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OBJECTIVE—The peroxisome proliferator–activated recep-
tor-� coactivator (PGC)-1 family of transcriptional coactivators
controls hepatic function by modulating the expression of key
metabolic enzymes. Hepatic gain of function and complete
genetic ablation of PGC-1� show that this coactivator is impor-
tant for activating the programs of gluconeogenesis, fatty acid
oxidation, oxidative phosphorylation, and lipid secretion during
times of nutrient deprivation. However, how moderate changes
in PGC-1� activity affect metabolism and energy homeostasis has
yet to be determined.

RESEARCH DESIGN AND METHODS—To identify key met-
abolic pathways that may be physiologically relevant in the
context of reduced hepatic PGC-1� levels, we used the Cre/Lox
system to create mice heterozygous for PGC-1� specifically
within the liver (LH mice).

RESULTS—These mice showed fasting hepatic steatosis and
diminished ketogenesis associated with decreased expression of
genes involved in mitochondrial �-oxidation. LH mice also ex-
hibited high circulating levels of triglyceride that correlated with
increased expression of genes involved in triglyceride-rich li-
poprotein assembly. Concomitant with defects in lipid metabo-
lism, hepatic insulin resistance was observed both in LH mice fed
a high-fat diet as well as in primary hepatocytes.

CONCLUSIONS—These data highlight both the dose-depen-
dent and long-term effects of reducing hepatic PGC-1� levels,
underlining the importance of tightly regulated PGC-1� expres-
sion in the maintenance of lipid homeostasis and glucose
metabolism. Diabetes 58:1499–1508, 2009

I
mbalances in hepatic lipid metabolism, leading to
accumulation of hepatic triglycerides, insulin resis-
tance, inflammation, and apoptosis, are intimately
related to diseases of energy imbalance; these in-

clude obesity, diabetes, hyperlipidemia, and atherosclero-
sis (1,2). Changes in hepatic energy balance are often
modulated at the transcriptional level by hormonal signals
acting on nuclear receptors and forkhead box O (FoxO)
proteins (3). In addition to ligand-mediated receptor acti-
vation, physiological stimuli promote recruitment of coac-
tivators to the transcriptional machinery, adding an
additional layer of regulation by selective amplification of
specific gene sets. Peroxisome proliferator–activated re-
ceptor (PPAR)-� coactivator-1 (PGC-1�) is one such tran-
scriptional coactivator shown to play a particularly
important role in liver biology.

Hepatic PGC-1� binds to and activates multiple tran-
scription factors, including FoxO1, glucocorticoid recep-
tor, hepatic nuclear factor-4�, estrogen-related receptor-�,
and PPAR-�, resulting in increased expression of genes
important for gluconeogenesis, fatty acid oxidation, lipid
transport, and oxidative phosphorylation (4,5). Glucagon
increases hepatic PGC-1� expression during a fast,
whereas insulin potently inhibits PGC-1� expression and
activity (6–10). Thus, alterations in hormone activity, such
as the insulin resistance or hyperglucagonemia associated
with diabetes, may lead to dysregulation of PGC-1�.
Hepatic PGC-1� expression levels are increased in multi-
ple rodent models of diabetes and obesity, including liver
insulin receptor knockout (11,12), high-fat–fed (13), leptin-
deficient (ob/ob), and streptozotocin-administered mice
(7). Given its role in promoting gluconeogenesis, inappro-
priately high levels of hepatic PGC-1� may exacerbate
hyperglycemia. Therefore, reducing hepatic PGC-1� may
be an attractive therapeutic strategy for improving hepatic
insulin signaling and preventing inappropriate glucose
production in diabetic patients.

Though highlighting the importance of PGC-1� within
liver biology, previous studies have been limited to gain/
loss-of-function strategies using adenoviral vectors or
complete loss-of-function knockout mouse models. These
models suggest that although complete loss of PGC-1�
within the liver results in fasting-induced steatosis, it
improves glucose tolerance concomitant with decreased
gluconeogenesis and increased insulin sensitivity (11,14–
17). However, PGC-1� knockout mice exhibit multiple
metabolic abnormalities contributing to their overall phe-
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notype because of loss of PGC-1� in other metabolically
active tissues, including skeletal muscle, brain, brown fat,
and heart (14,15,18). Additionally, adenoviral knockdown of
PGC-1� can only address the acute effects of losing coacti-
vator activity. Most importantly, the expression levels of
PGC-1� and other coactivators are tightly regulated, often
changing only mildly in response to physiological cues
(16,19–21). Therefore, the above-mentioned models may not
appropriately reflect the effects of physiological fluctuations
of PGC-1� expression on tissue-specific target pathways.

