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Abstract: Increasing evidence links genomic and epigenomic instability, including multiple fragile sites regions to neuro-

psychiatric diseases including schizophrenia and autism. Cancer is the only other disease associated with multiple fragile 

site regions, and genome and epigenomic instability is a characteristic of cancer. Research on cancer is far more advanced 

than research on neuropsychiatric disease; hence, insight into neuropsychiatric disease may be derived from cancer re-

search results. Towards this end, this article will review the evidence linking schizophrenia and other neuropsychiatric 

diseases (especially autism) to genomic and epigenomic instability, and fragile sites. The results of studies on genetic, 

epigenetic and environmental components of schizophrenia and autism point to the importance of the folate-methionine-

transulfuration metabolic hub that is diseases also perturbed in cancer. The idea that the folate-methionine-transulfuration 

hub is important in neuropsychiatric is exciting because this hub present novel targets for drug development, suggests 

some drugs used in cancer may be useful in neuropsychiatric disease, and raises the possibility that nutrition interventions 

may influence the severity, presentation, or dynamics of disease. 
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INTRODUCTION 

 Genomic instability refers to an increased mutation rate 
that can take the form of chromosomal abnormalities, 
translocations, large or small insertions or deletions and base 
changes. Epigenomic instability refers to perturbed re-
sponses of gene regulation to environmental fluctuations. 
Fragile site regions of the genome have high levels of ge-
netic and epigenetic instability. 

 In 2003, we reported a link between somatic mutations 
(genomic instability) and fragile sites and schizophrenia [1]. 
Later, we reported aberrant epigenetic regulation of genes 
involved in dopamine metabolism in the synaptic cleft in 
schizophrenia and bipolar disease brains [2, 3]. Today, there 
is increasing evidence for genome instability in neuropsy-
chiatric diseases, including an association with fragile site 
regions. Cancer is the only other disease associated with 
multiple fragile site regions, and genome instability is a 
characteristic of cancer. This article will review the evidence 
linking schizophrenia and other neuropsychiatric diseases 
(especially autism) to genomic and epigenomic instability 
and fragile sites.  

Schizophrenia and Autism 

 Schizophrenia and Autism are neuropsychiatric diseases 
linked to multiple genetic and environmental factors. Like  
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many common illnesses these diseases remain an enigma 
because there is no single factor or small number of factors 
that accounts for a large number of patients.  

 The prevalence of schizophrenia is ~1% worldwide but 
varies between 0.3 to 2.7% [4]. Diagnosis is based on the 
appearance and duration of about 30 symptoms divided into 
positive (e. g. hallucinations (especially auditory are com- 
mon)), negative (e.g. withdrawal, blunted affect etc), and 
cognitive (executive function). However, symptoms (endo- 
phenotypes) and outcome (Fig. 1) vary even in the same 
family, raising the possibility that several different diseases 
(i. e. the “schizophrenias”) presenting similar collections of 
symptoms have been grouped together [5, 6]. These and 
other observations suggest that a genetic predisposition is not 
sufficient by itself to cause disease. Further in some cases, 
the disease appears to be environmentally induced in the 
absence of detectable genetic predisposition (see below). 

 Autism is a complex, early onset (typically <5 years of 
age) lifelong illness that is difficult to diagnose and treat. 
Autism appears to be multiple diseases that make up autism 
spectrum disorder (ASD) defined by limits in three behaviors 
(1) social interactions, (2) communication and imaginative 
play, and (3) interests and activities. Other symptoms include 
impaired immunological responses, inflammation (especially 
in the gut), and oxidative stress [7]. Today, treatments in-
clude intensive educational and behavioral interventions with 
drugs to reduce remaining symptoms.  

GENETICS 

 First-degree relatives of schizophrenia probands have a 
~10% probability of becoming ill [8], while ~ 50% of cases 
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of schizophrenia are spontaneous with no other affected fam-
ily member [9]. Although variable [10-12], the general belief 
is that ~50% of monozygotic twins afflicted with schizo-
phrenia are discordant for the disease, although progeny of 
both the well and ill discordant MZ twin have the elevated 
probably (~10%) typical of first degree relatives of ill indi-
viduals [13]. 

 Genetic studies have linked many genes and chromoso-
mal regions spread throughout the genome to schizophrenia 
in different families, but no single or small number of genes 
accounts for the majority of cases. Common alleles have 
small effects (e. g. ZNF804) while rare alleles (e. g. NRG1, 
DTNB1, DAOA and DISC1) have greater effects [14]. A 
summary of the genes linked to schizophrenia is shown in 
Table 1. Genes linked to schizophrenia do not affect a single 
neurobiological system, and include neurotrophic factors (e. 
g. BDNF, NRG), neuromodulatory receptors (DRD, HTR), 
members of the synaptic packaging and release machinery 
(SNAP25), and both inhibitory and excitatory neurotransmit-
ter systems (GRIN, GRIK, GABR). Also, there are genes 
linked to folate processing (MTHFR) and methylation (e.g. 
DNMT, COMT) see below.  

 Except for mitochondrial defects in a subset of patients, no 
other common genetic or environmental factor, nor is an effec-
tive intervention linked to a majority of patients [15]. 
Clearly, there a genetic component with multiple genes 
linked to the disease (for reviews see [16] and [17]). Many 
genes linked to autism are similar to those linked to schizo-
phrenia and bipolar disorder ([18, 19], http://neuropsych.bu. 
edu).  

EPIGENETICS 

 Epigenetic programming refers to factors that are “epi”, 
or "on top of" genetic (DNA) sequences and was coined by 

Waddington in the 1940s to link genes and development [20] 
(Fig. 2). Epigenetic regulation allows a single genome to 
code for functionally different cell types and short-term ad-
aptation (for reviews see references [21-25]). In contrast, 
DNA sequence changes are responsible for long-term adap-
tation and evolution.  

 The term “epigenetic programming” is evolving, and 
today refers to reversible molecular changes to DNA, RNA 
or proteins (e. g. histones) that regulate gene function but do 
not involve DNA base changes. Epigenetic changes include 
DNA methylation, RNA modification (e.g. editing (addi-
tion/deletion/change to base sequence), RNA interference) 
and both histone and non-histone proteins modifications (e. 
g. methylation, acetylation, phosphorylation, sumoylation, 
ubiquitination). 

 Epigenetic programming of chromatin begins shortly 
after DNA synthesis, although subsequent alterations may 
occur in response to variety of ordinary or pathological envi-
ronmental or biological factors. Epigenetic changes occur 
globally early in development, and at specific loci through-
out life and in disease states [26-28]. In cancer, the impact of 
epigenetic modification on gene expression has been studied 
for some time [29-35].  

DNA Methylation 

 DNA methylation is the best-characterized epigenetic 
factor controlling gene expression (Fig. 3; for reviews see 
[24, 25, 36-38]). In vertebrates, 4-8% of all cytosines, and 
70% of cytosines within the 5'CpG3' dinucleotide sequence, 
are methylated. In contrast, 70% of the cytosines at 5'CpG3' 
dinucleotide sequences within promoter regions of active 
genes are unmethylated. There are ~29,000 "CpG islands" 
(regions rich in 5'CpGs3') in the human genome 2 sequence. 
The methylation state of half of these islands regulates 
mRNA expression. About half of these islands are highly 
methylated [39]. DNA methyltransferase (DNMT) enzymes 
are responsible for methylation of CpG sequences [40], with 
the rate of methylation determined by the availability of 
DNMTs and their relative affinity for a given CpG site on 
DNA [41], and other co-factors (see below). Today, no DNA 
demethylase has been identified.  

