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Abstract: Programmed cell death (PCD) is a process intended for the maintenance of cellular home-
ostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during devel-
opmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal
studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and
regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase
in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have
witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still
unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further
propagated to result in the onset of PCD. In this review article, we discuss recent advancements in
the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we
discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other
signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+

signaling in PCD and to identify gaps for future research efforts.

Keywords: programmed cell death; calcium signal; hypersensitive response; abiotic stress; develop-
ment; signal crosstalk

1. Introduction

Programmed cell death (PCD) is a process that plays a fundamental role in plant
development and responses to biotic and abiotic stresses [1,2]. According to the differ-
ences in the expression of the conserved PCD-inducing genes, two main types of plant
PCD are distinguishable; developmental PCD (dPCD) regulated by internal factors, and
environmental PCD (ePCD) induced by external stimuli [3]. The basic features of PCD
include protoplast and nucleus shrinkage, chromatin condensation, cleavage of DNA and
vacuolization [4]. The occurrence of PCD is meant to eliminate infected cells, thus limiting
the proliferation of pathogenic bacteria [5].

It is reported that calcium (Ca2+), a universal second messenger, is critical for PCD
in plants [6]. Transient changes in cytosolic Ca2+ level are rapidly induced by diverse
stimuli in plants [7,8]. Substantial evidence indicates that Ca2+ plays an important role
in cell death regulation [9]. The emptying of intracellular Ca2+ stores and/or alteration
in intracellular Ca2+ levels has been shown to modulate cell death in almost all cell types.
Ca2+ permeable channels and Ca2+ sensor CaM, CBL-CIPK and CDPK are involved in Ca2+

signal transduction and PCD.

2. The role of Ca2+ in PCD
2.1. Biotic Stresses

Plants are constantly challenged by various pathogens like viruses, bacteria, and fungi.
To inhibit the spread and restrict the growth of pathogens, rapid PCD takes place at the
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initial infection site. Two innate immune systems play a fundamental role in PCD; PTI
(pathogen-associated molecular pattern (PAMP)-triggered immunity) and ETI (effector-
triggered immunity) [10,11], with the former getting more focus and hence has been better
explored. The classic example of plant PCD is the hypersensitive response (HR) [12–14]. It
is now well established that the Ca2+ signal is indispensable for the induction of HR. In
soybean and tobacco, HR was prevented by Ca2+ channel blocker La3+ or EGTA, showing
that Ca2+ was necessary for the induction of HR. Similarly, in Arabidopsis, Pseudomonas
syringae-induced HR was preceded by an increases in cytosolic Ca2+, and was blocked
by LaCl3 [15]. During the reciprocal evolution of gene-for-gene interactions, the plant’s
resistance (R) gene product function as a signalling adaptor for the pathogen’s avirulence
(avr) gene product, leading to refinement of HR. A study focusing on the early events in
HR observed a sustained Ca2+ elevation downstream of the avrRpm1/RPM1 gene-for-gene
interaction in Arabidopsis challenged by Pseudomonas syringae pv. tomato [16–18]. Overall,
these studies illustrate that the Ca2+ signal is one of the prerequisites for the induction of
HR in plants.

After the perception of different biotic and abiotic stimuli, spatial and temporal
changes in cytosolic free Ca2+ concentrations ([Ca2+]cyt) are frequently observed as an
immediate response [19,20]. The stress-induced increases in cytosolic Ca2+ is mediated
by Ca2+ transporters, such as cyclic nucleotide gated channels (CNGCs), two-pore Ca2+

channels (TPCs), Ca2+-ATPases and glutamate receptors (GLRs) [21].
CNGCs mediate Ca2+ influx and generate the Ca2+ signal, which play a fundamen-

tal role in HR induced by pathogens. It was found that CNGC2 (also called DND1), is
required for the induction of HR in Arabidopsis. cAMP-and cGMP-dependent Ca2+ ele-
vation and induction of HR were impaired in cngc2 loss-of-function mutant (also known
as dnd1) [22,23]. CNGC4 is also implicated in pathogen defense; loss-of-function mu-
tant of AtCNGC4 (dnd2/hlm1) showed remarkably similar autoimmune phenotypes to
dnd1, including defects in HR [24–26]. Moreover, heteropolymerization of CNGC2 and
CNGC4 is necessary for the pathogen-induced intracellular Ca2+ influx. Loss of function of
both CNGC2 and CNGC4 disrupts the downstream Ca2+-dependent pathogen signaling
leading to HR [27]. Two other CNGC channels AtCNGC11 and AtCNGC12 also play a
significant role in plant PCD by mediating Ca2+ fluxes [28,29]. Using electrophysiology,
Zhang (2019) showed that CNGC12, but not CNGC11, is an active Ca2+-permeable channel
in Xenopus oocytes. CNGC11 and CNGC12 knockout mutant plants exhibited partially
decreased resistance to an avirulent oomycete pathogen Hyaloperonospora parasitica as well
as the bacterial pathogen Pseudomonas syringae [30–32]. Interestingly, a 3 kb deletion across
AtCNGC11 and AtCNGC12 resulted in a novel, but functional chimeric AtCNGC11/12.
The mutant, named constitutive expresser of PR genes 22 (cpr22), exhibited increased
resistance to pathogen infection in the hemizygous state and conditional lethality in the
homozygous state [32,33]. Furthermore, HR-like spontaneous lesion formation in cpr22 was
shown to be Ca2+-dependent [34]. Moreover, Ca2+ channel blockers Gd3+ and La3+ sup-
pressed AtCNGC11/12-induced PCD. Overall, these results shed light on the critical role of
CNGC11 and CNGC12 in PCD. Furthermore CNGC20, a hyperpolarization-activated Ca2+

permeable channel, regulates bak1/serk4 cell death. Notably, CNGC19, the closest homolog
of CNGC20, makes a quantitative genetic contribution to bak1/serk4 cell death only in
the absence of CNGC20 in Arabidopsis [35]. As 20 CNGC members have been reported
in Arabidopsis, other CNGCs might also be possibly involved in the regulation of PCD in
plants. In addition, the heterologous combination of CNGCs increases and enriches the
regulation of PCD in plants.