We were interested in observing the consequences of
moderate, long-term changes in hepatic PCG-1� expres-
sion. To do this, we used a tissue-specific gene-targeting
approach to create mice with only one functional allele of
PGC-1� within the liver. Using this mouse model, we have
identified liver-specific PGC-1�–regulated pathways highly
sensitive to quantitatively reduced coactivator expression.
Loss of only one allele of hepatic PGC-1� was sufficient to
cause significant dysfunctions in fasting lipid oxidation,
ketogenesis, and the regulation of circulating triglyceride
levels. Consistent with this, analysis of hepatic gene ex-
pression suggested that fatty acid oxidation and lipid
processing pathways were most affected by loss of PGC-
1�. More strikingly, chronic reduction of PGC-1� reduced
hepatic insulin sensitivity, likely contributing to the alter-
ations in hepatic glucose and lipid metabolism. These data
underline the importance of PGC-1� expression to hepatic
lipid metabolism and indicate that even moderate de-
creases in PGC-1� function may contribute to the devel-
opment of liver disease.

RESEARCH DESIGN AND METHODS

Floxed PGC-1� alleles are previously described (14). To create liver-specific
heterozygous (LH) animals, female mice with one floxed PGC-1� allele
(PGC-1�fl/�) were crossed with mice transgenically expressing Cre recombi-
nase under control of the rat albumin promoter (Jackson Laboratory). Control
mice were a mixed population of PGC-1�fl/� and PGC-1��/�,alb-cre/� litter-
mates. All mice were on a mixed background of C57BL/129, which is similar
to the background of other PGC-1� models (11,14,15). Animals were fed a
regular chow diet (5008I; PharmaServ) or a high-fat diet (58% kcal fat, D12331;
Research Diets). All experiments were performed in accordance with animal
facility institutional animal care and use committee regulations.
Histology. Liver tissue was frozen in OCT compound, sectioned, and stained
with oil red O.
Body composition. Percentage fat mass was determined by dual-energy
X-ray absorptiometry scanning in anesthetized mice (Piximus II; Lunar).
Hepatic lipid levels. Hepatic lipids were extracted as previously described
(22). Triglycerides (Sigma), nonesterified free fatty acids (NEFAs; Wako), and
cholesterol (Pointe Scientific) were measured by colorimetric assay and
normalized to total protein content of initial homogenate.
RNA isolation and quantitative RT-PCR. RNA was isolated from frozen
tissue using TRIzol reagent (Invitrogen). A total of 1 �g of RNA was treated
with DNase I and reverse-transcribed. cDNA was amplified and quantified with
an Applied Biosystems real-time PCR system using SYBR Green PCR master
mix and the ��Ct threshold cycle method. Gene expression levels were
normalized to TATA binding protein (TBP) mRNA and expressed relative
to control. Primer sequences are listed in supplementary Table A2, available
in an online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/
db08-1571/DC1.
Primary hepatocyte isolation. Primary mouse hepatocytes from 10- to
12-week-old mice were isolated by collagen perfusion and percoll gradient
purification. Cells were seeded on collagen-coated plates and maintained in
Dulbecco’s modified Eagle’s medium supplemented with 0.2% BSA, 4.5 g/l
glucose, 2 mmol/l sodium pyruvate, 0.1 �mol/l dexamethasone, and 1 nmol/l
insulin (maintenance media).
Cell culture and treatment. For overexpression and knockdown studies,
hepatocytes were infected with adenovirus expressing either vector alone
(green fluorescent protein), PGC-1� (7), scrambled small interfering RNA
(siRNA), or PGC-1� siRNA (siPGC-1�), as indicated, for 48 h. To assess Akt
signaling, cells were incubated overnight with media lacking dexamethasone
and insulin (starvation media) and then treated with 100 nmol/l insulin or