 The number and location of methylated CpG sites in 
promoter regions usually, but not always, correlates with 
gene expression in vivo [24, 25, 36, 37, 38, 42]. Usually, 
dense DNA methylation is associated with irreversible si-
lencing of gene expression, while a strong activator can 
overcome partial methylation. Partial promoter DNA methy-
lation marks genes that may become unmethylated and ex-
pressed, allowing for re-adaptation to a changing micro- or 
macro- environment (e.g. season, ecological conditions, nu-
tritional habits and demands of different developmental peri-
ods (see below)). More complexity in DNA methylation is 
introduced when the state of CpG sites within genes (i.e. 
outside the promoter regions) are compared to promoter 
dinucleotides. Ball et al. [39] show that methylation of CpG 
sites within genes is correlated with light promoter methyla-
tion; hence, gene body methylation appears to correlate with 
expression. 

 DNA methylation in promoter regions occurring at 
5’CpG3’ dinucleotides within transcription factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (1). Classification of schizophrenia based on outcome. The 

outcome of schizophrenia disease is highly variable; suggesting 

different diseases may have been grouped together. (Adapted from 

Summary report of symposium “Schizophrenia and other Psychosis 

(http://www.science.org.au). 
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Table 1. Fragile Sites in the Human Genome 

Chr Locus  Location R/C Agent 

1 FRA1E 1p21.2 C Aph 

1 FRA1M 1p21.3 R FolA 

1 FRA1D 1p22 C Aph 

1 FRA1L 1p31 C Aph 

1 FRA1C 1p31.2 C Aph 

1 FRA1B 1p32 C Aph 

1 FRA1A 1p36 C Aph 

1 FRA1J 1q12 C  5-Aza 

1 FRA1F 1q21 C Aph 

1 FRA1G 1q25.1 C Aph 

1 FRA1K 1q31 C Aph 

1 FRA1H 1q42 C  5-Aza 

1 FRA1I 1q44 C Aph 

2 FRA2L 2p11.2 R  FolA 

2 FRA2E 2p13 C Aph 

2 FRA2D 2p16.2 C Aph 

2 FRA2C 2p24.2 C Aph 

2 FRA2A 2q11.2 R FolA 

2 FRA2B 2q13 R FolA 

2 FRA2F 2q21.3 C Aph 

2 FRA2K 2q22.3 C Aph 

2 FRA2G 2q31 C Aph 

2 FRA2H 2q32.1 C Aph 

2 FRA2I 2q33 C Aph 

2 FRA2J 2q37.3 C Aph 

3 FRA3B 3p14.2 C Aph 

3 FRA3A 3p24.2 C Aph 

3 FRA3D 3q25 C Aph 

3 FRA3C 3q27 C Aph 

4 FRA4D 4p15 C Aph 

4 FRA4A 4p16.1 C Aph 

4 FRA4B 4q12 C BrdU 

4 FRA4E 4q27 C Unclas 

4 FRA4C 4q31.1 C Aph 

5 FRA5A 5p13 C BrdU 

5 FRA5E 5p14 C Aph 

5 FRA5B 5q15 C BrdU 

5 FRA5D 5q15 C Aph 

5 FRA5F 5q21 C Aph 
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(Table 1). Contd….. 

Chr Locus  Location R/C Agent 

5 FRA5C 5q31.1 C Aph 

5 FRA5G 5q35 R FolA 

6 FRA6C 6p22.2 C Aph 

6 FRA6A 6p23 R FolA 

6 FRA6B 6p25.1 C Aph 

6 FRA6D 6q13 C BrdU 

6 FRA6G 6q15 C Aph 

6 FRA6F 6q21 C Aph 

6 FRA6E 6q26 C Aph 

7 FRA7A 7p11.2 R FolA 

7 FRA7D 7p13 C Aph 

7 FRA7C 7p14.2 C Aph 

7 FRA7B 7p22 C Aph 

7 FRA7J 7q11 C Aph 

7 FRA7E 7q21.2 C Aph 

7 FRA7F 7q22 C Aph 

7 FRA7G 7q31.2 C Aph 

7 FRA7H 7q32.3 C Aph 

7 FRA7I 7q36 C Aph 

8 FRA8C  8q24.1 C Aph 

8 FRA8E  8q24.1 R DistA 

8 FRA8F 8q13 R Unclass 

8 FRA8B 8q22.1 C Aph 

8 FRA8A 8q22.3 R FolA 

8 FRA8D 8q24.3 C Aph 

9 FRA9A  9p21 R FolA 

9 FRA9C  9p21 C BrdU 

9 FRA9B  9q32 R FolA 

9 FRA9E  9q32 C Aph 

9 FRA9F 9q12 C  5-Aza 

9 FRA9D 9q22.1 C Aph 

10 FRA10B  10q25.2 R BrdU 

10 FRA10E  10q25.2 C Aph 

10 FRA10G 10q11.2 C Aph 

10 FRA10C 10q21 C BrdU 

10 FRA10D 10q22.1 C Aph 

10  FRA10A 10q23.3 R FolA 

10 FRA10F 10q26.1 C Aph 

11 FRA11C  11p15.1 C Aph 

11 FRA11I  11p15.1 R DistA 
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(Table 1). Contd….. 

Chr Locus  Location R/C Agent 

11 FRA11E 11p13 C Aph 

11 FRA11D 11p14.2 C Aph 

11 FRA11H 11q13 C Aph 

11  FRA11A 11q13.3 R FolA 

11 FRA11F 11q14.2 C Aph 

11  FRA11B 11q23.3 R FolA 

11 FRA11G 11q23.3 C Aph 

12 FRA12A 12q13.1 R FolA 

12 FRA12B 12q21.3 C Aph 

12 FRA12C 12q24 R BrdU 

12 FRA12E 12q24 C Aph 

12 FRA12D 12q24.13 R FolA 

13 FRA13A 13q13.2 C Aph 

13 FRA13B 13q21 C BrdU 

13 FRA13C 13q21.2 C Aph 

13 FRA13D 13q32 C Aph 

14 FRA14B 14q23 C Aph 

14 FRA14C 14q24.1 C Aph 

15 FRA15A 15q22 C Aph 

16 FRA16B  16q22.1 R DistA 

16 FRA16C  16q22.1 C Aph 

16 FRA16E 16p12.1 R Aph 

16 FRA16A 16p13.11 R FolA 

16 FRA16D 16q23.2 C Aph 

17 FRA17A 17p12 R DistA 

17 FRA17B 17q23.1 C Aph 

18 FRA18A 18q12.2 C Aph 

18 FRA18B 18q21.3 C Aph 

19 FRA19B 19p13 R FolA 

19 FRA19A 19q13 C  5-Aza 

20 FRA20A 20p11.23 R FolA 

20 FRA20B 20p12.2 C Aph 

22 FRA22B 22q12.2 C Aph 

22 FRA22A 22q13 R FolA 

X FRAXB Xp22.31 C  Aph 

X FRAXC Xq22.1 C Aph 

X FRAXD Xq27.1 C Aph 

X FRAXA Xq27.3 R FolA 

X FRAXE Xq28 R FolA 

X FRAXF Xq28  FolA 

Chr = chromosome number, R/C= Rare or common, Aph=amphidicolin, Fola= Folic acid, 5-Aza= Azacytidine, Data was compiled from [147, 148] and Genome Database. 1999. Chr 
= chromosome; R/C = rare/common, Aph = amphidicolin or folic acid, FolA = Folic Acid; 5-AzaC = 5-Azacytidine, BrdU –Bromo-uridine, Unclass = unclassified, DistA = Distamy-
cin(http://ncbi.nlm.nih.gov). 
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recognition sites (e.g. GGGCGG and TGACGTCA for fac-
tors stimulatory protein 1 (SP1) and cAMP response element 
protein (CREB), respectively) may decrease expression of 
genes driven by these factors [25]. Gene activation itself may 
impact local DNA methylation. For instance, transcription 

factor (e.g. SP1) binding may interfere with DNA promoter 
methylation directly [43].  

