavily on a battery of heat shock proteins (Hsp), especially 
Hsp70, which leads to reprogramming of the cellular tran-
scription program [112]. Endoplasmic reticulum has three 
highly conserved regulators of the unfolded response which 
provide surveillance across the ER membrane. These regu-
lators—IRE1, PERK and ATF6—are kept dormant by the 
binding of Bip in the absence of misfolded proteins. Detach-
ment of Bip due to accumulation of unfolded proteins leads 
to the activation of ER unfolded protein response which 
not only rewires the transcriptional program to increase the 
folding capacity but also suppresses RNA translation and 
decreases protein degradation programs to decrease the fold-
ing load [113, 114].

Regulation of unfolded proteins in mitochondria poses 
further challenges, primarily because of distinct structural 
compartmentalization and secondarily since mitochon-
drial proteins derive from both nuclear and mitochondrial 
genomes. Subunits translated from nuclear and mitochon-
drial transcripts must be assembled into the larger oxphos 
complexes in proper stoichiometry. Any imbalance between 
nuclear and mitochondrial protein synthesis can result in the 
accumulation of unincorporated proteins that may aggregate. 
The mitochondrial unfolded response  UPRmt is a transcrip-
tional stress response that is activated by multiple forms of 
mitochondrial dysfunction in any of these compartments and 
reprograms mitochondrial to nuclear communication [115, 
116].

In worms, activating transcription factor 1 (ATFS-1) is a 
well-studied transcription factor that acts as a first responder 
of  UPRmt activation. In addition to a mitochondrial targeting 
sequence (MTS), it also has a nuclear localization signal 
(NLS). Under homeostatic conditions, ATFS-1 is imported 
into mitochondria where it is degraded by LON protease 
[117, 118]. When mitochondria are damaged, ATFS-1 is 
preferentially accumulated in nucleus and activates  UPRmt. 
Thus, compartmentalization of ATFS-1 regulates its tran-
scriptional activity, indicating that mitochondrial import 
machinery plays an important role in  UPRmt induction. 
Although there are similarities in  UPRmt activation between 
worms and mammals, this process is certainly more complex 
in mammals. Many studies have shown that key components 
of integrated stress response (ISR), namely CHOP, ATF4 
and ATF5 are not only activated by multiple forms of mito-
chondrial stress but are also required for the proper induc-
tion of  UPRmt [119, 120]. Among these, ATF5 is of special 
interest as it has been proposed to be a mammalian ortholog 
of ATFS-1 based on the fact that it can rescue  UPRmt activa-
tion in the absence of ATFS-1 [121]. Moreover, ATF5 bears 
a mitochondrial targeting sequence (MTS) and its activity 
seems to be regulated by mitochondrial import like ATFS-1 
[121]. Despite the fact that ISR effectors like CHOP and 
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ATF4 are activated in canonical  UPRmt signaling, the action 
of these factors is highly specific as they do not induce Bip, 
an ER chaperone important in  UPRER [119]. Activation of 
the targeted transcription program due to these transcription 
factors leads to an increase in mitochondrial chaperones, 
thereby increasing mitochondrial folding capacity.

Reduction of protein import into mitochondria and a 
decrease in translation are also part of the  UPRmt, which 
have been well documented in C. elegans [117, 122]. This 
phenomenon has also been reported recently in mammalian 
cells under acute induction of  UPRmt, resulting in degrada-
tion of MRP3 transcript and protein [120]. This translational 
aspect of the  UPRmt may act locally on a single damaged 
mitochondrion, bypassing the need to cross any cellular 
threshold levels; this may represent the first line defense 
against mitochondrial damage [123]. Activation of  UPRmt 
also leads to the activation of estrogen receptor alpha (ERα), 
which leads to proteasome activation to decrease the mis-
folded protein burden especially in the inter-membrane space 
(IMS) [124, 125]. This signaling also activates HTRA2, a 
protease in the intermembrane space (IMS), and nuclear res-
piratory factor 1 (NRF1), which is involved in mitochondrial 
biogenesis [126]. LON protease is a member of AAA + pro-
teases (ATPases associated with a variety of cellular activi-
ties), a broad group of ATP dependent proteases implicated 
in  UPRmt and responsible for the degradation of misfolded 
proteins in the mitochondrial matrix [127–129]. Recently, 
there have been a couple of reports relating the  UPRER to 
 UPRmt. A critical regulator of ER unfolded response, PERK 
was shown to regulate mitochondrial morphology promot-
ing mitochondrial hyper-fusion and inhibiting severe mito-
chondrial fragmentation under conditions of stress [130]. In 
another study, activation of ISR under lipid stress was shown 
to upregulate LONP1 resulting in increased mitochondrial 
ROS and inflammasome activation in macrophages [131]. 
Future studies will reveal more exciting aspects of inter-
organelle communication especially between mitochondria 
and endoplasmic reticulum.

Maintenance of mitochondrial function is vital for cell 
survival and functioning. This becomes of even more impor-
tance in organs where energy demand is high and cellular 
turnover is low, key characteristics of cardiomyocytes. Alter-
ations in mitochondrial function due to impairment of mito-
chondrial quality control mechanisms are among the major 
causes of cardiac senescence and aging [132]. Mitochondrial 
unfolded protein response provides a robust mechanism for 
mitochondrial quality control by improving the homeostasis 
and limiting the damage.

Conclusion

While mitochondrial quality control may be unimportant 
for “disposable” cells, it is indispensable for long-lived cells 
such as cardiomyocytes and neurons, where defects in mito-
chondrial quality control lead to functional deficits as seen 
in Parkin disease and many forms of heart failure. Multiple 
pathways exist that may represent housekeeping processes 
versus responses to different types of cellular stress. It is 
increasingly clear that maintaining mitochondrial qual-
ity control is essential to preserving cardiac function, for 
without good mitochondrial function, the energy to support 
contraction will be jeopardized. Interventions to target mito-
chondrial turnover are likely to enrich the therapeutic arsenal 
for heart disease.
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