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Abstract: Rapid detection of illicit opium poppy plants using UAV (unmanned aerial vehicle) imagery
has become an important means to prevent and combat crimes related to drug cultivation. However,
current methods rely on time-consuming visual image interpretation. Here, the You Only Look
Once version 3 (YOLOv3) network structure was used to assess the influence that different backbone
networks have on the average precision and detection speed of an UAV-derived dataset of poppy
imagery, with MobileNetv2 (MN) selected as the most suitable backbone network. A Spatial Pyramid
Pooling (SPP) unit was introduced and Generalized Intersection over Union (GIoU) was used to
calculate the coordinate loss. The resulting SPP-GIoU-YOLOv3-MN model improved the average
precision by 1.62% (from 94.75% to 96.37%) without decreasing speed and achieved an average
precision of 96.37%, with a detection speed of 29 FPS using an RTX 2080Ti platform. The sliding window
method was used for detection in complete UAV images, which took approximately 2.2 sec/image,
approximately 10× faster than visual interpretation. The proposed technique significantly improved
the efficiency of poppy detection in UAV images while also maintaining a high detection accuracy.
The proposed method is thus suitable for the rapid detection of illicit opium poppy cultivation in
residential areas and farmland where UAVs with ordinary visible light cameras can be operated at
low altitudes (relative height < 200 m).

Keywords: UAV; opium poppy; object detection; YOLOv3 model; deep learning; CNN;
spatial pyramid pooling; GIoU

1. Introduction

Illegal drugs can degrade physical and mental health while affecting social stability and economic
development. The rapid detection of illicit opium-poppy plants is integral to combatting crimes related
to drug-cultivation. Satellite remote sensing has traditionally played an important role in monitoring
poppy cultivation. Taylor et al. [1], along with the U.S. government, used satellite remote sensing to
detect poppy plots in Afghanistan for several years. Liu et al. [2] used ZY-3 satellite imagery to detect
poppy plots in Phongsali Province, Laos, using the single-shot detector (SSD)-based object detection
method. Jia et al. [3] studied the spectral characteristics of three different poppy growth stages, showing
that the best period for distinguishing poppy from coexisting crops was during flowering. However,
new cultivation strategies such as planting small, sporadic, or mixed plots make it more difficult to
identify small-scale cultivation in non-traditional settings, such as courtyards. Compared to satellite
remote sensing, unmanned aerial vehicles (UAVs) capture images with much higher spatial resolution
(<1 cm). UAV platforms are highly flexible: they are able to conduct observations under broader
conditions and can fly closer to the ground to capture finer textural features. This ability to capture
such detailed features together with the lower cost of UAVs compared to satellite remote sensing are
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rapidly making UAV systems both an effective alternative and a supplement to satellite remote sensing,
particularly in the detection of illegal poppy cultivation.

Poppy identification in UAV images is currently conducted primarily via visual interpretation
because of major differences in the characteristics of different growing stages and the complexity
of planting environments. A skilled expert usually requires at least 20 s to detect poppy via visual
interpretation of a UAV image. This requires extensive human and material resources given the
sheer quantity of UAV images that can be collected. Machine learning methods based on manual
design features perform well only under limited conditions; such limited conditions currently do not
sufficiently account for variation in altitude, exposure, and rotation angle, all of which can significantly
affect the appearance of similar ground objects in UAV images and add difficulty to feature recognition.
Therefore, a new method to improve work efficiency and detection accuracy is urgently needed; for this
purpose, the ongoing development of deep-learning-based object detection holds great promise.

Deep learning has rapidly developed since its initial proposal in 2006, and especially after 2012.
Techniques represented by deep convolutional neural networks (DCNNs) have been widely used
in various fields of computer vision, including image classification [4–7], object detection [8–13],
and semantic segmentation [14–18]. Compared with traditional machine learning methods based on
manual design features, DCNNs have a more complex structure that is capable of extracting deeper
semantic features and learning more powerful general image representations. Currently, convolutional
neural networks (CNNs) are mainly composed of several convolution layers that may include pooling
layers, followed by several full connection layers. The feature map generated by the convolution
layer is usually activated by the rectified linear unit (ReLU) and regularized by batch normalization
(BN) [19] to prevent network overfitting. Researchers have continuously expanded network depth and
width or reduced the complexity of the network model to improve the accuracy or speed of image
classification; alongside such advances, complex networks have been proposed, such as the Inception
series [5,19–21] and Residual series models [7,22], which expand the width and deepen the network
layer, or the lightweight networks, such as SqueezeNet [23], MobileNet [24–26], and ShuffleNet [27,28].

CNN’s successful performances in image classification tasks has advanced the development of
object detection. Traditional object detection relies on a search framework based on sliding windows,
which divide a graph into several sub-graphs with different positions and scales; a classifier is then
used to distinguish parts that do not contain specified objects by sub-graph. This method requires
designing different feature extraction methods and classification algorithms for different objects.
Object detection methods based on deep learning are mainly divided into two categories based on
region proposal and regression. Region proposal methods (such as Regions with CNN features
(R-CNN) [8], Fast R-CNN [29], and Faster R-CNN [9]) mainly use texture, edge, color, or other
information in the image to determine the possible location of an object in the image in advance and
then use the CNNs to classify and extract the features of these locations. Although this method can
achieve good accuracy, it is difficult to implement in real-time detection. Regression methods (such as
OverFeat [30], You Only Look Once (YOLO) [10,31,32], and SSD [11,33]) use a single end-to-end CNN
to directly predict the location and category of an object’s bounding box in multiple locations within
the image, greatly accelerating the speed of object detection.