 Transcription can be inhibited by proteins that bind di-
rectly or indirectly to methylated DNA (see referenced re-
views above). One methylated DNA binding family, consist-
ing of the MeCP2, MBD1, MBD2, MBD3, and MBD4 pro-
teins, has a conserved methyl-binding domain (MBD) and 
binds singly methylated CpG dinucleotides [44]. Another 
repressor family, all containing a zinc-finger motif, consists 
of Kaiso protein, which binds CGCGs, the Kaiso binding 
sequence (KBS; recognition sequence = TCCTGCNA) pro-
tein, and the ZBTB4 and ZBTB38 proteins that bind lone 
methylated CpGs dinucleotides [45]. 

 Epigenetic changes in DNA are correlated with amino 
terminal histone 3 modifications (methylation and acetyla-
tion)(for reviews see [46, 47, 25]; Fig. 3). Promoter regions 
of expressed genes (i.e., unmethylated regions) have histone 
3 lysine-4 methylation (H3K4

me
) and histone 3 lysine-9 ace-

tylation (H3K9
ac

) modifications. Promoter regions of un-
expressed genes, (i.e. highly methylated regions) have no 
modification at histone 3 lysine 4 (H3K4) but have histone 4 
lysine 9 methylation (H3K9

me
).  

 Generally, chromatin codes (DNA and histone) are pre-
served through mitosis, although reprogramming may occur 
[48]. During meiosis and early development, complex differ-
ential global chromatin reprogramming occurs, some spe-
cific for male or female germline and others for develop-
ment. Some germline epigenetic patterns are inherited [48]. 

 Epigenetic programming imprints some genes to be ex-
pression in a parental origin dependent manner [47]. Gene 
imprinting is proven for ~80 genes, and predicted for ~200 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Genetics, epigenetics, and development. Waddington 

[20] coined the term epigenetics linking heritable factors to devel-

opment. He likened development to a ball rolling down a valley, 

with epigenetic changes to DNA (DNA was proven to be the ge-

netic material during this same period of time) directing a single 

genome towards different developmental outcomes, i.e. cell types. 

Epigenetic changes to DNA in a mature cell make development 

into another type of cell difficult (the ball cannot move into another 

valley).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Epigenetic programming to chromatin. DNA methyl transferases (DNMTs) add methyl groups to the cytosines in CpG dinucleo-

tide sequences. Histone 3 lysine 9 methylation (H3K9me) is concurrent with local DNA methylation in promoters. In the absence of pro-

moter DNA methylation, histone 3 lysine 4 methylation (H3K4me) and histone 3 lysine 9 acetylation (H3K9ac) modification are found. Al-

though both the DNA and histone modifications are reversible, only histone de-acetylases (HDAC) and de-methylases are known, no DNA 

de-methylase enzyme has been identified. Adapted from [25]. 
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genes (http://www.geneimprint.com). Most imprinted genes 
are associated with growth and development. In female cells, 
epigenetic changes turn off all gene expression from one X 
chromosome randomly in each cell during early embryo-
genesis [49]. This insures that chromosome X gene expres-
sion levels are similar for female (XX) and male (XY) cells.  

 Although, epigenetic contributions to cancer phenotypes 
have been studied for some time, only recently has this area 
of research begun to impact neurological diseases. We and 
others have previously reviewed [24, 25, 50, 51] the connec-
tion between epigenetic modifications and neurological dis-
ease, including the effect of folic acid (a source of methyl 
groups for epigenetic modifications) metabolism on psy-
chotic symptoms, and the co-morbidity of psychosis with 

diseases clearly linked to epigenetic changes (e. g. schizo-
phrenia, bipolar disease, autism, Rett's and Angelmen's 
/Prader-Willi disease, mental retardation and degeneration 
(see below)). 

GENETIC AND EPIGENETIC REGULATION OF 

DOPAMINE METABOLISM 

 The dopamine hypothesis of schizophrenia arose because 
many anti-psychotic medications used in the treatment of 
schizophrenia are dopamine receptor antagonists. Oxygen 
methylation of dopamine by Catechol-O-Methyl Transferase 
(COMT) appears to be the prominent means of dopamine 
catabolism after synaptic release in brain regions such as the 
prefrontal cortex (reviewed in [52]). The 5’ region of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Genetic and epigenetic regulation of dopamine metabolism in schizophrenia. (A) Dopamine released by the pre-synaptic neuron 

into the synaptic cleft may dock with dopamine receptors on the post-synaptic neuron for downstream signaling; be degraded by MAO or 

COMT; or be taken back up into the pre-synaptic neuron by binding to DAT. (B) When dopamine degradation is high, for instance, by an 

increase in COMT activity, dopamine receptors expression is elevated to compensate for low amounts of dopamine in the synaptic cleft. (C) 

In schizophrenia, the coordinated up-regulation of the dopamine receptors does not exist, or exists at a greatly reduced level. 
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COMT gene contains methylation sites that are actively 
regulated. Our experiments [2, 3] studied promoter methyla-
tion and gene expression levels in Brodmann Area 46 (DL-
PFC) of normal versus neuropsychiatric (schizophrenia and 
bipolar) individuals (Fig. 4). The results revealed a signifi-
cant correlation between membrane-bound COMT (MB-
COMT) promoter hypo-methylation (especially at SP1 bind-
ing sites) and over-expression of the MB-COMT gene pro-
duct in schizophrenia and bipolar disorder.  

 The same samples used above were genotyped for a 
common COMT allele (Val158Met single nucleotide poly-
morphism (SNP)). The results showed that schizophrenia 
samples were more likely to have a VAL allele, and less 
likely to be homozygous for the MET allele than controls. 
Bipolar patients were more likely to be homozygous for the 
VAL allele than controls.  

 The Val158Met polymorphism is known to directly af-
fect the thermostability of the MB-COMT protein. The Met 
alleles is thermolabile, causing COMT enzyme activity in 
Met homozygotes to drop to approximately 1/3 the level of 
Val homozygotes at physiological temperature [53]. COMT 
hyperactivity (from the Val allele) has been linked to poor 
working memory as well as disturbed executive function and 
attention [54-58]. Genetic epigenetic gene expression results 
showed that dopamine degradation in the synaptic cleft is 
increased in individuals with schizophrenia because of in-
creased COMT activity or expression. 

 Additional studies examined the expression and regula-
tion of other genes involved in dopamine metabolism. The 
results revealed that expression of the dopamine receptor 1 
(DRD1) was inversely correlated with MB-COMT expres-
sion in all groups, although to a lower level in the patient 
groups. DRD2 showed the reverse pattern: hypo-methylation 
of the MB-COMT promoter was nearly always associated 
with hypo-methylation of the DRD2 promoter and higher 
DRD2 gene expression levels. However, schizophrenia and 
bipolar patients show a significantly less severe decrease in 
methylation of their DRD2 promoters in response to MB-
COMT hypo-methylation.  