vehicle for the indicated times before isolating protein. For inhibition of
gluconeogenic gene expression, cells were incubated in starvation media
overnight and preincubated with 100 nmol/l insulin or vehicle for 10 min
before the addition of media (control) or 25 nmol/l glucagon (Bachem) for 2 h
at 37°C. For gene expression analysis, cells were harvested in TRIzol before
quantification by real-time PCR. Endogenous hepatic PGC-1� protein levels
were measured in freshly isolated hepatocytes or cultured hepatocytes treated
for 4 h with vehicle or 1 �mol/l dexamethasone/10 �mol/l forskolin. Quanti-
fication of palmitate oxidation in cultured hepatocytes was performed as
previously described (23).
Serum glucose, insulin, lipids, and ketones. Plasma lipoproteins were
fractionated by FPLC as described (24). Blood glucose was measured in tail
blood using a standard glucometer. Serum insulin and �-hydroxybutyrate
concentrations were determined by enzyme-linked immunosorbent assay.
Triglyceride, NEFA, and cholesterol measurements were determined by
colorimetric assay (Assay Core, Joslin Diabetes Center).
Solid-phase extraction of hepatic fatty acyl-CoAs and mass spectrometry.

Extraction of acyl-CoA was performed as previously described (25). The purified
fraction was used for liquid chromatography/mass spectrometry/mass spectrom-
etry analysis using an API 3000 mass spectrometer (Applied Biosystems).
Triglyceride secretion rate. Mice were fasted 4 h before tail vein injection
of 250 mg/kg tyloxapol (Sigma). Triglyceride concentration in blood, collected
before and every hour for 4 h after injection, was measured by colorimetric
assay.
Protein isolation and Western blotting. Hepatocyte or liver protein was
solubilized in radioimmunoprecipitation assay buffer containing protease and
phosphatase inhibitors. PGC-1� was immunoprecipitated from 500 �g (dexa-
methasone/forskolin-treated) or 2 mg (fresh hepatocytes) of protein using an
anti–PGC-1� antibody. Protein samples were resolved by SDS-PAGE, blotted,
and incubated with anti–PGC-1� (gift from Dr. Thomas Gettys, Pennington
Biomedical Research Center), phospho-Akt (Ser473), or total Akt antibodies
(Cell Signaling). Equal loading was confirmed using anti-actin or 90-kDa heat
shock protein.
In vivo insulin signaling and pyruvate tolerance tests. Animals were
fasted for 16 or 6 h before intraperitoneal injection of 2 g/kg sodium pyruvate
or 0.8 units/kg insulin (Humulin; Eli Lilly), respectively. Glucose was mea-
sured in tail vein blood taken at 15-min intervals. For in vivo measurement of
phospho-Akt, animals fed a high-fat diet for 16 weeks were fasted 4 h before
intravenous injection of 0.5 units/kg insulin via the inferior vena cava. Liver
was harvested 5 min after injection.
Statistical analysis. Statistical significance (P � 0.05, P � 0.01, and P �
0.001) was assessed by ANOVA, Student’s t test, or linear regression analysis
using GraphPad Prism, as indicated.

RESULTS

Generation of liver-specific PGC-1� heterozygous
mice. To investigate the effects of chronically reduced
PGC-1� within the liver, we crossed mice harboring one
floxed PGC-1� allele (PGC-1�fl/�) with transgenic mice
expressing Cre recombinase under the control of the
albumin promoter (alb-cre transgene) (Fig. 1A). The re-
sulting mice possessed one functional and one disrupted
PGC-1� allele within the liver (PGC-1� liver heterozygotes,
LH mice) confirmed by PCR analysis of both tail and liver
genomic DNA (Fig. 1A). mRNA levels of PGC-1� in LH
livers were, on average, 57, 42, and 34% of wild-type levels
in fed, overnight-fasted, and long-term–fasted mice, re-
spectively (Fig. 1B and supplementary Fig. A1). The �50%
reduction was expected in fasted LH mice given that
PGC-1� acts in an autoregulatory positive feedback loop
(26,27). Hepatic levels of the structurally related transcrip-
tional coactivator PGC-1� remained unchanged (Fig. 1B).
LH mice expressed wild-type levels of PGC-1� in brown
fat, white fat, muscle, and heart (Fig. 1C), confirming
tissue specificity of PGC-1� heterozygosity. PGC-1� pro-
tein was difficult to detect by Western blot of whole-liver
extracts (not shown). To visualize hepatic PGC-1� protein
levels, we immunoprecipitated endogenous PGC-1� from
protein extracts of freshly isolated hepatocytes from wild-
type, LH, and whole-body PGC-1� knockout mice (Fig.
1D). These data show that relative protein levels of
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PGC-1� within wild-type and LH hepatocytes correlated
with hepatic mRNA levels.