Deep-learning-based object detection methods have been widely used in remote sensing
applications. For example, Ammour et al. [34] combined the CNN and support vector machine (SVM)
methods to conduct vehicle identification research using aerial photographs. Bazi and Melgani [35]
constructed a convolutional support vector machine network (CSVM) for the detection of vehicles and
solar panels using an UAV dataset. Chen et al. [36] used Faster R-CNN object detection to identify
airports from aerial photography. Rahnemoonfar et al. [37] built an end-to-end network (DisCountNet)
to count animals in UAV images. Ampatzidis and Partel [38] used the YOLOv3 model with normalized
difference vegetation index (NDVI) data to detect trees in low-altitude UAV photos.

YOLOv3 is one of the state-of-the-art one-stage detection networks; the detection speed is very
fast and detection accuracy is quite high in the current one-stage detection model. The YOLOv3 model
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has been successfully applied in the field of remote sensing and UAV. Given these successful past
applications, we chose to base this study on the YOLOv3 model. Firstly, we used the beta distribution
as a ratio to mix-up backgrounds and objects, then applied random augmentation metrics to enlarge
the dataset. Secondly, we assessed the performance of various backbone networks, added a spatial
pyramid pooling unit, and used the generalized intersection over union (GIoU) method to compute
the bounding box regression loss. Thirdly, we used various evaluation metrics to assess the model
results in terms of superiority, efficiency, and model applicability. The remaining sections of the paper
are presented in the following order: study area and data, research methods, model evaluation metrics,
results, discussion, and conclusions.

2. Study Area and Data

2.1. Data Acquisition

In most parts of mainland China, the best growing season for opium poppy is March–August.
Due to scale effects, opium poppy tokens under different flying heights show entirely different
characteristics. Thus, we selected UAV images collected from 2014 to 2018 that were verified to contain
poppies by K.Y., G.Y., and M.W. All photos were taken within March–August, every year from 2014 to
2018, using two UAV styles at different relative heights: (1) a DJI UAV (camera sensor of 13.2 × 8.8 mm2,
focal length of 8.8 mm and a photo size 5472 × 3648 pixels) took images at altitudes of 30 and 60 m;
(2) a fixed-wing UAV (SONY A7R2 camera, camera sensor of 36 × 24 mm2, lens focal length of 35 mm,
photo size of 7952 × 5304 pixels) took images at an altitude of 150 m.

The ground resolution of the images (ground sampling distance of the image, i.e., GSD) could be
calculated as:

GSD = H × a / f , (1)

where f is the focal length of the photographic lens, and a is the pixel size; a can be calculated as:

a =

√
Spe

Sp
=

Lpe

Lp
, (2)

where Spe is the photosensitive element size, Sp is the photo size, Lpe is the length of photosensitive
element size, and Lp is the length of photo.

At the relative flying height of approximately 30, 60, and 150 m, the ground resolution of the
images was approximately 0.8, 1.6, and 2.0 cm, respectively. In most parts of China, the poppy seedling
stage occurs before April, the flowering period ranges from April to June, and the fruiting period
ranges from July to August. The opium poppy leaves in the seedling stage are grayish green while
the flowering stage is characterized by the presence of symbiotic plants [3], where the poppy seeds
are long ellipsoids. Poppy monitoring is mainly performed from March to August, monitoring the
poppy in the seedling stage and flowering period, whereas data in the fruit period is negligible. Here,
poppy photos that involved seedling and flowering were selected. Figure 1 shows the characteristics
of poppies at different growing periods and flying heights. As the diameter of a single opium poppy
is approximately 30 cm, poppy textures can be clearly observed from low altitudes (i.e., a relative
height < 50 m). At a relative height of 50–100 m, individual poppies and smaller features can still
be distinguished; however, at >100 m, flowering poppies can only be identified based on observer
experience, and seedling poppies are typically even more difficult to identify. All severe overexposures
and blurred photos were removed from the image dataset, leaving 1040 photos selected for this study:
495 photos were taken at 30 m, 395 at 60 m, and 150 at 150 m.
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Figure 1. The characteristics of poppies at different growing periods and flying heights.

2.2. Data Processing

2.2.1. Preliminary Processing

Only a small area of any given image contained poppies. According to the ground-authenticated
image, the poppy was accurately marked in the original image (Figure 2). The labelImg tool [39]
was used to mark and generate corresponding labeled information, which was then randomly cut
according to the location of poppies, reducing it to 416 × 416 pixels. The specific implementation is
shown in Algorithm 1.

Algorithm 1: Data Cropping Strategy

Input: One dataset, A, including N big UAV images.
Output: One dataset, B, including cropped images with a fixed size (416 × 416 pixels).