 Also, the promoter methylation state of the RELN gene 
was significantly linked to Val158Met genotype. All schizo-
phrenics and control subjects possessing a Val/Val genotype 
had a hyper-methylated RELN promoter and a decrease in 
RELN gene expression. This is consistent with results [59, 
60] that hyper-methylation of the RELN promoter and sub-
sequent low expression of the reelin gene in the frontal lobes 
is correlated with schizophrenia.  

 The fact that control subjects more strongly downregulate 
DRD1 expression and upregulate DRD2 expression when 
they possess a hypo-methylated MB-COMT promoter sug-
gests that a mechanism exists for regulation of synaptic do-
pamine at the transcriptional level. Coordinated regulation 
was absent or decreased in neuropsychiatric patients. More 
recent unpublished data has detected aberrant methylation of 
the DAT1 and DRD4 promoters, but not the NRG1, HTR2A 
or NOS1 promoters, in samples from schizophrenic brains 
versus control subjects. The results suggest that aberrant 
synaptic dopamine metabolism in the schizophrenia/bipolar 
brain through genetic or epigenetic causes may contribute to 
disease pathogenesis. 

 Other groups have also examined methylation deficits in 
schizophrenia. For example, the methyltransferase DNMT1is 
up-regulated in the inhibitory inter-neurons of schizophrenia 
patients (reviewed in [61]). DNMT1 up-regulation is sug-
gested to induce hyper-methylation and down-regulation of 
RELN and the GABA synthesizing enzyme GAD67 in pre-
frontal inter-neurons of schizophrenia patients. Woo et al. 
[62] and Costa et al. [61] speculated that down-regulation of 
the NMDA receptor subunit NR2A in these neurons may 
stem from hyper-methylation after DNMT1 up-regulation. 
RELN controls the surface expression of two other NMDA 
receptor subunits (NR2B and NR1, [63]) suggesting a possi-
ble deficit in NMDA receptors in the inter-neurons of 
schizophrenics. This supports the “NMDA hypofunction 
theory of schizophrenia” developed from observations that 
NMDA receptor antagonists, PCP and ketamine, both induce 
schizophrenia-like symptoms. In addition, the SOX10 (sex-
determining region Y-box containing gene 10) gene, an oli-
godendrocyte specific transciption factor with a large CpG 
promoter island, is hyper-methylated and down-regulated in 
the prefrontal cortex (BA10) of schizophrenia patients [64]. 

GENOMIC INSTABILITY 

 Our initial research on schizophrenia focused on 
monozygotic twins. The goal was to understand disease dis-
cordance: how does one monozygotic twin avoid illness, and 
how do both the ill and well twin passed the same elevated 
genetic predisposition to progeny [1]. The specific aim was 
to identify, clone and sequence the expected small number of 
somatic changes present in monozygotic twins discordant for 
disease, and then do further studies to determine whether any 
differences were related to disease occurrence/presentation. 
The research targeted anonymous (CAG)n because these se-
quences are unstable and located within a number of genes 
linked to schizophrenia (e.g. [65-67], Fig. 5). The experi-
ments examined anonymous restriction length polymorphism 
(RFLPs) of PCR amplicons containing (CAG)n repeating and 
adjacent sequences in lymphocytes using a method devel-
oped by us called Targeted Genomic Differential Display 
(TGDD) [68]. TGDD is similar to differential display [69], 
but examines subsets of DNA sequences sharing a targeted 
sequence. 

 Unexpectedly, a statistically significant high level of 
RFLP variability around (CAG)n was detected in monozy-
gotic twins discordant for schizophrenia (Fig. 6). Twin pairs 
concordant for the disease had greater variability than con-
trols, but for this small sample size this variability did not 
reach statistical significance. Assuming all the twin pairs 
were monozygotic (i. e., began life with identical DNA), 
RFLP variability must reflect somatic mutation rates after 
twinning. Hence, the results showed that a high somatic mu-
tation rate was associated with schizophrenia, especially in 
monozygotic twins discordant for disease.  

 Evidence supporting the idea include that schizophrenia 
is linked to genome instability. Cytogenetic observations of 
increased chromosome aneuploidy in brain cells from indi-
viduals with schizophrenia [70, 71] and other neurological 
diseases including autism, ataxia-telangiectasia [72, 73], 
Alzheimer's disease [72], Down syndrome, Edwards syn-
drome, Patau syndrome, Parkinson's disease, spinal muscular 
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atrophy, mental retardation, Turner syndrome, psychiatric 
disorders associated with trisome X and Klinefleter syn-
drome, and 47,XYY karyotype (reviewed in [74- 
77]). Other evidence (reviewed in [1]) is the skewed (CAG)n 
repeat distribution in schizophrenia (Fig. 5), and the inverse 
correlation of disease with some cancer (reviewed in [78]). 

 More recently, genome wide scanning of SNPs in asso-
ciation studies revealed an elevated rate of copy number 

variation (CNV) in schizophrenia [79-82], and a number of 
other neuropsychiatric diseases such as autism, mental retar-
dation, bipolar disease, Rett syndrome, Tourette’s syndrome, 
Prader-Willi/Angelman syndrome etc. (e.g. [18, 83], for re-
view see [84]). Clearly, genomic instability is linked to neu-
rological disease. 

FRAGILE SITES 

 Fragile sites are regions of the genome that are prone to 
mutation and epigenetic changes; hence, hot spots for ge-
nomic instability. A fragile site is defined as unstable DNA 
stretch that appears as a gap or break on metaphase chromo-
somes (Fig. 7A) when DNA replication of dividing cells is 
partially inhibited by incubation in culture medium deficient 
in folic acid or containing Bromodeoxyuridine (BrdU), dis-
tamycin, 5 azacytidine, or aphidicolin [85, 86].  

 Fragile sites are unusual chromosomal abnormalities be-
cause, although heritable, they appear only in a subset of 
cells, and usually only occur when induced. There are 119 
known fragile sites (Tables 1 and 2), spread throughout the 
genome classified as common or rare based on frequency in 
the population (greater or less than 5%, respectively).  

 The first identified and best studied example of the asso-
ciation between fragile sites and mental illness is Fragile X 
syndrome. Fragile X syndrome is associated with transcrip-
tional silencing of either FMR1 or FMR2 (Fragile X mental 
retardation genes 1 and 2) on chromosome X (for review see 
[87]). Silencing of FMR1 or FMR2 is accompanied by hy-
per-methylation of the (CGG)n expansion within fragile sites 
FRAXA at Xq27.3 or FRAXE at Xq28, respectively. The 
number and methylation status of the (CCG)n repeating se-
quences influences the expression of the fragile X mental 
retardation genes. The FRAXA and FRAXE promoter sites 
behave similarly. For FRAXA sites, well individuals have 7 
to 50 (CCG)n repeating sequences (with a mode of 30). Men-
tal retardation occurs, and the fragile site becomes visible 
under folate deficient conditions, when the repeat number 
exceeds 230 and becomes hyper-methylated. Repeat num-
bers can reach up to 2000. Numbers between 50 and 200 are 
un-methylated and considered “pre-mutations”, but carriers 
may have symptoms other than mental retardation [88]. 
Schizophrenia is linked to several fragile sites (Table 4), 
some of which are unique (e.g. [89]). Neurological diseases 
and cancers [90, 91] are linked to specific sites as well  
(Table 3).  