LH mice were born in the expected Mendelian ratio,
with no obvious growth abnormalities observed at birth.
Although they were slightly lighter, this difference was not
statistically significant. Importantly, they exhibited no
differences in fat mass compared with control mice at 24
weeks of age (supplementary Fig. A2, panels A and B).
Levels of hepatic PGC-1� correlate inversely with
fasting hepatosteatosis. Because PGC-1� plays a key
role in modulating the hepatic response to nutrient depri-
vation (7,16,17), we fasted wild-type and LH mice to
identify potential differences in glucose and lipid metabo-
lism. Although PGC-1� is known to play a significant role
in the regulation of hepatic gluconeogenesis (7,9,17), mice

lacking only one allele of PGC-1� in the liver did not show
evidence of fasting hypoglycemia or impaired pyruvate
metabolism on a regular chow diet (supplementary Fig.
A2, panels C and D). However, oil red O staining of liver
sections indicated that LH livers had a higher lipid content
than wild-type controls after a 24-h fast (Fig. 2A). Quanti-
tatively, fasted LH livers accumulated significantly more
triglycerides and cholesterol than wild-type controls,
whereas there was no difference in NEFA levels (Fig. 2B).
Furthermore, the relative level of hepatic PGC-1� tran-
scripts in fasted mice inversely correlated with the con-
centration of triglycerides and cholesterol, but not NEFA
(Fig. 2C). Fed levels of hepatic triglycerides, cholesterol,
and NEFA were similar between groups (Fig. 2B and
supplementary Fig. A2, panel E). These data indicate that
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fasting lipid metabolism is highly sensitive to reductions in
PGC-1� expression and that even modest reductions can
cause significant defects in lipid processing, leading to
fatty liver disease.
Genetic reduction of hepatic PGC-1� diminished the

gene program of fatty acid oxidation. Next, we inves-
tigated the effects of having reduced PGC-1� on the
expression of mRNAs encoding key metabolic enzymes in
livers of fed and fasted mice. We observed modest yet
significant reductions in the expression of select genes
involved in fatty acid oxidation, including lipin-1 (LPIN-1),
very-long-chain acyl-CoA dehydrogenase (VLCAD), long-
chain acyl-CoA dehydrogenase (LCAD), and short-chain
acyl-CoA dehydrogenase (SCAD) (Fig. 3A and supplemen-
tary Table A1). Similarly, reduced levels of VLCAD, LCAD,
and SCAD and increased hepatic lipid content were also
observed after long-term fasting of 24–72 h (supplemen-
tary Fig. A3). Interestingly, the levels of medium-chain
acyl-CoA dehydrogenase, carnitine palmitoyl transferase-
1�, and PPAR-�, known PGC-1� target fatty acid oxidation
genes, were not significantly affected by chronic knock-
down of hepatic PGC-1� (Fig. 3B and supplementary Fig.
A3). To confirm that the regulation of these genes by
PGC-1� was cell autonomous, we overexpressed PGC-1�
using adenovirus in primary hepatocytes and measured
the levels of gene transcripts by quantitative RT-PCR.
PGC-1� overexpression significantly increased the mRNA
levels of many genes specifically involved in mitochondrial
�-oxidation of fatty acids (Fig. 3C).