1: B←{}
2: for a in A:
3: objs←all objects in a
4: for obj in objs:
5: objs←objs\{obj}
6: b←random crop image, a, to fixed size according to the bounding box of obj
7: B←B∪{b}
8: for o in objs:
9: if the intersection over union the between b and o is bigger than 0.5:
10: objs←objs\{o}
11: end if
12: end for
13: end for
14: end for
15: return B
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Figure 2. Preliminary processing for poppy selection: (a) original images; (b) verified images; (c)
labeled images; (d) labeled information.

Flying height and growth period strongly affected the quantities of images containing poppies.
More images containing poppies were found at 30 m than at 150 m and during the flowering stage rather
than the seedling stage (Table 1). To balance the number of poppy samples at different heights and
growth periods, a random replication (oversampling) was used to replicate the data for small samples.

Table 1. Image quantities before and after balanced.

Flying Height 30 m 60 m 150 m

Before Balanced
Seedling 216 143 42

Flowering 279 252 108

Balanced
Seedling 216 234 126

Flowering 279 252 128

2.2.2. Data Fusion

As the poppy cultivation environment is complex and positive sample data are limited, it is
difficult for labeled poppy samples to truly reflect the majority of the cultivation environment. Zhang
et al. [40] successfully applied the mix-up method to image classification to enhance the generalization
ability. Zhang et al. [41] studied the natural co-occurrence of objects that played an important role in
object detection and used Beta (1.5, 1.5) as a ratio to mix-up two pictures of different objects to obtain
a high recall rate. This approach has been mainly used to enhance the generalization performance
of image classification and object detection by merging the training images with different objects by
pixel-by-pixel mixing. Here, 1000 photos without poppies were randomly cut from the original UAV
photos to be used as background. The mixup method based on a Beta distribution was then used to
fuse the background and positive samples to form new samples.

The probability density function of the Beta distribution is shown in Figure 3. For the Beta
distribution with parameters alpha and beta, i.e., Beta (alpha, beta), when alpha and beta are both
0.2, the Beta distribution concentrates near 0 or 1, which is usually used as a mix-up ratio in image
classification. When alpha and beta are both 1.0, the Beta distribution is uniform. When alpha and
beta are both greater than 1, the Beta distribution is concentrated near 0.5, which is used as a mix-up
ratio in object detection to mix up two objects from different training images. Beta (0.2, 0.2) enables
the image to introduce some background information while maintaining most of the information of
the positive sample of a real poppy image. Thus, in this study, we selected Beta (0.2, 0.2) to mix up
background and ground truth data; the mixed image was calculated as:

Pnew =

{
µ× Pbg + (1− µ) × Pgt, i f µ < 0.5
(1− µ) × Pbg + µ× Pgt, i f µ ≥ 0.5

, (3)

where Pnew is the fused image, Pbg is the background image, Pgt is the real poppy image, and µ is a
coefficient that conforms to Beta (0.2, 0.2) and is between 0 and 1. A fused image is shown in Figure 4.
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Figure 4. Fused image resulting from synthesizing the background and poppy images, for poppy
detection based on the Beta distribution.

2.2.3. Data Augmentation

The balanced data set contained 1235 photos. To further expand the size of the dataset, random data
augmentation was performed on the existing data. This involved, first, random position transformation
including random cropping (with limitation), flipping (including random horizontal and vertical
flipping), rotation, and resizing (with random interpolation); second, random color adjustment,
including random changes in the brightness, contrast, sharpening, and noise addition (including salt
and pepper and Gaussian noise).

Each data augmentation operation included 2–4 instances of random position transformation or
random color adjustment followed by resizing to 416 × 416 pixels, after which all data were combined
to form the dataset used in this study. The detailed procedure is described in Algorithm 2. Seventy
percent of all samples were randomly selected as the training dataset, 10% as the validation dataset,
and the remaining 20% as the testing samples (Table 2).

Table 2. Size of training, validation, and testing datasets.

Training Validation Testing

Number of Images 2975 425 850
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Algorithm 2: Data Augmentation Strategy

Input: The original dataset, A, with N images and a random transform method set, T (including random
cropping, random flipping, random rotation, random resizing, random changes in brightness, random
sharpening operation, and random noise addition).
Output: Enhanced dataset B.

1: B←A
2: for a in A do:
3: aug_num = random (2, 4)
4: for i←0 to aug_num do:
5: b←a
6: times←0
7: while times < 2 do:
8: randomly select a transform method from set T, b←transform image b
9: times←times+1
10: end while
11: resize b to 416 × 416 pixels
12: B←B∪{b}
13: end for
14: end for
15: return B

3. Methodology

3.1. YOLOv3 Model Based on Multiple Backbone Networks

As the feature extractor in object detection networks, the backbone network plays an important
role in object detection. To a large extent, backbone networks determine the speed and accuracy of the
detection network. Complex backbone networks will significantly improve the detection accuracy but
will also seriously affect the detection speed, whereas lightweight networks have the opposite effect.
Three complex networks (DarkNet53, ResNet50, and DenseNet121) and two lightweight networks
(MobileNetv2 and ShuffleNetv2) were tested.