 Cells from schizophrenia patients grown in the absence 
of folate present a greater overall number of fragile sites per 
metaphase than controls [92, 93]. These results may indicate 
that schizophrenia patients may have a greater sensitivity to 
folic acid deficiency, or a higher number of fragile sites with 
borderline expansion (e. g. see (CAG)n repeats in schizo-
phrenia above).  

 Most fragile sites are mapped only to the low-resolution 
chromosomal cytogenetic band level; ~15 fragile sites are 
characterized at the sequence level. One site appears to be ~3 
million base pairs (bp) in size and contains 10 genes and 
multiple repeat sequences. Rare folate sensitive sites like 
FRAXA are composed of the expanded simple trinucleotide 
repeat (CCG)n while some contain other interspersed repeats 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Trinucleotide repeat distribution in individuals with 

schizophrenia. Genes having (CAG)n and (CCG)n repeating se-

quences have been linked to specific diseases and to schizophrenia. 

The specific disease mutations are typical of repeat diseases where 

a repeat number over a threshold value (~50 repeats) leads to dis-

ease. Black = Distribution in unaffected individuals. Grey = In 

schizophrenia individuals, the repeat distribution is skewed towards 

larger sizes but not greater than the threshold value linked to spe-

cific disease.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Somatic genomic instability in twins affected by 

schizophrenia. TGDD was used for RFLP analysis of genomic 

fragments containing (CAG)n repeats and adjacent sequence in 12 

pairs of monozygotic twins. The results showed that twins concor-

dantly well or concordantly affected by schizophrenia had fewer 

differences than twins discordantly affected by schizophrenia. As-

suming these twins began life as with identical DNA (i.e. are 

monozygotic), the observed differences represent somatic muta-

tions, and the results show a higher somatic mutation rate in twins 

discordantly affected by schizophrenia. 
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(e.g. LINE) or AT-rich sequences (e. g. common fragile sites 
are linked to AT-rich sequences). Replication of repeating 
sequences, or any sequence that deviates from the mean G+C 
level, can stress metabolism because the DNA replication 
machinery requires a different ratio of deoxynucleoside 
triphosphates (i. e. the ratio of G+C vs A+T).  

 We calculated that ~70% of the human genome was de-
void of fragile sites by determining what percent of the ge-
nome, at the cytogenetic band level, was linked to one or 
more fragile sites (Fig. 7B). Our preliminary analysis [1] 
using chromosome abnormalities and genes linked to 
schizophrenia (reported in [94] and [95], respectively) found 
that ~70%, rather than the expected ~30% (X^2, p = 0.001), 
co-localize to regions of the having fragile sites.  

 More recent studies by us reviewed 387 genetic studies 
from the literature that identified 111 unique genes linked to 
schizophrenia (Fig. 8). Of the 111 genes, 58 co-localized 
with at least one fragile site at the Giemsa band level (df = 1, 

2
=14.227, p <0 .0001; Odds Ratio = 2.92). Moreover, a sig-

nificant number of rare (CCG)n containing fragile sites co-
localized with the sample of genes (df = 1, 

2
=5.67, p < .025; 

Odds Ratio = 2.285). More detailed and updated information 
will be provided elsewhere.  

 Expansion of repeating sequences within fragile sites is 
accompanied by local hyper-methylation (i.e. FRAXA and 
FRAXE) and the appearance of fragile sites in vitro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (7). Fragile site appearance and distribution. A. Cytogenetic appearance of fragile X. Arrows point to fragile sites. B. Distributation 

of fragile sites along chromosome 1. The bars beside the cytogenetic bands represent the fragile site locations (see Table 1). Dark to light 

bars represent inducing agents. Amphidicolin, 5-Azacytidine, and Folic acid, respectively. Taken from [150]. 

Table 2. Summary of Fragile Sites within the Human  

Genome 

Inducer Common Rare Total 

Folic 78 22 100 

Amphidicolin 78 0 78 

BrdU 7 2 9 

5-AzaC 4 0 4 

Distamycin 0 5 5 

Unclassified 1 0 1 
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Table 3. Neurological Diseases Associated with Specific Fragile Sites. Gene Names for Abbreviations are Shown in Table 4 

Fragile Site Associated Gene(s) Neurological Disease 

FRA2A  Mental retardation/schizophrenia 

FRA2B  Autism 

FRA4F GRID2 Tremor/Ataxia 

FRA6A  Autism 

FRA6E PARK2 Autosomal Juvenile Parkinsonism 

FRA6F LAMA4 Schizophrenia 

FRA7I CNTAP2 Tourette's  

FRA9F  Schizophrenia 

FRA11B CBL2 Jacobsen's Syndrome 

FRA12A DIP2B Autism / Mental retardation 

FRA13A NBEA Sporadic Autism 

FRA15A RORA Tremor/Ataxia, Imbalance 

FRAXA FMR1 Fragile X Mental Retardation / FRAXA Tremor Ataxia 

FRAXC IL1RAPL1, DMD Mental Retardation associated with complex glycerol kinase deficiency 

FRAXE FMR2 Fragile X Mental Retardation (mild) 

Global FS Expression ATR Seckel syndrome 

 

Table 4. Summary of Genes Linked to Schizophrenia and Fragile Sites 

GENE FRAGILE 

NAME ALIAS FUNCTION ADDRESS SITE ADDRESS 

CHROMOSOME 1 

GSTM1     glutathione S-transferase M1 1p13.3     

GRIK3    glutamate receptor ionotropic 1p34-p33     

HTR6    5-hydroxytryptamine (serotonin receptor type 6) 1p36-p35 FRA1A 1p36 

RHD    Rhesus blood group D antigen 1p36.11 FRA1A 1p36 

MTHFR    5 10-methylenetetrahydrofolate 1p36.3 FRA1A 1p36 

SCZD9    schizophrenia disorer 9 1q21-q22 FRA1F 1q21 

SYT11    Synaptotagamin X1 1q21.2 FRA1F 1q21 

KCNN3 hSKCa3  potassium intermediate/small c 1q21.3 FRA1F 1q21 

RGS4   regulator: g-protein signaling 4 1q23.2     

 IL10    interleukin 10 1q31-q32 FRA1K 1q31 

DISC2    disrupted in schizophrenia 2 1q32.1     

DISC1    disrupted in schizophrenia 1 1q42.1 FRA1H 1q42 

CHROMOSOME 2 

NOGO RTN4 reticulon 4 2p13-p14 FRA2E 2p13 

IL1B   interleukin 1 beta 2q14     

NR4A2   
nuclear receptor subfamily 4, group A, member 

2 
2q22-23 FRA2K 2q22.3 

CTLA4    cytotoxic T-lymphocyte-associative protein 2q33 FRA2I 2q33 
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(Table 4). Contd….. 