Besides CNGCs, other Ca2+ transporters also play key roles in controlling intracellular
Ca2+ during HR triggered by pathogens. It has been demonstrated that tonoplast-localized
Ca2+ pumps ACA4/ACA11 are main players in regulating Ca2+ spike induced by bacterial
elicitor peptide flg22. The double-knockout aca4/11 mutants exhibited higher basal Ca2+

levels as well as amplitude of Ca2+ signal than wild-type. These data demonstrate the
important role of tonoplast-localized Ca2+ pumps in maintaining Ca2+ at homeostatic
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levels and for the initiation of proper PTI responses [36]. Similarly, Boursiac et al. (2010)
discovered that silencing the expression of two vacuolar-localized Ca2+-ATPases resulted in
spontaneous HR-like lesions and a faster pathogen response in Arabidopsis thaliana [37]. The
overexpression of a rice putative voltage-gated Ca2+ permeable channel, OsTPC1, resulted
in hypersensitivity to the Trichoderma viride xylanase (TvX) elicitor, with downstream events
including oxidative burst, activation of OsMPK2, and hypersensitive cell death. On the
other hand, these events were severely impaired in the insertional mutant, suggesting
that OsTPC1 determines sensitivity to the elicitor and is a key regulator of hypersensitive
cell death [38]. Glutamate receptors (GLRs) are also important transporters involved in
mediating HR-induced intracellular Ca2+ influx. The increase of intracellular Ca2+, induced
by HR, was impaired in the glr2.7/2.8/2.9 triple mutant, which exhibited sensitivity to
pathogens. These data indicate that GLR2.7/2.8/2.9 play an important role in PTI [39].

The endoplasmic reticulum (ER) stress-induced PCD is an important response path-
way in plant HR. Ca2+ pumps on the ER membrane play an important role in this process.
During the bacterial blight of rice, XA10, a kind of endogenous inducer of PCD, inhibits
the ER-Ca2+, leading to the production of ROS in the chloroplast, and eventually leading to
cell death. In addition, CPA, a specific blocker of plant ER-type IIA Ca2+ pumps (SERCA),
can induce ER stress, and via an increase in cytosolic Ca2+ concentrations, triggers PCD
in soybean cells. At the same time, mitochondria release cytochrome c and caspase-like
activities and thereby promote PCD together [40]. Silencing ER-localized type IIB Ca2+-
ATPase (NbCA1) can induce a similar extent of PCD to that induced by pathogens [41]. The
evidence shows that cell death suppressor Bax inhibitor-1 (BI-1) interacts with CaM and
then coordinates with Ca2+-ATPase to influence the ion homeostasis in plant cell death
regulation [42].

In recent years some progress has been made in understanding the mechanism for
regulation of these calcium transporters in HR. Cyclic nucleotides, cAMP/cGMP, can bind
on and activate PM channels which mediate the flux of extracellular Ca2+ and increase
cytosolic Ca2+ [43,44]. The cAMP-and cGMP-dependent Ca2+ elevation and induction of
HR were impaired in cngc2, indicating that CNGC2 is a typical cAMP/cGMP dependent
Ca2+ channel. In addition, CNGC2 is also activated by endogenous plant elicitor peptides
(PEPs), leading to cytosolic Ca2+ elevation. Physical damage to the cells results in Ca2+

elevation leading to the activation of METACASPASE4 (MC4) which in turn releases
Pep1 from its protein precursor, precursor of peptide 1 (PROPEP1). The released Pep1
then binds to Pep receptors (PEPRs), which activate a cyclic GMP (cGMP)-dependent
CNGC2, leading to pathogen-associated cytosolic Ca2+ elevation to regulate HR under
DAMPs in PTI. cAMP and cGMP induced Ca2+ signal also regulates the Pep-dependent
gene expression in Arabidopsis thaliana [45–47]. CNGC11 and CNGC12 are reported to be
involved in PCD. Using electrophysiology, it was shown that CNGC12, but not CNGC11,
functions as an active calcium channel. Furthermore, in Xenopus oocytes the cyclic nucleotide
monophosphates did not modulate the activities of both CNGCs. However, the activity of
CNGC12 (but not CNGC11) was significantly enhanced when CaM1 was co-expressed in
oocytes [30].

LRR receptor kinase BAK1 is located on the plasma membrane, and together with
FLS2/EFR forms a complex to perceive flg22, which may involve in the initial PTI-induced
cytosolic Ca2+ through phosphorylation, consequently negatively regulates HR [48–50]. Fur-
ther, BAK1 interacts with and phosphorylates CNGC20 which in turn regulates CNGC20
stability. BIK1, a key component downstream of BAK1 in plant immunity [51], activates
CNGC2 and CNGC4 by phosphorylation, leading to an increase in cytosolic Ca2+ in Ara-
bidopsis thaliana [27]. Cytosolic Ca2+ can trigger the proteolytic cleavage of BAK1 thus
negatively regulating the HR. All these studies indicate that BAK1 plays a negative role
in HR induced by pathogens. However, it was also discovered that overexpression of
BAK1-triggered cell death was dependent on SOBIR1 in Arabidopsis thaliana [52]. Moreover,
BAK1-interacting receptor kinase 1 (BIR1) was demonstrated to be involved in the negative
regulation of cell death. When the function of BIR1 is compromised, BAK1 and SOBIR1
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associate with each other in plants [53]. These findings suggest that maintaining the
homeostasis of BAK1 through a Ca2+ dependent proteolytic process is crucial for plant HR.