Consistent with a hepatic defect in hepatic fatty acid
oxidation, 14C-palmitate oxidation was significantly lower
in LH primary hepatocytes (Fig. 3D). Moreover, LH mice
had lower levels of circulating �-hydroxybutyrate in both
the fed and fasted state, suggesting a deficiency in keto-
genesis (Fig. 3E). Analysis of liver samples by mass
spectrometry revealed that LH livers accumulated sig-
nificantly higher levels of medium- to long-chain fatty
acyl-CoAs, specifically C12:2, C12:1, C14:2, C14:1, and
C18:2, after a 24-h fast (Fig. 3F). This pattern is similar
to that found in mice lacking LCAD or VLCAD enzymes
(28 –30).
Dysregulation of hepatic PGC-1� leads to hypertri-

glyceridemia. Defects in hepatic lipid catabolism can
directly affect levels of circulating lipids. Circulating levels
of triglycerides were significantly higher in fed LH mice,
whereas fasting levels showed no differences (Fig. 4A).
There were no differences in the fed or fasted concentra-
tions of circulating free fatty acids, and levels of choles-
terol in the VLDL, LDL, or HDL fractions were similar
between wild-type and LH mice (supplementary Fig. A4).

Increases in serum triglycerides may arise because of
dysregulation of hepatic lipid assembly, secretion, or
catabolism. Because PGC-1� regulates key genes involved
in lipid transport (31), we investigated whether hepatic
PGC-1� heterozygosity affected lipid secretory pathways.
We saw no differences in the expression of APOAIV,
APOAV, or APOCIII (Fig. 4B and supplementary Table A1),
previously characterized PGC-1� target genes. However,
in both fed and fasted mice, there was significantly in-
creased expression of microsomal triglyceride transfer
protein (MTP), a protein essential for LDL assembly (Fig.
4B and supplementary Table A1). We also observed in-
creased APOB expression levels in LH mice (Fig. 4B and
supplementary Table A1), which, taken together, may
suggest an increase in lipoprotein synthesis.

To assess whether high triglyceride levels were caused
by increased triglyceride secretion, we inhibited lipopro-
tein lipase using tyloxapol and measured the rate of
triglyceride accumulation in the serum. Consistent with
previous findings, LH mice exhibited higher levels of
circulating triglycerides before and at all points after
tyloxapol injection (Fig. 4C). However, the rate of triglyc-
eride accumulation in the serum of wild-type and LH mice
was similar (Fig. 4C), suggesting that the higher levels of
circulating triglycerides were not caused by increased
hepatic lipoprotein secretion.
LH hepatocytes exhibit defects in insulin signaling.

Defects in fatty acid oxidation and high hepatic triglycer-
ides have been linked to hepatic insulin resistance (32).
Isolated primary hepatocytes from LH mice showed mark-
edly reduced levels of phosphorylated Akt after incubation
with insulin (Fig. 5A). Furthermore, insulin pretreatment
did not suppress the induction of PEPCK or glucose-6-
phosphatase (G6P) by glucagon in primary LH hepatocytes
(Fig. 5B). Acute knockdown of PGC-1� in primary hepa-
tocytes with siRNA did not affect insulin signaling in
primary hepatocytes (Fig. 5C and supplementary Fig. A5).
Thus, it appeared that only chronic reduction of hepatic
PGC-1� diminished the ability of liver cells to respond to
insulin.
High-fat feeding exacerbates defects in hepatic insu-

lin signaling in LH mice. We next investigated whether
mice with chronically reduced levels of PGC-1� exhibited
alterations in insulin sensitivity in vivo. Differences in
insulin action were not immediately evident in LH mice fed
a chow diet (supplementary Fig. A6). Because hepatic
insulin insensitivity is a hallmark of metabolic syndrome
linked to the consumption of a diet high in fat, we
challenged the LH mice with a diet consisting of 58% fat for
up to 16 weeks and monitored hepatic metabolic function.
Consistent with previous reports (13), high-fat feeding
resulted in increased expression of hepatic PGC-1� in both
wild-type and LH mice (Fig. 6A). Importantly, no signifi-
cant differences in body weight, body composition,
growth, or food intake were noted between the groups
(Fig. 6B and data not shown). We observed reduced
expression levels of select fatty acid oxidation genes in
fasted and refed high-fat–fed LH mice (supplementary Fig.
A7). Levels of hepatic lipids were extremely high in both
fed and fasted mice, and although a trend toward higher
triglycerides in LH mice was noted, it did not reach
statistical significance (supplementary Fig. A7, panels C
and D).