GENE FRAGILE 

NAME ALIAS FUNCTION ADDRESS SITE ADDRESS 

CHROMOSOME 3 

GRM2 GRM2 glutamate receptor metabotropic 2 3p21.31     

 CCK    cholecystokinin 3p22-p21.3     

GRM7 GRM7 glutamate receptor metabotropic 7 3p26.1-p25.1     

CHL1 CALL   
cell-adhesion molecule with homology to 

L1CAM 
3p26.1     

DRD3    dopamine receptor D3  3q13.3     

CHROMOSOME 4 

GABRB1 GABRB1 
gamma-aminobutyric acid (GABA) receptor, 

beta 1 
4p12     

CCKAR     cholecystokinin A receptor 4p15.1-p15.2 FRA4D 4p15 

DRD5    dopamine receptor D5 4p16.1 FRA4A 4p16.1 

CHROMOSOME 5 

GDNF    glial cell derived neurotrophic factor 5p13.1-p12 FRA5A 5p13 

SCZD1    schizophrenia disorder 1 5q11.2-q13.3     

Homer 1     homer homolog 1 (Drosoph) 5q14.2     

HTR4    5-hydroxytryptamine (serotonin) receptor 4 5q31-q33.2 FRA5C 5q31.1 

GABRB2   GABA A receptor, beta 2 5q34     

H2 rec HRH2  histamine H2 receptor 5q35.3 FRA5G 5q35 

DRD1   dopamine receptor D1 5q35.1 FRA5G 5q35 

CHROMOSOME 6 

NQO2   NADPH hydrogenase quinone 2 6pter-q12 FRA6C/A/B 6p22.2/23/25.1 

NOTCH4    Notch homolog 4 (Drosophila) 6p21.3     

TNFA   Tumor necrosis factor alpha 6p21.31     

HLA HLA-A major histocompatability complex , class I, A 6p21.3     

TNXB   tenascin XB 6p21.3     

DTNBP1   dystrobrevin binding protein 1 6p22.3     

SCZD3   schizophrenia disorder 3 6p23 FRA6A 6p23 

SCA1    spinocerebellar ataxia 1 (oliv) 6p23 FRA6A 6p23 

CB1 CNR1  Cannabinoid receptor 1  6q14-q15 FRA6G 6q15 

SCZD5   schizophrenia disorder 5 6q13-q26 FRA6D/E 6q13,q26 

HTR1B    5-hydroxytryptamine (serotonin) receptor 1B 6q13 FRA6D 6q13 

Fyn kinase FYN  FYN oncogene related to SRC, FGR, YES 6q21 FRA6F 6q21 

CHROMOSOME 7 

DDC DDC 
 dopa decarboxylase (aromatic L-amino acid 

decarboxylase) 
 7p11 FRA7A 7p11.2 

NPY   Neuropeptide Y 7p15.1     

GRM3    glutamate receptor metabotropi fact. 3  7q21.1-q21.2 FRA7E 7q21.2 

RELN    reelin  7q22 FRA7F 7q22 

 



Genomic and Epigenomic Instability, Fragile Sites, Schizophrenia Current Genomics, 2010, Vol. 11, No. 6    459 

(Table 4). Contd….. 

GENE FRAGILE 

NAME ALIAS FUNCTION ADDRESS SITE ADDRESS 

CHROMOSOME 8 

NRG1    neuregulin 1 8p21-p12     

SCZD6   schizophrenia disorder 6 8p21     

PPP3CC   protein phosphotase 3 8p21.2     

FDZ3   frizzled homolog 3 8p21     

DPYSL2   human dihydroppyrimidinase-related protein 2 8p21-p22     

CHROMOSOME 9 

OPRS1 OPRS1 opioid receptor, sigma 1 9p13.2     

DBH   dopamine beta-hydroxylase (dop) 9q34     

GRIN1 NMDA glutamate receptor ionotropic 9q34.3     

CHROMOSOME 10 

SCA8   spinocerebellar axia protein 8 10q23.3-24.1 FRA10A 10q23.3 

VMAT2 SVMT 
solute carrier family 18 (vesicular monoamine), 

member 2 
10q25 FRA10B/E 10q25.2 

CHROMOSOME 11 

PAX6    paired box gene 6 (aniridia k) 11p13 FRA11E 11p13 

BDNF    brain-derived neurotrophic fac 11p13 FRA11E 11p13 

TPH1    tryptophan hydroxylase  11p15.3-p14 FRA11D 11p14.2 

TH    tyrosine hydroxylase 11p15.5     

cPLA2 HTATIP2 HIV-1 Tat Interactive Protein 60kDa 11q13 FRA11A/H 11q13.3/ 13 

GRIA4    glutamate receptor ionotrophi 11q22     

DRD2    Dopamine receptor D2 11q23 FRA11B/G 11q23.3 

HMBS    hydroxymethylbilane synthase 11q23.3 FRA11B/G 11q23.3 

B3GAT   beta-1, 3-Glucronyltransferase-1 11q25     

CHROMOSOME 12 

NR2B GRIN2B 
glutamate receptor, ionotropic, N-methyl D-

aspartate 2B 
12p12     

NTF3 NT3 neurotrophin 3 12p13     

B37 DRPLA 
dentatarubral-pallidoluysian atrophy (atrophin- 

1) 
12p13.31     

PAH   phenylalanine hydroxlase  12q22-24.2 FRA12C/E/D 12q24/24.13 

PLA2    phospholipase A2. group IB  12q23-q24.1 FRA12C/E/D 12q24/24.13 

NOS1    nitric oxide synthase 1 (neuro) 12q24.2-q24.31 FRA12C/E 12q24 

DAO DAOA d-amino acid oxidase 12q24 FRA12C/E/D 12q24/24.13 

CHROMOSOME 13 

CAGR1 ***   mab21-like 1 (c. elegans) 13q13 FRA13A 13q13.2 

HTR2 HTR2/ HTR2a 5-hydorxytryptamine (serotonin) receptor 13q14-q21 FRA13B/C 13q21-q21.2 

SCZD7   schizophrenia disorder 7 13q32 FRA13D 13q32 

G72 DAOA d-amino acid oxidase activator 13q34     
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(Table 4). Contd….. 

GENE FRAGILE 

NAME ALIAS FUNCTION ADDRESS SITE ADDRESS 

CHROMOSOME14 

NPAS3   neuronal pas domain protein 3 14q12-q13     

CHROMOSOME 15       

HERC2   hect doman and RLD2 15q13     

CHRNA7    cholinergic receptor nicotini 15q14     

SCZD10   schizophrenia disorder 10 15q15     

CHROMOSOME16 

GRIN2A   glutamate receptor, ionotropic 2A 16p13.2     

CHROMOSOME 17 

SLC6A4 SLC6A4 serotonin transporter 17q11.2-q12     

 ACE     angiotensin I converting enzym 17q23 FRA17B 17q23.1 

CHROMOSOME 18 

IMPA2   inositol(myo)-1(or 4)-monophos 18p11.2     

CHROMOSOME 19 

SCA6 CACNA1A 
 calcium channel, voltage dependent, P/Q type, 

alpha 1A subunit 
19p13.2-p13.1 FRA19B 19p13 

APOE    apolipoprotein E 19q13.2 FRA19A 19q13 

DNMT   DNA methyltrasnferase 1 19q13.2 FRA19A 19q13 

CHROMOSOME 20 

PRNP   prion protein (p27-30) (Creutz) 20pter-p12 FRA20B 20p12.2 

SNAP-25   synaptosomal-associated protein 25kDa 20p12-p11.2 FRA20B/A 20p12.2/11.23 

CHGB   chromogranin B ( secretogranin 1)  20pter-p12 FRA20B 20p12.2 

CHROMOSOME 22 

COMT    catechol-O-methyltransferase 22q11.21     

SNAP29    synaptosomal-associated protein 22q11.21     

PCQAP   PC2 (positive cofactor 2 mult 22q11.2     

PRODH/DGCR6   DiGeorge Syndrome critical region, gene 6 22q11.21     

UFD1L    ubiquitin fusion degradation 1 22q11.21     

ZNF74    zinc finger protein 74 (Cos52) 22q11.21     

APOL-4   apolipoprotien L-4 22q11.2-13.2 FRA22A/B 22q12.2/13 

APOL-2   apolipoprotien L2 22q12 FRA22B 22q12.2 

SYN3   synaptin 3 22q12.3     

 TIMP3    tissue inhibitor of metalloprot.3 22q12.3     

YWHAH    tyrosine 3-monooxygenase/trypt 22q12.3     

APOL-1   apolipoprotein L1 22q13.1 FRA22A 22q13 

SYNGR1   synaptogyrin 1 22q13.1 FRA22A 22q13 

CYP2D6    cytochrome P450 family 2 sub 22q13.1 FRA22A 22q13 



Genomic and Epigenomic Instability, Fragile Sites, Schizophrenia Current Genomics, 2010, Vol. 11, No. 6    461 

(Table 4). Contd….. 