The stimulus-induced Ca2+ elevation is decoded by downstream Ca2+ sensors which
include CaM/CMLs, CBLs-CIPKs and CDPKs. A CaM binding protein, AtBAG6, is
upregulated by stress and is involved in plant PCD. The overexpression of AtBAG6 induced
the cell death phenotype in plants, which was consistent with PCD [54]. In tomatoes,
the downregulation of the expression of the APR134 gene, encoding for a CaM-related
protein, compromised the plant’s immune response. Similarly, increasing the expression
of CML43 (an orthologue of APR134 in Arabidopsis) led to accelerated HR induced by
avirulent pathogen [55,56]. These results highlight the role of the CaM-related proteins
as important mediators in Ca2+-dependent signals during the plant immune responses.
The extent of Ca2+ signal, ROS accumulation and PCD were significantly higher in the
sensitive Brassica oleracea group than in the resistant group after inoculation with Sclerotinia
sclerotiorum. Moreover, the expression of cell death-related WRKY transcription factors was
also different between the sensitive and resistant B. oleracea. These findings highlight the
role of WRKY transcription factors in linking the Ca2+ signal to downstream cell death in
the host in response to S. sclerotiorum [57]. The calcium-dependent kinase 3 (CPK3) has been
demonstrated to be a positive regulator of PCD in plants. Sphingosine or phytosphingosine
(PHS) activate CPK3 which phosphorylates its binding partner, the 14-3-3 proteins. This
binding leads to the disruption of the CPK3-14-3-3 protein complex and CPK3 degradation.
Moreover, Arabidopsis CPK3 knockouts exhibited the FB1-resistant phenotype, revealing
a novel role for CPK3 as a positive regulator of plant PCD [58]. Recently, root meristem
growth factor 7 (RGF7), perceived by the RGI4/RGI5-BAK1/SERK4 receptor complexes,
acts as a novel DAMP and takes an important part in Arabidopsis thaliana immunity. The
expression of RGF7 precursor-encoding gene (preRGF7) is highly induced by Pseudomonas
syringae, and is regulated by a signaling complex comprising of MPK3/MPK6-CPK5/CPK6-
WRKY33, with MPKs and CPKs working upstream of WRKY33 [59]. It has been shown
that CBL10 and CIPK6 are required for PCD triggered by kinase Pto upon recognition
of Pseudomonas syringae effectors AvrPto or AvrPtoB in tomatoes. Ca2+-CBL10/CIPK6
complex promotes the accumulation of ROS by activating RbohB, and hence regulates the
process of effector-triggered immunity [60]. Besides that, a study by Yang et al., (2007)
has shown that BAP genes act as general negative regulators of biotic and abiotic stress-
induced PCD. AtBAP1 and AtBAP2 encode small proteins containing a Ca2+-dependent
phospholipid-binding C2 domain and interact with their functional partner BON1. The
loss of BAP2 function results in promoting HR, while double mutant of bap1 bap2 lead to
seedling lethality mediated by PAD4 and EDS1, two regulators of defense responses and
cell death. On the other hand, overexpression of BAP1 or BAP2 with their partner BON1
abolishes pathogen-induced PCD [61].

Most of the previous studies in the field of plant immunity have regarded PTI and ETI
as two independent parallel immunity branches, however, the latest research results show
that PTI and ETI are interrelated. PTI is indispensable to ETI, plants with less efficient PTI
as the first layer of the immune system also exhibit diminished plant disease resistance
mediated by ETI in the second layer of the immune system. ETI can amplify PTI and induce
a more lasting immunity output by enhancing the expression of core protein components
in PTI, which helps plants to stimulate a strong and lasting immune response against
pathogen invasion [62]. In HR-induced PCD, Ca2+ signals might serve as a link between
PTI and ETI (Figure 1).



Cells 2021, 10, 1089 5 of 20
Cells 2021, 10, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 1. The role of calcium signal in biotic stress-induced PCD. Ca2+ channel, sensor and relative gene and protein are 
presented. 

PTI: pattern-triggered immunity; ETI: effector-triggered immunity; flg22: a 22 amino 
acid PAMP derived from bacterial flagellin; FB1: Fumonisins B1; FLS2: Flagellin-sensitive 
2; CNGCs: Cyclic nucleotide gated channel; BAK1: brassinosteroid insensitive 1-associ-
ated receptor kinase 1; SERK4: Somatic embryogenesis receptor kinase 4; BIK1: botrytis-
induced kinase 1 ; BIR1: BAK1-interacting receptor-like kinase 1; SOBIR1: suppressor of 
BIR1-1; Peps: plant elicitor peptide; PEPRs: extracellular Pep receptors; CaM: calmodulin; 
CML: CaM-like protein; CDPK(CPK): Ca2+-dependent protein kinase; CBL: calcineurin B-
like protein; CIPK: CBL-interacting protein kinase; cAMP: 3’-5’-cyclic adenosine mono-
phosphate; cGMP: cyclic guanosine monophosphate; AC: adenylate cyclase; PDE: phos-
phodiesterase; PHS: phytosphingosine; MC4: metacaspase 4; 14-3-3: 14-3-3 proteins; 
SERCA: sarco-endoplasmic reticulum Ca2+-ATPase; ACA: autoinhibited Ca2+-ATPase; 
RPM1: resistance to Pseudomonas syringae pv. Maculicola 1; AvrRpm1: Pseudomonas 
syringae type III effector; MAPK: Mitogen activated protein kinase (based on [10–62]). 
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Figure 1. The role of calcium signal in biotic stress-induced PCD. Ca2+ channel, sensor and relative gene and protein
are presented. PTI: pattern-triggered immunity; ETI: effector-triggered immunity; flg22: a 22 amino acid PAMP derived
from bacterial flagellin; FB1: Fumonisins B1; FLS2: Flagellin-sensitive 2; CNGCs: Cyclic nucleotide gated channel; BAK1:
brassinosteroid insensitive 1-associated receptor kinase 1; SERK4: Somatic embryogenesis receptor kinase 4; BIK1: botrytis-
induced kinase 1; BIR1: BAK1-interacting receptor-like kinase 1; SOBIR1: suppressor of BIR1-1; Peps: plant elicitor peptide;
PEPRs: extracellular Pep receptors; CaM: calmodulin; CML: CaM-like protein; CDPK(CPK): Ca2+-dependent protein
kinase; CBL: calcineurin B-like protein; CIPK: CBL-interacting protein kinase; cAMP: 3’-5’-cyclic adenosine monophosphate;
cGMP: cyclic guanosine monophosphate; AC: adenylate cyclase; PDE: phosphodiesterase; PHS: phytosphingosine; MC4:
metacaspase 4; 14-3-3: 14-3-3 proteins; SERCA: sarco-endoplasmic reticulum Ca2+-ATPase; ACA: autoinhibited Ca2+-
ATPase; RPM1: resistance to Pseudomonas syringae pv. Maculicola 1; AvrRpm1: Pseudomonas syringae type III effector;
MAPK: Mitogen activated protein kinase (based on [10–62]).