3.1.1. Backbone Networks

The YOLO series of object detection networks used DarkNet as the backbone network; similarly,
the DarkNet53 network was the basic network used in YOLOv3. This network consists of several
consecutive 1 × 1 and 3 × 3 convolutions, introducing a residual structure. The network is more
powerful than YOLOv2′s DarkNet19 network and more efficient than Inceptionv3 and ResNet101. A
brief review of other backbone networks tested herein is given as follows:

ResNet [7] borrows an idea from Highway Networks [42] and proposes a shortcut connection
structure that allows the network to directly skip one or two layers to form residual units (Figure 5a).
ResNet is an excellent image classification network and is widely used in semantic segmentation and
object detection.

DenseNet [43] adopts a dense connection structure in which the dense block connects all layers
together (Figure 5b). The dense block structure greatly reduces the number of network parameters
and, to a certain extent, alleviates the problem of gradient disappearance and model degradation.

MobileNetv2 [25] is a state-of-the-art lightweight network that adopts the inverted residual
structure (Figure 5c). The structure reduces the number of parameters and complexity of the network
model and accelerates the forward propagation of the network.

ShuffleNetv2 [28] adopts channel decomposition and channel shuffling methods (Figure 5d),
greatly increasing speed while maintaining high precision.
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3.1.2. Model Training

To compare the accuracy and efficiency of different models, we adopted unified hyper-parameters
for training the different backbone networks (Table 3). We set beta_1 = 0.9, beta_2 = 0.999,
and weight_decay = 0.0001 as the parameters of the optimization method reported in Adam [44] to
optimize the network. Since YOLOv3 (based on DarkNet53) provided the official weights, there were
no official pre-trained weights for the other four backbone networks during initialization, thus the
random initialization method was used to uniformly initialize the weights. Likewise, for YOLOv3,
based on DarkNet53, the official weights were not used.

Table 3. The hyperparameters for the training of You Only Look Once version 3 (YOLOv3) based on
various backbone networks.

Item Value

Optimization Method Adam
Initial Learning Rate 0.001

Learning Rate Schedule Validation loss does not decline for 20 epochs, the learning rate increases by 0.1
Batch Size Nearly 10 but six for ResNet and DenseNet

Training Epochs 500
Early Stopping Validation loss does not decline for 50 epochs



Sensors 2019, 19, 4851 9 of 23

3.2. Improved YOLOv3 Model

3.2.1. Improved Spatial Pyramid Pooling Unit

Multiscale prediction in YOLOv3 connects the global features of multiscale layers for three
different prediction stages but neglects multiscale local features. We developed an improved spatial
pyramid pooling (SPP) unit for use with YOLOv3, using this to extract the multiscale global features of
different stages and multiscale local features of the same prediction stage.

SPP was first proposed in 2015 [45]. The original SPP structure model (Figure 6) divided each
feature map into a number of different grid sizes (such as 4 × 4, 2 × 2, and 1 × 1) and then performed
maximum pooling operations for each grid. This resulted in C layer feature maps forming 16 × C,
4 × C, or 1 × C dimensional feature maps; these three feature maps were then finally concatenated to
form a fixed-length feature map that connected into the back of the fully connected layer.
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input feature maps are then connected with all pooling results to form a SPP unit in which the filter
size of the pooling layer

(
Spool

)
is calculated as:

Spool =

⌈
Smap

n

⌉
, (4)

where Smap is the feature map size of the input layer, such that for n = 1, 2, 3, three different sizes of
filters are produced, respectively:

⌈
Smap/1

⌉
×

⌈
Smap/1

⌉
,
⌈
Smap/2

⌉
×

⌈
Smap/2

⌉
, and

⌈
Smap/3

⌉
×

⌈
Smap/3

⌉
(dae represents the smallest integer not less than a). In the experiments, there were three predictions
with different feature map sizes (13 × 13, 26 × 26, and 52 × 52), allowing nine different filter sizes:
13 × 13, 7 × 7, and 5 × 5; 26 × 26, 13 × 13, and 9 × 9; and 52 × 52, 26 × 26, and 18 × 18. In the second
and third prediction stages, the filter sizes were close to the previous stage. Therefore, only one SPP
unit was selected for the first stage of the study (Figure 8).
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The improved SPP unit used herein differs from the SPP net proposed by He et al. [45]; in the SPP
net by He et al., the feature maps are divided into several grids of different sizes and max-pooling is used
to pool the grid to form feature maps of different sizes. The approach used herein only uses different
filter sizes for the feature maps to be pooled and uses padding to maintain unchanged dimensions.

3.2.2. Network Hyperparameter Setting and Model Training

Similar to YOLOv3, each bounding box in the network predicts bx, by, bw, bh, and confidence,
in which (bx, by) refers to the center coordinates of the prediction bounding box, (bw, bh) refers to the
width and height of the prediction bounding box, respectively, and confidence refers to the intersection
over the union between the prediction bounding box (bx, by, bw, bh) and any ground truth (gx, gy, gw,
gh). Additionally, each grid unit in the network predicts the conditional probability of each category.