GENE FRAGILE 

NAME ALIAS FUNCTION ADDRESS SITE ADDRESS 

IL2RB   interleukin 2 receptor beta  22q13/13.1 FRA22A 22q13 

BZRP BZRP benzodiazapine receptor (peripheral) 22q13.31 FRA22A 22q13 

WKL1 MLC1 
megalencephalic leukoencephalopathy with 

subcortical cysts 1  
22q13.33 FRA22A 22q13 

X CHROMOSOME 

HTR2C   5-hydorxytryptamine (serotonin) receptor 2C Xq24     

 L1CAM    L1 cell adhesion molecule   Xq28 FRAXE/F Xq28 

Studies were obtained from the National Institute of Health’s database linking specific genes to schizophrenia at http://www.geneticassociationdb.com. In addition, a Pubmed search 
using the keywords "gene AND schizophrenia" yielded more unique studies. The genes found using these two methods were then searched more exclusively using the keywords “ 
gene name” AND schizophrenia” in order to more thoroughly assess whether at least one positive association was found between a gene and schizophrenia. Genes are organized by 

chromosomal locations, and appear in bold when co-localizing with a chromosomal fragile sites. The co-localizing fragile site name and address is shown. More information can be 
found at http://schizogad.bu.edu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Genomic distribution of genes, chromosomal regions, 

and chromosomal abnormalities linked to schizophrenia vs 

fragile sites. These results were obtained by cataloguing genes 

linked to schizophrenia from a Pubmed search 

(http://www.ncbi.nlm.nih.gov) using the words "schizophrenia" 

AND "genes", "genetic studies", or "chromosomal abnormalities". 

The genomic regions that contain a fragile site was determined 

from a Pubmed search using the words "fragile sites". The genome 

"real-estate" of each locus and all the fragile sites was taken as the 

highest known chromosome banding resolution. Negative controls 

consisting of (a) all human genes and (b) genes tested but not found 

to be associated with schizophrenia did not have any preferential 

association with fragile sites.  

Certainly, genes in fragile sites regions in the brain may be 
impacted in vivo when individuals are folate malnourished 
during development. In adults, DNA replication in the brain 
occurs in the dentate gyrus and olfactory bulb, hence folate 
deprivation could impact neurogenesis during all periods of 
life, perhaps transiently increasing the severity of disease.  

 In summary, fragile sites are more frequent in schizo-
phrenia and co-localize with schizophrenia-linked genes. 

Fragile sites are sensitive to conditions that interfere with 
DNA replication, including folate deficiencies. Schizophre-
nia is linked to folate metabolism genetically (e. g. through 
hypoactive polymorphisms in genes that directly affect folate 
processing (e. g. MTHFR, MTR – see meta-analysis in [96])) 
and through epigenetic studies (see above) and environ-
mental studies (see below).  

ENVIRONMENTAL FACTORS AND SCHIZOPHRE-
NIA 

 Some environmental factors linked to schizophrenia dur-
ing early development are listed in Table 5. No factor is suf-
ficient by itself to induce disease. Family history, CNS dam-
age, bereavement, and rubella infection increase the odds 
ratio most for disease. Paternal age and nutrition, well-
documented factors linked to schizophrenia, provide impor-
tant clues for understanding the biochemistry of schizophre-
nia. Further, the metabolic links can be used to postulate a 
role for other environmental components in disease (see be-
low).  

Paternal Age 

 Since 1958, many studies have implicated paternal age as 
an environmental factor influencing the occurrence of 
schizophrenia (e. g. [97-99]). For instance, Malespina et al. 
[97] reported a three-fold increase in the incidence of 
schizophrenia in progeny of fathers over the age of 50 years 
(Fig. 9). Today, the association with maternal age is unclear. 
Paternal and maternal age are linked to autism [100]. 

 The paternal age connection implicates changes to pater-
nal germline DNA in some cases of schizophrenia because 
DNA is the sole paternal biological contribution to progeny. 
Paternal aging is linked to diminished semen quality [101] 
and fertility [102], increases in sperm DNA damage (e.g. 
[103-105]) spontaneous abortions [105, 106], birth defects 
[106, 107] and singe base changes in rare autosomal domi-
nant diseases [108-110]. For instance, mutations in DF1 fi-
broblast growth factor receptor (FGFR3) are linked to 
Achondroplasia. Mutations in FGF2 are linked to Apert, 
Crouzon, and Pfeiffer syndrome (PS), although some PS 
mutations may occur in FGFR2. Mutations in the lamina A 
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(LMNA) gene are linked to Progeria, while mutations in 
REarranged during transfection (RET) are linked to multiple 
endocrine neoplasia (MEN2A MEN2B) and medullary thy-
roid carcinoma (MTC).  

 Base substitutions account for all but progeria mutations 
in LMNA. The majority of mutations are transitions, (C to T) 

although some transversions (C to G) occur in a single 
dinucleotide CpG sequence. However, neither the number of 
replication cycles nor the observed mutation rates [110-113] 
accounts for the exponential rather than linear increase in 
disease as a function age; hence, it was suggested that these 
mutations confer a selection growth advantage to sperm. 
Lower and more linear-like increases as a function of pater-
nal age are observed for a number of other rare autosomal 
dominant diseases such as neurobromatosis, bilateral retino-
blastoma, Treacher Collins syndrome, multiple extostoses, 
and Sotos syndrome [108, 112, 113], as well as Down syn-
drome, neural tube defects, congenital cataracts, and reduc-
tion defects of the upper limb [105, 107]. 

Nutrition 

 Under-nutrition (general caloric or protein deficiency) 
and malnutrition (deficiencies in specific elements, e. g. folic 
acid, zinc, copper, etc.) occur worldwide and are the most 
common diseases of childhood and prenatal life. Moderate to 
severe under-nutrition occurring prior to 2 years of age is 
associated with persistent behavioral and cognitive deficits 
that resist nutritional rehabilitation [114]. Pregnant mothers 
exposed to famine [115, 116] or malnourished (e.g. for folate 
deficiencies [117]) have an increased risk for children with 
schizophrenia. Maternal exposure to nutritional insults leads 
to persistent physiological and biochemical effects on the 
offspring [118-121]. Nutritional, factors that have been 
linked to schizophrenia and autism, like folate deficiency, 
can impact both genetics (DNA damage and fragile site ex-
pression) and epigenetics (DNA methylation via folate defi-
ciency) in affected individuals. Generally, the specific 
mechanism(s) by which nutritional deficiencies produce 
these birth defects are unknown. 