2.2. Abiotic Stress
2.2.1. Salt Stress

Under salt stress, the level of reactive oxygen species (ROS) in plants like grape [63], to-
bacco BY-2 cells [64] and barley [65] increases and results in PCD [66]. Salt stress triggers in-
creases in cytosolic free Ca2+ concentration ([Ca2+]cyt), which, as a signaling molecule, plays
an important role in regulating PCD in plant cells [67]. A low concentration (10 µmol/L)
of Ca2+ channel blocker LaCl3 effectively prevented the early stages of salt stress-induced
PCD in rice roots by inhibiting cytoplasmic Ca2+ elevation and ROS production [68]. Simi-
lar to the effect of La3+, the overexpression of Bcl-2, one of the most important antiapoptotic
members in mammals, significantly suppressed transient cytosolic Ca2+ elevations. This
led to a decrease in the expression levels of OsVPE2 and OsVPE3 (vacuolar processing
enzymes), prohibition of salt stress-induced PCD, and ultimately improved salt stress
tolerance in transgenic rice [69].
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Besides animals and higher plants, some physiological cell death processes (consid-
ered as a kind of PCD), have also been found in many prokaryotic microorganisms like
bacteria [70] and the phytoplankton [71]. Excess Ca2+ can antagonize salt stress-induced
cell death in prokaryotic organism Anabaena [72]. To date, the regulation mechanism of Ca2+

signal in salt stress-induced PCD is unclear. Glycosylinositol phosphorylceramide (GIPC),
as a Na+ sensor, gates the Ca2+ influx channels in plants under salt stress [73]. In addition,
some Ca2+ transporters, like annexin1 (ANN1) [74] and Ca2+/H+ antiporter (CAX1) [75],
take part in the alteration of cytosolic Ca2+ in plants under salt stress. However, there is
still no experimental evidence to demonstrate whether these components are also involved
in salt stress-induced PCD.

2.2.2. Temperature Stress

PCD can occur as a response to temperature stresses, including chilling and heat
shock [76,77]. Under chilling/cold conditions, the transient elevation in cytosolic free
calcium concentration ([Ca2+]cyt) acts as second messenger to stimulate a variety of down-
stream processes [78,79]. A previous study demonstrated that an alteration in the level
of [Ca2+]cyt plays a key role in regulating PCD [80]. However, the role of Ca2+ in temper-
ature stress-induced PCD process is only scarcely reported. It was identified that Ca2+

plays an important role in the initiation and execution of cold-induced PCD in cucum-
ber fruit [81]. To date, multiple transmembrane transport activity-related proteins, such
asannexins (ANNs) and cyclic nucleotide-gated channels (CNGCs), mediating Ca2+ influx
in response to abiotic stress, have been reported [82,83]. The G-protein regulator chilling
tolerance divergence 1 (COLD1) was first established to mediate the cold-induced influx of
Ca2+ and confer cold sensing in rice [84,85]. A previous study found that AtANN1 was
involved in heat-induced [Ca2+]cyt elevation and heat stress response [86]. A further study
showed that MYB30 negatively regulated the heat shock response partially through ANN1
and ANN4 [87]. Moreover, Ca2+-permeable transporter ANNEXIN1 (AtANN1) mediated
cold-induced Ca2+ influx, and acted downstream of OST1 to positively regulate freezing
tolerance in Arabidopsis [79]. In plants, CNGCs are involved in low or high temperature
stress and their functions are thought to result from their involvement in Ca2+ influx.
OsCNGC14 and OsCNGC16 play critical roles in heat as well as cold tolerance and are
modulators of Ca2+ signals in response to temperature stress in rice [88]. Furthermore, their
homologs AtCNGC2 and AtCNGC4 in Arabidopsis promote plant growth under chilling
and improve freezing tolerance [88]. Moreover, it was reported that disruption of moss
CNGCb and Arabidopsis CNGC2 resulted in a hyper-thermosensitive phenotype, show-
ing that these channels were involved in the control of the plant’s heat shock response
(HSR) [89]. AtCNGC6 is a heat-activated PM Ca2+ channel and improves the expression of
heat shock protein (HSP) genes, which enhence thermotolerance [90]. GLR3.3 and GLR3.5
were shown to mediate cold acclimation-induced chilling tolerance by regulating apoplas-
tic H2O2 production and redox homeostasis in tomatoes [91]. Besides Ca2+ channels and
transporters, the Ca2+-sensing receptor CAS has been shown to be partially involved in
heat-induced chloroplast Ca2+ response [92]. In addition, cold and freezing can cause the
change in a cell’s osmotic potential. The expression of osmotin can be activated by low
temperature, and it is involved in cold acclimation-induced PCD in the olive tree and in
arresting cold-induced Ca2+ signaling [93]. OSCA1, as an osmosensor, is responsible for
[Ca2+]cyt increases induced by water deficiency in plants. Further research is needed to
explore whether OSCA1 is involved in regulating cold-induced PCD [94]. In addition to the
above-described channels and transporters, membrane lipid composition can also regulate
the calcium-dependent heat-signaling pathway [95]. It has been suggested that MPK6 is
responsible for the activation of Arabidopsis vacuolar processing enzyme (γVPE) under HS
stress and played an essential role in HS-induced PCD [96].