Here we propose a new loss function consisting of three parts: coordinate regression loss,
confidence loss, and classification loss. Confidence loss and classification loss are defined as in
YOLOv3; coordinate regression loss is described by GIoU [46] and calculated as follows:

IoU =
B ∩ G
B ∪ G

, (5)
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GIoU = IoU −
C \ (B∪G)

C
, (6)

where C is the smallest closed convex object containing the prediction box and ground truths, B refers
to the predicted bounding boxes, and G refers to the ground truths. Based on these equations, when the
overlap between B and G is large, both GIoU and IoU are near 1 (only when B ∩G = B ∪G does IoU =

GIoU = 1). If there is no overlap between B and G, IoU is near 0 while GIoU is less than 0 and gradually
approaches –1, as the distance between B and G increases. Therefore, the range of IoU is [0, 1] whereas
the range of GIoU is (–1, 1]. The bounding box regression loss can then be calculated using GIoU:

Coordloss = 1−GIoU. (7)

As the range of values for GIoU is (–1, 1], the range for Coordloss is [0, 2). Larger values result in
larger distances between the prediction box and ground truth. Relative to the mean square error (MSE)
of the regression loss in the center coordinates and the width and height of the bounding box adopted
in YOLOv3, the coordinate regression loss based on GIoU is independent of the shape and size of the
bounding box and can more accurately reflect the distance between the prediction box and ground
truths. The confidence loss and classification loss can be calculated as follows:

Con floss =
s2∑

i=0

B∑
j=0

1obj
i j

[(
Ci − Ĉi

)2
]
+ λnoobj

s2∑
i=0

B∑
j=0

1noobj
i j

[(
Ci − Ĉi

)2
]
, (8)

Classloss =
s2∑

i=0

1obj
i j

∑
cεclasses

(pi(c) − p̂i(c))
2, (9)

where 1obj
i refers to whether the object is in grid cell i and 1obj

i j indicates that the prediction is determined
by the j-th bounding box predictor in grid cell i. The loss function is thus defined as:

Loss = Coordloss + Con floss + Classloss. (10)

Table 4 lists the other network hyperparameters. When using GIoU as the loss function, training
is difficult and prone to the vanishing gradient phenomenon. Therefore, we selected trained weights
that did not use GIoU to initialize the weights of the network. We selected beta_1 = 0.9, beta_2 = 0.999,
and weight_decay = 0.0001 as the parameters for the optimization method reported in Adam [44] to
optimize the network.

Table 4. Other network hyperparameters for enhanced YOLOv3 model training.

Item Value

Optimization Method Adam

Initial Learning Rate 0.001

Learning Rate Schedule Validation loss does not decline for 20 epochs, the learning rate increases by 0.1

Bath Size 8

Training Epochs 500

Early Stopping Validation loss does not decline for 50 epochs

3.3. Trained Model Prediction

3.3.1. Single UAV Image Prediction

A single UAV image only requires direct prediction. As UAV photos are usually much larger than
the required 416 × 416 pixels, direct resizing required by input will significantly reduce the image
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quality and detection accuracy. Thus, we used the sliding window method with a window and step
size of 416 × 416 pixels to ensure no overlap between adjacent windows. This accelerated the detection
speed and avoided a large number of redundant detection results.

3.3.2. Multiple UAV Image Prediction

For multiple UAV images, we adopted two prediction methods. For large-scale images with low
overlap, multiple images were regarded as numerous single images. The sliding window method was
then used to predict each one and output the predicted results. For UAV images with high overlap,
the single sheet prediction method produces a large amount of redundancy and seriously affects the
detection speed. Thus, we spliced and ortho-rectified all images in ArcGIS pro 2.3 and then predicted
the spliced images using sliding windows.

4. Model Evaluation Metrics

4.1. Intersection over Union

Intersection over Union (IoU) refers to the overlap ratio between two bounding boxes, calculated as:

IoU =
Area o f Overlap
Area o f Union

=
GT ∩DR
GT ∪DR

, (11)

where GT refers to the ground truth of the samples and DR refers to the detection results of the samples.
By setting an appropriate overlapping threshold, the detector determines whether the box is classified
as background or as a specified category (this study used only one classification, i.e., poppy). If the
IoU is greater than the threshold, the box is classified as poppy. If the IoU is lower, it is classified
as background.

4.2. Precision ×Recall Curve and Average Precision

Precision and recall are often used to evaluate the quality of a model. Precision refers to the
proportion of correctly detected objects in all detected objects whereas recall refers to the proportion of
correctly detected objects in all positive samples detected. True Positive (TP, i.e., a correct detection
with an IoU of no less than the threshold), False Positive (FP, i.e., a wrong detection with an IoU of less
than threshold), False Negative (FN, i.e., a ground truth not detected), and True Negative (TN) are
usually used to calculate recall and precision as follows:

Recall =
TP

TP + FN
, (12)

Precision =
TP

TP + FP
. (13)

The precision × recall (PR) curve is a good method to evaluate the performance of object detectors.
This method draws a curve for each class according to the change in confidence. An object detector is
considered good if its precision remains high as the recall rate increases, indicating that the precision
and recall rate can still remain high if there is a change in the confidence threshold. Such a curve was
drawn using the precision and recall rate values. The area under the PR curve represented the average
precision (AP):

AP =

∫ 1

0
P(R)dR, (14)

where P refers to the precision and R refers to the recall rate. The threshold value of the IoU was set to
0.5 and the AP named as AP50, which was used to evaluate the model.
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4.3. Mean Average Precision

Each class i has a corresponding AP (APi), where the mean AP (mAP) refers to the mean of the
AP for each class:

mAP =

∑n
i=1 APi

n
, (15)

where n represents the number of all categories to be predicted. Here, the mAP was equal to the AP
because there was only one category (poppy).