Levels of phosphorylated Akt in response to exogenous
insulin administration were lower in LH mice after 16
weeks on a high-fat diet (Fig. 6C), suggesting a mild
decrease in hepatic insulin signaling. Interestingly, al-
though circulating insulin concentrations were similar in
24-h fasted mice, refeeding produced higher insulin levels
in LH mice (Fig. 6D). Regardless, refed LH mice did not
decrease hepatic PEPCK mRNA levels to the same extent
as wild-type controls (Fig. 6E), suggesting a defect in the
ability of endogenous insulin to shut down fasting-induced
gluconeogenesis. A similar trend was also observed for
G6P mRNA, though not reaching statistical significance
(P 	 0.055). Consistent with decreased hepatic insulin
sensitivity, high-fat–fed LH livers had inappropriately high
levels of gluconeogenic gene expression (Fig. 6F). Thus,
hepatic insulin resistance was apparent at the level of both
insulin signaling and target gene expression. Taken to-
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gether, these data show a significant defect in hepatic
insulin signaling that manifests physiologically in response
to the metabolic stress of high-fat feeding.

Our data are in striking contrast to a previous study
showing that acute knockdown of PGC-1� within the liver
enhances insulin-mediated Akt phosphorylation through
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decreased expression of tribbles-3 (TRB-3), an inhibitor of
Akt (11). To address this, we measured TRB-3 mRNA
expression in our mouse model and found no differences
between mice on either regular chow or high-fat diet (Fig.
6F and 7B). Thus, our study clearly illustrates the potential

differences of chronic versus acute reduction of PGC-1�
expression on hepatic metabolic function.
High-fat feeding of LH mice unmasks defects in glu-

coneogenesis. Although PGC-1� is known to increase the
expression of the gluconeogenic program (7,9,31), mice
with a global knockout of the PGC-1� gene have constitu-
tively increased PEPCK and G6P gene expression likely
caused by increased CCAAT/enhancer binding protein-�
(C/EBP-�) expression (14). Interestingly, these same
PGC-1� knockout mice exhibit defects in the ability to
convert pyruvate to glucose, demonstrating that glucone-
ogenesis remains impaired. Although LH mice fed a regu-
lar chow diet exhibited normal gluconeogenic gene
expression and pyruvate tolerance (supplementary Table
A1 and supplementary Fig. A2), we addressed whether a
high-fat diet could reveal defects in hepatic gluconeogen-
esis within LH mice.

Under these dietary conditions, we observed a mild, yet
significant, reduction in fasting glycemia in LH mice after
short-term food deprivation (Fig. 7A). In contrast to LH
mice fed ad libitum (Fig. 6F), fasted LH mice exhibited
decreased PEPCK gene expression, consistent with the
observed fasting hypoglycemia and dependence on
PGC-1� to potentiate the gluconeogenic response during a
fast (Fig. 7B). We observed no differences in the expres-
sion of C/EBP-� (Fig. 6F and 7B, supplementary Table A1).

To directly assess hepatic gluconeogenesis, we moni-
tored the appearance of glucose in the blood after injec-
tion of pyruvate after 12 weeks of high-fat feeding. Fasted
LH mice had significantly reduced area under the curve in
the pyruvate tolerance test, further suggesting a defect in
hepatic gluconeogenesis (Fig. 7C). Taken together, it is
apparent that reduced levels of PGC-1� can affect hepatic
glucose metabolism at the level of both insulin signaling in
the fed state and glucose production in the fasted state.

DISCUSSION

It is clear that the PGC-1 coactivators play important roles
in various aspects of energy homeostasis. Using gain-of-
function and complete-loss-of-function studies, these pro-
teins were shown to be dominant regulators of oxidative
metabolism, particularly mitochondrial biogenesis, skele-
tal muscle biology, brown fat thermogenesis, and the
hepatic fasting response (4,5,7,11,14,16). However, what
remained unclear from these studies were the metabolic
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consequences of modulating PGC-1� within physiological
levels.

Importantly, the expression of PGC-1� is quantitatively
dysregulated in a variety of disease states. Increased
PGC-1� expression has been shown in livers of diabetic
mice (7,13), reduced levels are found in the muscle of
insulin-resistant humans (33), and hepatic PGC-1� levels
are inversely correlated with insulin resistance in humans
(34). We show here that hepatic heterozygosity for PGC-
1�, leading to a corresponding reduction in PGC-1� mRNA
and protein, caused a substantial change in hepatic metab-
olism that is manifested primarily as hepatic steatosis and
insulin resistance.