Cells 2021, 10, 1089 7 of 20

2.2.3. Anoxic Stress

Plants undergo hypoxia stress under flooding. Root epidermal cells often form
aerenchyma through programmed death in response to hypoxia stress [97]. Studies have
shown that Ca2+ signaling regulates the hypoxia stress in plants. Under normal oxygen
supply, both Ca2+ channel inhibitors and protein phosphatase inhibitors promote cell death
in corn roots, while under insufficient oxygen supply, both Ca2+ chelator EGTA and protein
kinase inhibitors prevent this process [98]. In wheat roots, hypoxia stress induced the
increase in cytoplasmic Ca2+, which led to the Ca2+ accumulation in the mitochondrial
matrix and the formation of mitochondrial permeability transition pores (MPTP—a factor
in cell damage). These events lead to a rapid depletion of the inner membrane potential,
initial contraction of the mitochondrial matrix, and release of previously accumulated Ca2+.
All these events result in higher Ca2+ concentration and lead to the release of cytochrome
C, and, thereby, induce PCD [99].

2.2.4. Heavy Metal Stress

Heavy metals, can also induce PCD by triggering oxidative stress via the increase
of ROS production [3]. Up to now, several heavy metals, including W, Ag, Cd, Al, Zn,
Li, Cu, Co, Hg, Ni, Cr, Fe, have been reported to induce PCD in different types of cells
of plant species [3]. Among these heavy metals, Cd is a highly ubiquitous toxic heavy
metal. Because of the high physical resemblance to Cd and its importance for plant
growth and development, Ca2+ was used to alleviate the Cd-induced toxicity [100]. Ca2+

is supposed to be an intracellular “second messenger” that can mediate plant responses
to the biotic and abiotic stresses such as pathogen invasion, drought, salt, heat, cold and
heavy metal stress [101]. Ca2+ signatures are perceived by Ca2+ sensor proteins and evoke
downstream signaling responses [102]. In Arabidopsis, CDPKs, were found to enhance Cd
tolerance through intensifying H2S signal [103]. Furthermore, Ca2+ signaling is involved
in the regulation of Cd-induced cytotoxicity and cell death through the activation of the
MAPK and PI3K/Akt signaling pathways [104]. A copper-tolerant species Ulva compressa,
when in vitro cultivated with a sublethal concentration of copper (10 µm), showed an
increase in intracellular Ca2+, which took place through the activation of inositol 1,4,5
triphosphate (IP3)-sensitive calcium channels [105–107]. He et al. (2017) showed that
Ca2+ plays significant role in prohibiting the effects of NO on Al-induced PCD in peanut
root tips [108]. Ca2+ may be involved in Pb2+-mediated cell death and trigger the activity
of MAPK via the CDPK pathway [109]. The Ca2+/calmodulin system also participates
in response to toxicity mediated by Pb2+ and Ni2+ [110]. It has been demonstrated that
Ca2+ enhances tolerance against Cr stress through interacting with hydrogen sulfide in
Setaria italica. Moreover, CDPKs are involved in Cr stress by modulating the transcriptional
profiling of rice roots exposed to Cr stress [111,112]. Due to the high similarity in the ionic
radii of Ca2+ and other cations like Cd2+, there is a possibility of Cd2+ uptake through
Ca2+ channels or transporters. AtHMA1 functions as a Ca2+/heavy metal pump [113]. The
mechanism of the heavy metal-mediated Ca2+ signature and its relationship between the
Ca2+ signature and heavy metal-induced PCD requires in depth investigation.

2.2.5. Mechanical Damage

Plant damage due to mechanical events such insect bite and systematic wound is
inevitable in nature. Plants undergo PCD in response to mechanical damage. Different
proteins have been identified which link mechanical damage to downstream Ca2+ elevation.
One such candidate is MCA1, a plasma membrane protein that correlates Ca2+ influx with
mechanosensing in Arabidopsis thaliana [82]. The other candidates for the perception of
injury are GLRs. Plants transform injury-induced glutamate accumulation into Ca2+ signals
and, thereby, transmit stress signals to distant leaves mainly by GLR3.3 and GLR 3.6 [114].
In addition, hyperosmolality-gated OSCA-family channels have also been reported to be
Ca2+ permeable channels with membrane tension activation characteristics. However,
whether they participate in mechanical damage induced-PCD remains to be verified. It
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has been reported that CaM controls the synthesis of JA by regulating the phosphorylation
of the JAV1-JAZ8-WRKY51 complex, thus controlling the plant’s response to mechanical
injury [115]. Upon cellular injury, cysteine protease metacaspase4 (MC4) is instantly and
spatiotemporally activated with the increase of cytosolic Ca2+. MC4, then, promotes the
synthesis of pep1 and induces the HR and PCD [46]. Overall, these studies demonstrate
that Ca2+ signal is important for mechanical damage-induced PCD in plants (Figure 2).
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2.2.6. Comparison of Ca2+ Signaling Components under Biotic and Abiotic Stresses