4.4. F-Score

When using precision and recall rate evaluation indices, high indices are ideal; however, in general,
it is difficult to simultaneously achieve high precision and recall rates. Therefore, a trade-off between
the precision and recall rate according to the actual situation is necessary. The F-score was thus
introduced to comprehensively consider the harmonic value of the precision and recall rate:

F =

(
1 + β2

)
∗ P ∗R

β2 ∗ P + R
, (16)

where β refers to the harmonic coefficient between P and R.
The F-score is the harmonic average of the precision and recall rate. When beta is greater than 1,

the recall rate is more important; when beta is less than 1, the precision is more important. In actual
poppy detection, more attention should be paid to the recall rate. Therefore, a beta value of 2 was
selected to obtain:

F2 =
5 ∗ P ∗R
4 ∗ P + R

. (17)

Therefore, the F2 score value ranges from 0 to 1.0, indicating that when Precision = Recall = 1,
the F2 score reached a maximum of 1.0.

5. Results

The detectors were based on the Keras 2.24 framework with a Tensorflow 1.12 backend.
All experiments were conducted using a server with the following characteristics: CPU: Intel Core
I9-9900K, GPU: NVIDIA RTX 2080Ti, Memory: 32 GB, Hard drive: Intel 660P SSD (QLC flash granule)
512 GB.

5.1. Backbone Network Assessment

5.1.1. Training

In this stage, the convergence speed and decline of the training and validation loss were compared
for each of the different backbone networks (Table 5). The YOLOv3 model took approximately
257 epochs to converge using DarkNet53, 251 using DenseNet121, 374 using ResNet50, 346 using
MobileNetv2, and 276 using ShuffleNetv2. DenseNet121 yielded the fastest convergence performance.
Several outliers were directly eliminated and filled with the average of the adjacent point; the training
and validation losses for all backbone networks were then plotted (Figure 9), showing that ResNet50
had the smallest training loss whereas DenseNet121 had perfect validation loss.

Table 5. Convergency epochs of YOLOv3 based on various backbone networks.

Backbone Networks DarkNet53 DenseNet121 ResNet50 MobileNetv2 ShuffleNetv2

Convergency Epochs 257 251 374 346 276
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5.1.2. Testing

For the different backbone networks, the AP, detection speed, and F2 -score were compared.
The PR curves (Figure 10) and F2 score-recall curves (Figure 11) show that DenseNet121 and ResNet50
produced PR curves more inclined to the upper right corner, with larger areas underneath and perfect
F2 scores. DarkNet53 and ShuffleNetv2 produced PR curves inclined toward the bottom right corner,
with smaller areas underneath and imperfect F2 scores. Unexpectedly, the PR curve for MobileNetv2
fell between that for DenseNet121 and DarkNet53, and the area under its PR curve was bigger than
that for DarkNet53.
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Table 6 lists the AP, model parameters, detection time in the testing dataset, and F2 score for all
backbone networks. Similar to the PR curve results, ResNet50 had the highest AP (95.60%) and the best
F2 score (0.956) but also had the largest model parameters (419.6 MB), longest detection time (38.9 s),
and slowest speed (21.9 FPS). Contrastingly, ShuffleNetv2 had the fastest detection speed (33.3 FPS)
and smallest model parameters (80.1 MB) but a lower AP (91.09%) and F2 score (0.913). DenseNet121,
DarkNet53, and MobileNetv2 had moderate performances with APs, parameters, detection speeds,
and F2 scores between those of ShuffleNetv2 and ResNet50.

Table 6. Model comparison between the YOLOv3 model based on various backbone networks.

Backbone Networks AP 1 (%) Params (MB) Testing Time 2 (s) Speed (FPS) F2 Score (max)

DarkNet53 93.00 241.1 32.7 26.0 0.927
DenseNet121 95.14 110.4 35.0 24.3 0.953

ResNet50 95.60 419.6 38.9 21.9 0.956
MobileNetv2 94.75 136.3 29.1 29.2 0.942
ShuffleNetv2 91.09 80.1 25.5 33.3 0.913

1 AP refers to the AP50, which indicates an average precision when the IoU threshold was set to 0.5. 2 The testing
time refers to the time tested on the 850 testing samples.