Our data demonstrate for the first time that chronically
and mildly reduced hepatic PGC-1� causes hepatic insulin
resistance. Primary LH hepatocytes and high-fat–fed LH
livers exhibited decreased insulin-stimulated Akt activa-
tion (Figs. 5 and 6). Moreover, LH mice on a high-fat diet
had increased fed gluconeogenic gene expression that
could not be efficiently reduced after fasting/refeeding
(Fig. 6). Interestingly, the decrease in hepatic insulin
sensitivity shown here is in contrast to results from Koo et
al. (11), who demonstrated that a sharp, adenoviral-medi-
ated reduction of hepatic PGC-1� reduced TRB-3 mRNA
expression and increased insulin sensitivity in vivo. In
contrast, we observed no differences in TRB-3 mRNA
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expression in fed or fasted LH mice (Fig. 6F and 7B,
supplementary Table A1). These differences may be attrib-
utable to the degree of PGC-1� loss in these two sets of
experiments, the method of knockdown, or the differential
effects of chronic versus transient decreases in PGC-1�
expression.

Chronic reductions in hepatic PGC-1� affected triglyc-
eride assembly and/or production (Fig. 4), which can also
be attributed to hepatic insulin resistance. Insulin reduces
the amount of circulating VLDL particles by directly
suppressing hepatic VLDL production (2), and hepatic
insulin resistance contributes to both increased hepatic
VLDL production and decreased VLDL uptake in patients
with type 2 diabetes (rev. in 35). Insulin has been shown to
inhibit the expression of MTP, a protein that initiates the
production of VLDL (36). Consistent with decreased insu-
lin action, we observed increased expression of MTP in LH
mice (Fig. 4B). We also detected increased expression of
apoB, the major protein constituent of VLDL, which, along
with high serum triglycerides, is associated with coronary
artery disease (35,37). Thus, it is likely that hepatic insulin
resistance contributed to the hypertriglyceridemia in fed
LH mice. However, there remains the possibility that
long-term reduction of hepatic PGC-1� has extrahepatic
effects on triglyceride lipolysis or absorption.

Interestingly, we observed increased circulating insulin
levels in LH mice after refeeding. In contrast to the
muscle-specific PGC-1� knockout mice, we observed no
difference in gross islet morphology (38) (data not shown).
Thus, it is likely that chronically reduced hepatic PGC-1�
has effects on peripheral tissue metabolism through cur-
rently unidentified mechanisms.

The most striking and clear-cut consequence of quanti-
tatively decreasing hepatic PGC-1� was impairment of the
fatty acid oxidation gene program. Decreased hepatic fatty
acid oxidation and concomitant lipid accumulation have
been shown to negatively affect insulin signaling (39). Our
study showed that the fatty acid oxidation genes VLCAD,
LCAD, and SCAD are highly sensitive to changes in
PGC-1� expression levels. Other studies have shown that
mice deficient in these fatty acid oxidation genes show
marked hepatosteatosis and hepatic insulin resistance
(30). Studies also suggest there is a synergistic effect of
having reduced function in two or more of the acyl-CoA
dehydrogenases (40). Given that PGC-1� is crucial for
maintaining the expression levels of multiple enzymes
within this family, it is likely that long-term dysregulation
of lipid metabolism in LH mice contributes to the devel-
opment of hepatic insulin resistance, particularly under
the challenge of a high-fat diet. Interestingly, hepatic
steatosis was not significantly worse in high-fat–fed LH
mice. However, because insulin directly downregulates
fatty acid oxidation (41), insulin resistance may mask the
effects of reduced PGC-1� on fatty acid oxidation in these
mice.

Our study clearly demonstrates that modest changes in
hepatic PGC-1� expression can have significant effects on
energy homeostasis. Furthermore, although chronic re-
duction of hepatic PGC-1� had only a modest effect on
reducing gluconeogenesis, multiple aspects of hepatic
metabolism were significantly disrupted by loss of the
transcriptional coactivator. Because there is growing in-
terest in the therapeutic potential of targeting this tran-
scriptional coactivator during the development of
metabolic diseases, it will be of interest to investigate how

chemical modulators of PGC-1� activity affect liver func-
tion in diabetic and obese patients.
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