It is now well established that a Ca2+ signal is required for the regulation of biotic
and abiotic stress-induced PCD in plants. Studies have shown that the major regulatory
mechanisms between these exhibit high similarities (Table 1). Ca2+ elevation triggered by
abiotic and biotic stimuli is mediated by the Ca2+ transporter on the plasma membrane
and the signal is further perceived and propagated by Ca2+ sensors such as CaM, CPKs
and CBLs. However, the sensors for perceiving abiotic and biotic stresses are different.
For example, FLS2/BAK1 complex act as a pathogen receptor [49–51], OSCA1 as an
osmosensor [94] and MOCA1 acts as a salt receptor in plant [73,116]. This is consistent
with the generation of a Ca2+ signal in plants, for example, re-exposure to the same extent
of salt stress can no longer induce Ca2+ signal after generating elevated Ca2+ under the first
exposure to salt stress. On the other hand, a new Ca2+ signal can be induced by cold stress
or exposure to flg22 [117–119]. This indicates that the mechanism of generating Ca2+ signal
under various stresses varies. In addition, the genes encoding for the Ca2+ transporter
proteins and their regulatory factors are different for plant PCDs under biotic and abiotic
stresses. Therefore, it can be inferred that the process of PCD in plants is triggered by the
Ca2+ signal acting downstream of different receptors under different stresses.
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Table 1. The regulation factors of the calcium signal in plant PCD under biotic and abiotic stresses.

PCD Receptor Calcium Channel
Regulation

Factor of Ca2+

Channel

Calcium
Sensor Substrate

Biotic
stresses

PTI FLS2/BAK1

CNGC2/4/11/12/19/20
GLR2.7/2.8/2.9

ACA4/11
SERCA

cAMP/cGMP
BAK1/BIK1

PEPR

CaM/CML
CPK3/5/6

RboHB
14-3-3

WRKY33
MC4

ETI / OsTPC1 / CaM
SlCBL10

SlCIPK6
MPK

Abiotic
stresses

Salt GIPC ANN1
CAX1 / CaM OsVPE2/3

Cold COLD1

ANN1
SlGLR3.3/3.5

CNGC2/4
OsCNGC14/16

COLD1
OST1 CaM Osmotin

Heat /
ANN1/4

OsCNGC14/16
CAS

MYB30 CaM MPK6
γVPE

Anoxic / / / CaM MPTP
Cytochrome C

Heavy metal / HMA1 / CaM
CDPKs MAPK8

Damage /
GLR3.3/3.6

MCA1
OSCA1.2

/ CaM JJW
MC4

2.3. Plant Development and Postharvest Storage

PCD is involved in several aspects of plant growth and development, such as tissue
senescence, embryogenesis, self-incompatibility, and transition from bisexual to unisexual
flowers [120]. Compared with abiotic-induced PCD, the molecular mechanisms of the
Ca2+ signal in developmental PCD (dPCD) have only partially been explored. However,
a few studies have demonstrated the crucial role of Ca2+ in dPCD processes, such as
specific tissue formation, leaf senescence and fertilization. Previous research showed that
tracheary element differentiation uses a specific mechanism coordinating secondary cell
wall synthesis and PCD. Moreover, through pharmacological approaches (by using either
EGTA to chelate Ca2+ or ruthenium red to inhibit Ca2+ influx), it has been established
that the execution of cell death requires an influx of Ca2+ into the cells [121]. PPF1, a
putative Ca2+ ion carrier, inhibited PCD in apical meristems of both G2 pea (Pisum sativum
L.) and transgenic Arabidopsis plants by keeping the cytoplasmic Ca2+ concentration at
a low level [122]. Previous reports showed that an increase in Ca2+ concentration in the
nucleus may activate the PCD in secretory cavity cells, and that Ca2+ elevation improved
the regulation of nuclear DNA degradation [123]. Subsequently, Bai et al. (2020) found
that CgCaN, a Ca2+-dependent DNase, directly functioned in nuclear DNA degradation
during the formation of secretory cavity by PCD in Citrus grandis fruit [124]. More recently,
it was reported that CPK1 could control senescence-related PCD by phosphorylation of
senescence master regulator ORE1 [125]. In another study on senescence-related cell death,
it was found that WRKY transcription factor could be phosphorylated by CPK and then
CPK-WSR1 (a WRKY regulating ROS and SA) modulated two well-defined inducers of
leaf senescence, salicylic acid (SA) and reactive oxygen species (ROS), to control cell death
and leaf senescence [126].

Double fertilization is a unique and significant process for flowering plant reproduc-
tion. Ca2+ plays crucial roles in pollen tube guidance and reception. During the process,
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it can lead to the PCD of the pollen tube and one synergid. It has been shown that the
synergid controls sperm delivery through the FER signal transduction pathway to initiate
and regulate their distinct Ca2+ signatures in response to the Ca2+ dynamics and growth
behavior of the pollen tube [127]. Besides involvement in double fertilization, PCD is also
induced by self-incompatibility (SI) in an S-specific manner incompatible pollen, which
reveals a mechanism to prevent self-fertilization [128]. In Papaver rhoeas, S-protein, control-
ling the SI, interacts with incompatible pollen and triggers a Ca2+-dependent signature,
leading to the inhibition of pollen tube growth [129,130]. In the development of the litchi
flower, researchers found that the inner integument cells of male flowers underwent the
PCD, which was triggered by distributional changes in Ca2+ [131].