MobileNetv2 had an AP of nearly 95% (only 0.85% lower than that of ResNet50) but was faster
(29.2 FPS), with model parameters of 136.3 MB (32% of ResNet50) and an F2 score of 0.942 (0.011 lower
than that of ResNet50 but 0.029 higher than that of ShuffleNetv2). Overall, MobileNetv2 provided the
most balanced model with the best trade-offs for accuracy and speed. Therefore, MobileNetv2 was
selected as the backbone network for the YOLOv3 model in subsequent experiments.

5.2. YOLOv3-MobileNetv2 Assessment

The improved SPP unit based on YOLOv3-MobileNetv2 (SPP-YOLOv3-MN) and the improved
SPP unit and GIoU loss based on YOLOv3-MobileNetv2 (SPP-GIoU-YOLOv3-MN) were compared
with YOLOv3-MobileNetv2.

Figure 12 shows the training and validation losses for YOLOv3-MobileNetv2 and
SPP-YOLOv3-MN (SPP-GIoU-YOLOv3-MN was trained on the basis of SPP-YOLOv3-MN, such that
it was not added to the comparison here). SPP-YOLOv3-MN converged slightly faster than
YOLOv3-MobileNetv2 but both the training and validation losses for the former were much smaller than
that for the latter. Additionally, the training process for the former was more stable and the decline in loss
was relatively smooth. Figure 13 shows the PR curves for YOLOv3-MobileNetv2, SPP-YOLOv3-MN,
and SPP-GIoU-YOLOv3-MN. The area under the PR curve for SPP-GIoU-YOLOv3-MN was slightly
larger than that for SPP-YOLOv3-MN and much larger than that for YOLOv3-MobileNetv2.
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Figure 13. PR curve of the enhanced YOLOv3 model.

Compared with the YOLOv3-MobileNetv2 model, adding an SPP unit at the end of the first
predicting stage resulted in an improvement of 0.92% for the absolute AP, with an increase of only 21.7%
for the weight parameter and a decrease of 0.2 FPS in the detection speed (Table 7). More importantly,
when GIoU was used instead of the original MSE to compute the location loss, the model achieved
an improvement of 0.70% absolute AP with no parameter increase or speed reduction. By adding
an SPP unit and replacing the MSE loss with the GIoU loss, SPP-GIoU-YOLOv3-MN achieved an
improvement of 1.62% absolute AP, with an increase of only 21.7% in the model parameters and a
negligible reduction in speed.

Table 7. Model comparison between the enhanced YOLOv3 models and the original model.

Improvements YOLOv3-MobileNetv2 SPP-YOLOv3-MN SPP-GIoU-YOLOv3-MN

SPP unit?
√ √

GIoU?
√

AP (%) 94.75 95.67 96.37
Params (MB) 136.3 165.9 165.9

Testing time (s) 29.1 29.3 29.3
Speed (FPS) 29.2 29.0 29.0

F2 score (max) 0.942 0.955 0.960

Table 8 compares SPP-GIoU-YOLOv3-MN with the YOLOv3 model based on ResNet50
(YOLOv3-ResNet). SPP-GIoU-YOLOv3-MN had an AP 0.80% higher than YOLOv3-ResNet.
Furthermore, its model parameters were much smaller, the detection speed was 7.1 FPS faster,
and the F2 score was 0.67% higher. Overall, the former was slightly more accurate and much faster
than the latter. Figure 14 shows the partial detection results for SPP-GIoU-YOLOv3-MN using the
testing dataset.

Table 8. Model comparison between SPP-GIoU-YOLOv3-MN (GIoU: Generalized Intersection over
Union, MN: MobileNetv2) and YOLOv3-ResNet.

Evaluation Index SPP-GIoU-YOLOv3-MN YOLOv3-ResNet

AP (%) 96.37 95.6
Params (MB) 165.9 419.6

Testing time (s) 29.3 38.9
Speed (FPS) 29.0 21.9

F2 score (max) 0.960 0.956
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6.1. Testing One vs. Three SPP Units 
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different SPP units of various filter sizes for the three stages would produce better results. Therefore, 
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5.3. SPP-GIoU-YOLOv3-MN Model Performance with Complete UAV Images

Complete UAV images contain extensive and complex backgrounds, which are quite different than
the 416 × 416 pixels photos contained in the test dataset used herein. Detection was run on 50 complete
UAV images (5472× 3648 pixels containing 0, 1, or more poppy plots) using the SPP-GIoU-YOLOv3-MN
model. This took ~110 s for completion, which is much faster than manual visual interpretation
(~1000 s). However, the detection results for complete UAV images were of lower quality than that for
the test dataset, with a false detection rate of 0.28 and a missed detection rate of 0.15 (Figure 15).
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6. Discussion

6.1. Testing One vs. Three SPP Units

In the tests described above, an SPP unit was only added in the first prediction stage (Figure 8).
However, as there were three different prediction stages, it was unclear whether adding three different
SPP units of various filter sizes for the three stages would produce better results. Therefore, a new
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three-unit SPP3-YOLOv3-MN model was tested against the single-unit SPP-YOLOv3-MN model using
the UAV poppy dataset (Figure 16).
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Figure 16. Structure of SPP3-YOLOv3-MN model.