Postharvest physiological deterioration (PPD) of cassava storage roots is a complex
process, which involves ROS, Ca2+ signaling transduction, and PCD [132]. Owiti et al.
(2011) showed that the expression of CaM proteins was significantly upregulated, which
could be the result of an oxidative burst-induced rapid increase in Ca2+ during early
PPD. During late PPD, the PCD pathway was activated due to an increase in cysteine
proteases [133] (Figure 3).
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2.4. Small Chemical Molecule

Many chemicals can induce PCD in plants, wherein the involvement of Ca2+ signaling
has been demonstrated. An early research report showed that Ca2+ plays an impor-
tant role in gallic acid-induced PCD which was effectively inhibited by a Ca2+ chelator
BAPTA-AM [134]. Thaxtomin A (TXT) is a nitrated dipeptide phytotoxin produced by
all plant-pathogenic Streptomyces species, and is necessary for the realization of PCD.
It has been demonstrated that TXT induces the transient Ca2+ increase in cells, activates
the anion channel and induces the accumulation of the defense gene PAL1, until PCD
takes place. Further, Ca2+ inhibitors La3+, Gd3+, or BAPTA inhibited the TXT-induced
PCD [134], showing an important role of Ca2+ in this process. In addition, it has also
been demonstrated that Ca2+ is involved in Victorin C, a host-selective cyclic peptide
toxin produced by Cochliobolus victoriae, that induced PCD in oats [135]. Chitosan, is a
component of the cell wall of many fungi and has been widely used to mimic pathogen
attack. Chitosan or oligochitosan induced PCD in soybean cells and tobacco suspension
cells which was suppressed by Ca2+ channel inhibitors [136,137]. A study has shown that
endopolygalacturonase (PG), a toxin produced by Sclerotinia sclerotiorum, induced a rapid
increase in [Ca2+]cyt and triggered PCD in soybeans. These results were further confirmed
by the observation that seedlings constitutively expressing a polygalacturonase-inhibiting
protein (PGIP) did not undergo PG-induced PCD [138].
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2.5. Metacaspases

Plant metacaspases (MCPs) are conserved cysteine proteases postulated as regulators
of PCD. A study has reported that the expression of tomato type II metacaspase (LeMCA1)
was rapidly upregulated in tomatoes during cell death induced by Botrytis cinerea, Similarly,
in tobacco, the expression of NbMCA1 enhanced the resistance against Colletotrichum de-
structivum [139]. On the other hand, a decrease in the expression of the type II metacaspase
asperata inhibited the PCD in the suspensor cells during embryogenesis in Picea [140].

Nine MCPs have been reported in Arabidopsis thaliana [141]. The in vitro catalytic
activities of recombinant type II metacaspase subfamily members AtMC4 (AtMCP2d),
AtMC5 and AtMC8 were found to be Ca2+-dependent while recombinant AtMC9 was
active under mildly acidic conditions and not dependent on stimulation by Ca2+ [142].
As mentioned above, AtMC4 plays a positive regulatory role in both biotic and abiotic
stress-induced PCD in Arabidopsis thaliana [47]. The residue Lys225 of AtMC4, a highly
conserved residue among the six Arabidopsis type II MCPs, is critical for the catalytic
activation by Ca2+, and essential for AtMC4-mediated activation of H2O2-induced cell
death in yeast [142]. The recently resolved structure of AtMC4 revealed insights into its
activation mechanism. The side chain of Lys225 in the linker domain blocks the active
site by sitting directly between two catalytic residues. Activation of AtMC4 by Ca2+ and
cleavage of its physiological substrate involves multiple cleavages in the linker domain [48].
MC5 was also found to mediate defense-related PCD in tobacco [143]. Another member
AtMC8 regulates oxygen stress-induced PCD in Arabidopsis. The expression of AtMC8
was upregulated in UVC and H2O2 induced PCD, while the loss of AtMC8 inhibited the
cell death [144]. To sum up, these results indicate that Ca2+ plays an important role in
MCP-mediated PCD.

2.6. Crosstalk between Ca2+ and Other Signaling Molecules in PCD

PCD is a complex biological process. Many studies on PCD in plants have shown that
PCD involves an intricate network of signaling pathways, including various molecular
signals, such as Ca2+, ROS, NO and phytohormones [145]. By regulating various aspects of
cellular signal transduction in plants, Ca2+ plays an essential role as a second messenger.
Moreover, these different signals have a crosstalk with the Ca2+ signal and form a regulatory
network for controlling PCD in plants in response to diverse stimuli. If Ca2+ is increased to
the level as attained just before the onset of pathogen-induced HR in soybean, PCD would
not occur. This indicates that the Ca2+ signal needs to coordinate with other signaling
pathways to regulate PCD [146].

ROS signals play an important role in both biotic and abiotic stress-induced PCD.
Activated in response to Ca2+ signal, CDPKs subsequently activate RBOH (respiratory
burst oxidase homolog) to influence ROS in different plants. Thus, RBOH acts as a hub
where Ca2+ and ROS signaling networks crosstalk [147–150]. It was reported that H2O2
stimulates a rapid influx of Ca2+ into soybean cells, which triggers physiological PCD [151].
In Arabidopsis, a mutation in the nuclear transporter SAD2 (sensitive to ABA and drought
2) is responsible for H2O2-induced cytosolic Ca2+ increase. Further research showed
that SAD2 works downstream of FBR11 (fumonisin B1-resistant 11) and plays a role in
Ca2+- and H2O2-mediated cell death [6]. Recently, H2O2 sensor LRR receptor kinase
HPCA1 (hydrogen peroxide-induced Ca2+ increase 1) has been demonstrated to mediate
H2O2-induced activation of Ca2+ channels in guard cells [152]. H2O2 may also regulate
mitochondrial permeability transition by elevation of [Ca2+]cyt. Further analysis showed
that the signaling pathway for [Ca2+]cyt-mediated mitochondrial permeability transition
was associated with H2O2-induced in tobacco protoplasts [153]. In Arabidopsis, mechanical
wounding triggered the activation of MPK8 which was dependent on two factors: its direct
binding with calmodulins (CaMs) in a Ca2+-dependent manner, and phosphorylation
and activation by a MAPKK MKK3. Once activated, MPK8 negatively regulates ROS
accumulation by controlling the expression of the RbohD gene. These results suggest that
MPK8 acts as converging point for Ca2+ and MAP kinase pathways for regulation of ROS
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dynamics [144,154]. BnaCPK6L/CPK2, located at the endoplasmic reticulum membrane,
interact with RbohD and regulate its activity by phosphorylation. Transient expression
of BnaCPK6L or overexpression of BnaCPK2 triggers ROS accumulation and HR-like cell
death in Brassica napus L. [12,14].

Recent evidence indicates that NO acts as an important cellular mediator in PCD
and defense responses. NO mobilizes intracellular Ca2+, while NO synthesis depends
on upstream protein phosphorylation events and cytosolic free Ca2+ increase [155]. In
pepper, a calmodulin gene, CaCaM1 plays important role in ROS and NO generation
required for cell death and defense response [156]. In plant innate immune signaling
cascades, Ca2+ increase and NO generation are crucial early steps and initiate HR to
avirulent pathogens [22,157–159]. During this process, cytosolic Ca2+ rise could cause NO
generation through CaM/CML, acting upstream of NO synthesis [22,159]. In Arabidopsis,
CNGC2 mediates cyclic nucleotide monophosphate-dependent Ca2+ flux which leads to
NO generation and HR. Further, the loss of function mutant of CNGC2 (DND1) did not
exhibit HR in response to avirulent pathogens [22].

Plant hormones, like SA, GA, and ethylene induce Ca2+ signal and play key roles in
PCD. It is reported that the double disruption of Arabidopsis vacuolar pumps ACA4 and
ACA11 leads to a high frequency of apoptosis-like lesions, caused during SA-dependent
PCD [22,38,160]. Therefore, these vacuolar pumps establish a link between vacuolar-
mediated Ca2+ signal and PCD in plants [38]. Okadaic acid (OA), a protein phosphatase
inhibitor, can completely inhibit the GA response which is induced by rapid changes in
cytosolic Ca2+ through regulating the gene expression and accelerated cell death [161].
Gaseous phytohormone ethylene has been reported to be involved in cell death signaling
in the aerenchyma formation in the root and stems of maize (Zea mays) [98] (Figure 4).
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3. Conclusions and Perspective

In this review, we focused on the role of the Ca2+ signal in plant PCD. In recent years,
various Ca2+ signaling components have been identified in the regulation of plant response
to diverse stresses, including the sensors of biotic and abiotic stresses. We, hereby, reviewed
their link with plant PCD. However, the upstream and downstream components of these
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pathways remain elusive. Moreover, how the plant senses heat, mechanical damage, and
heavy metal stress and how the Ca2+ signal is regulated and transmitted to result in PCD
during these stresses need further research. In addition, the crosstalk between Ca2+ and
other signaling pathways is not yet clear and needs further exploration. It is also not clear
whether other processes for the regulation of dPCD require the input of the Ca2+ signal.
Future studies on these research gaps are expected to broaden our understanding on the
role of Ca2+ signaling in PCD.
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Abbreviations

PCD Programmed Cell Death
dPCD Developmental Programmed Cell Death
ePCD Environmental Programmed Cell Death
CNGC Cyclic Nucleotide-Gated Channel
CaM Calmodulin
PPD Postharvest Physiological Deterioration
DHS D-Erythro-Sphinganine
MCPs Metacaspases
PG Polygalacturonase
MPTP Mitochondrial Permeability Transition Pore
CBL Calcineurin B-Like Protein
CIPK CBL-Interacting Protein Kinase
CPK Ca2+-Dependent Protein Kinase
PTI Pattern-Triggered Immunity
ETI Effector-Triggered Immunity
PAMP Pathogen-Associated Molecular Pattern
HR Hypersensitive Response
EGTA Ethylenebis (Oxyethylenenitrilo) Tetraacetic Acid
TPCs Two-Pore Channels
CAXs Ca2+/H+ exchangers
cAMP 3′-5′-Cyclic Adenosine Monophosphate
cGMP Cyclic Guanosine Monophosphate
PEPRs Pep Receptors
DAMPs Damage-Associated Molecular Patterns
ETH Ecdysis Triggering Hormone
CML CaM-Like Protein
EFR Elongation Factor Tu Receptor
AC Adenylate Cyclase
PDE Phosphodiesterase
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PM Plasma Membrane
TvX Tichoderma Viride Xylanase
MAPK Mitogen-Activated Protein Kinase
BAP Biofilm Associated Protein
SA Salicylic Acid
RBOHB Respiratory Burst Oxidase Homolog B
ROS Reactive Oxygen Species
ETH Ecdysis Triggering Hormone
GIPCs Glycosyl Inositol Phosphorylceramides
NOS Nitric Oxide Synthase
KEAs Plastid K+ Exchange Antiporters
VPE Vacuolar Processing Enzyme
PTP Permeability Transition Pore
BAPTA-AM Bis-(O-Aminophenoxy)-N,N,N,N’-Tetraacetic Acid Acetoxymethyl Ester
PGIP Polygalacturonase-Inhibiting Protein
PG Pyoderma Gangrenosum
HPCA1 Hydrogen Peroxide Sensor
GLR Glutamate Receptors
PEPs Plant Elicitor Peptides
PEPRs Extracellular Pep Receptors
ER stress Endoplasmic Reticulum Stress
SERCA Er-Type Iia Ca2+ Pumps
PHS Phytosphingosine
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