Figure 17 shows the training and validation losses for the two models. The training process for
SPP3-YOLOv3-MN was similar to that for SPP-YOLOv3-MN but there was more rapid convergence.
However, both the training and validation losses for the latter model were smaller than those for the
former. Determining which model had a larger area under the PR curve (Figure 18) proved difficult
however, at a higher confidence the former model was more accurate, whereas the opposite was true
at a lower confidence. The average precision of the former model was only 0.16% lower than the
latter. Considering the uncertainty in the training, it is suggested that the precision was equal in
practical terms. However, the model parameters for the former were slightly larger and the speed was
slower (Table 9).
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Table 9. Model comparison between SPP-YOLOv3-MN and SPP3-YOLOv3-MN.

Model AP (%) Params (MB) Testing Time (s) Speed (FPS) F2 Score (max)

SPP-YOLOv3-MN 95.67 165.9 29.3 29.0 0.960
SPP3-YOLOv3-MN 95.51 175.1 30.2 28.1 0.954
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Figure 18. PR curve of the SPP3-YOLOv3-MN and SPP-YOLOv3-MN models.

The filter sizes for the SPP unit in SPP3-YOLOv3-MN were 13 × 13, 7 × 7, and 5 × 5; 26 × 26,
13 × 13, and 9 × 9; and 52 × 52, 26 × 26, and 18 × 18 (Section 3.2.1). However, as the feature map sizes
in the three stages were 13 × 13, 26 × 26, and 52 × 52, the filter sizes of the SPP unit in the second and
third stages were similar to the feature map sizes in the first and second stages. This indicated that
the features extracted by the SPP unit in the second and third stages were more similar to the former
whereas the accuracy was more similar to SPP-YOLOv3-MN. Additionally, in the second and third
prediction stages, up-sampling could lead to high-frequency information degradation and missing
edge information, such that adding SPP units could only extract certain repeated texture information.
In summary, adding two SPP units resulted in speed loss without a significant increase in AP.

6.2. Limitations of the Current Training Dataset

6.2.1. Poppy Complexity

Growth stage and altitude affect poppy identification, i.e., both lower altitudes and detection
during the flowering stage ease the identification process. Directly labeling all samples containing
opium poppy as poppy may affect the neural network’s ability to learn characteristics and thus affect
model performance for actual UAV images. Therefore, the performance of the SPP-GIoU-YOLOv3-MN
model with actual UAV images may be improved by instead labeling images by growth stage and
flying height.

6.2.2. Background Complexity

The scenes captured by real UAV images are much more complicated than the cropped images of
416 × 416 pixels included in the dataset. As shown in Figure 19, the background of the UAV images can
include complex objects, such as buildings, other crops, shrubs, and flowers that interfere with poppy
identification. The complex background in complete UAV images caused high false detection rates.
Therefore, we must add negative samples to the training dataset to adapt to the complex background
environment by enlarging the dataset and reducing false positives.
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6.3. Advantages and Applicability of the Proposed Method

The proposed technique is applicable to poppy identification at the seedling and flowering
stages at flying heights < 200 m. Using MobileNetv2 as a backbone network simplifies the model
and accelerates its forward propagation. The added SPP unit enhances the model’s ability to detect
large targets and using GIoU to calculate the bounding box regression loss yields enhanced accuracy.
In theory, these improvements are applicable well beyond the narrow scope of UAV poppy detection;
they could be applied to improve identification of other targets, such as ships, buildings, or vehicles.

6.4. Model Acceleration and Future Work

Although the model had a fast detection speed on the test dataset (up to 29 FPS), it took
approximately 2.2 s to analyze a complete UAV image (e.g., 6000 × 4000 pixels). The sliding window
method retains the majority of the image’s information but significantly affects the detection speed.
One method to improve this defect is to prune the model. This method, however, cannot fundamentally
solve the problem because of restrictions associated with the sliding windows methods. Due to the
sparsity of poppy plots in UAV images, the sliding window method involves many unnecessary
operations performing detections in a large number of poppy-free windows. To fundamentally hasten
model detection, the occurrence of such unnecessary operations need to be reduced. In future studies,
the authors intend to (1) build a new detection framework to accelerate model detection, which will
directly input complete UAV images without using the sliding window method, (2) use the CNN to
extract a mask that may contain poppies, and then (3) conduct accurate detection within the mask.
If there are no poppies in the initial image, the improved detection framework should skip the second
phase, which would significantly reduce detection time.

7. Conclusions

The use of UAV systems to detect opium poppy plots has become a main approach to poppy
surveillance. This method, however, currently relies mainly on manual visual interpretation of the
images. Here, we developed a novel object detection network (SPP-GIoU-YOLOv3-MN) for use in
poppy detection and achieved an AP of 96.37% and detection speed of 29 FPS using the test dataset.
This proposed method significantly accelerates poppy detection and is applicable at the seedling and
flowering stages at flying heights < 200 m. The proposed model also demonstrates an upgrade to the
current YOLOv3 model for the detection of other objects in UAV or satellite remote sensing images.
However, the use of sliding windows produced a large number of images without poppies, greatly
limiting the model’s detection speed. In future studies, we intend to develop a two-stage network in
which the first stage is used to extract the foreground and the second stage is used to accurately extract
the poppy position.
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