Folic Acid 

 The importance of folic acid in preventing birth defects 
(e.g. neural tube defects including spina bifida) is well 
known, although the mechanism of disease induction is not 
understood [122]. Less well known is that fact that folic acid 
deficiencies are associated with a number of neurological 
diseases (e. g. [123, 124]) including schizophrenia and mood 
disorders [125-129], and are common in patients with psy-
chopathology [130]. Furthermore, genes specifying proteins 
involved in folate metabolism are associated with schizo-
phrenia and mood disorders as well as autism and other neu-
ropsychiatric diseases [131]. Folic acid provides methyl 
groups to form S-adenosyl-methionine (SAM, see below), 
the universal intracellular methyl donor during methylation 
reactions such as those important in epigenetics. 

Folic Acid Metabolism 

 At the molecular level, folic acid deficiencies have the 

potential to disrupt nucleic acid metabolism, processes that 

require energy (i.e. ATP or NAD, GTP), activated nucleotide 

precursors (ribo - and deoxyribo- nucleoside triphosphates, 

e. g. DNA replication and RNA transcription), or SAM (or 

folate directly) for methylation (Fig. 10). Abbreviated 

schemes of de novo synthetic pathways for ribo- and deoxy-

ribo- nucleoside triphosphate synthesis are shown in Fig. 
(11). Folate derivatives are required by thymidine synthase 

Table 5. Odds Ratio of Genetics and Environmental Factors 

Linked to Schizophrenia. Adapted from [149] 

Factor  Odds Ratio 

Winter 1.2 Place/time of birth 

Urban 1.5 

Influenza 2.0 

Respiratory 2.2 

Rubella 5.2 

Poliovirus 1.1 

Infection 

CNS 4.0 

Famine 2.0 

Bereavement 6.2 

Flood 1.8 

Unwantedness 2.4 

Prenatal 

Maternal depr 1.8 

Rh incompatibility 2.8 

Hypoxia 3.0 

CNS damage 7.0 

Low birth weight 1.6 

Obstetric 

Pre-eclampsia 2.5 

Genetics Family history 9.7 

 

 

 

 

 

 

 

 

 

 

Fig. (9). The effect of paternal age on schizophrenia. The data 

shows a linear increase in the incidence of schizophrenia and pater-

nal age, and a three-fold increase for children of fathers over the 

age of 50. Figure is adapted from [97]. 
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Fig. (10). Folic Acid Cycle. Folate is an essential nutrient that is required in the synthesis of nucleic acid, s-adenosyl methionine (SAM) and 

amino acids. Further, synthesis of these monomers and their incorporation into polymeric molecules most times requires activated nucleosides 

like ATP, NAD and GTP whose synthesis depends on folic acid intermediates. Hence, the synthesis of DNA/RNA and SAM is heavily de-

pendent on folic acid. (Figure adapted from http://www.tcd.ied/ IUBMB-Nicholson/pdf/29.pdf). 
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Fig. (11). Abbreviated schematic of metabolic pathways leading to the de novo biosynthesis of RNA and DNA precursors. Purines are 

synthesized from a branchpoint intermediate, inosine monophosphate (IMP). In the primidine pathway, deoxyuridine and deoxythymidine 

intermedates are made from deoxycytidine diposphate. ATP, is predominantly synthesized from ADP in the mitochondria, and is the most 

used cofactor in the cell. Deoxynucleotides are made from ribonucleotides. 

that converts dUMP to dTMP, and for two steps in the purine 
biosynthetic pathway to make IMP; hence impacting ribo 
and deoxyribo purine synthesis.  

 Folate participates in the methioine cycle to synthesize S-

adenosyl methionine (SAM). SAM is the second most used 

cofactor in the cells after ATP (Fig. 12). SAM is used by 

>100 methyl transferases that act on DNA, RNA, proteins  

(e. g. DNA methyl transferase DNMT (for review see [40])), 

histone methyl transferases (HMT), and small molecules 

(e.g. COMT), and for the synthesis of polyamines that stabi-
lize DNA.  

 In the methionine cycle, a methyl group from folate is 
use by the enzyme, Methionine Synthase (MS), to convert 
homocysteine (HCY) to methionine. Alternatively, Betaine 
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Homocysteine Methyl Transferase (BHMT) regenerates me-
thionine from HCY using a methyl group from betaine (cho-
line). Dietary and regenerated methionine reacts with ATP to 
generate SAM, while HCY is the product of de-methylated 
(via methyl transferases) and de-adenylated SAM. 

 Besides being used to reform methionine, HCY may be 
directed towards the trans-sulfuration pathway to produce 
the amino acid cysteine, and the primary intracellular anti-
oxidant, glutathionine (GSH) HCY is up-regulated in 
schizophrenia patients with a 5 microM plasma HCY level 
associated with a ~1.7 fold increase in schizophrenia risk 
[95].  

 MS, the enzyme that uses folate to reform methionine  
from HCY, covalently adds a folate derived methyl group to  
the dopamine D4 receptor. The dopamine D4 receptor acts  
like a methyl transferase when activated by dopamine and  
transfers the methyl group to membrane lipid polysaccha- 
ride, changing local membrane fluidity [131]. Dopamine  
function and metabolism is therefore tied to the folate- 
methionine-transulfuration metabolic hub in multiple ways:  
directly, through dopamine degradation by COMT, and indi- 
rectly through dopamine D4 receptor methyl transferase ac- 
tivity and promoter methylation of genes active in dopamine  
metabolism in the synaptic cleft.  This metabolic hub (Fig.  
12) links DNA replication and epigenetic changes through  
folate and SAM metabolism, and because epigenetic mark- 
ing closely follows DNA replication at the macromolecular  

level. HCY, a key intermediate used for SAM metabolism, is  
required for the synthesis of GSH; hence, dopamine metabo- 
lism, DNA replication and epigenetic marking are linked to  
oxidative stress. 

 The brain is especially sensitive to oxidative stress. 
Oxidative stress (hypoxia) is linked to schizophrenia directly 
(Fig. 9), is a common consequence of obstetric complica-
tions linked to schizophrenia [132], and a potent inducer of 
fragile sites and genomic rearrangements [133]. Hence, oxi-
dative stress through the transulfuration pathway is linked to 
DNA metabolism, and epigenetic marking. For instance, 
increased oxidative stress can direct HCY toward GSH pro-
duction rather than SAM production, impacting many proc-
esses in vivo.  

 Nutrition is critical for maintaining the folate-
methionine-transulfuration hub because vitamines B6, B9 
(folate) and B12, and the amino acid methionine must be 
obtained from the diet. Other factors listed in Fig. (9) can 
impact the folate-methionine-transulfuration hub. For in-
stance, winter births are associated with times of food scar-
city [134], and many times bereavement and depression are 
accompanied by reduced food intact. Infection or inflamma-
tion increases metabolites requirements such as those needed 
for DNA replication, or transcription. 

 Aberrant folate metabolism in schizophrenia has been 
demonstrated in a number of studies, for review see [135, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Confluence of the folate, methionine, trans-sulfuration, and dopamine D4 receptor methylation pathways. Folate is con-

verted to derivatives that are utilized for the synthesis of dTMP, and IMP, and the amino acids serine, glycine, methionine and glutamate. 

SAM is formed from methionine and adenosine in the methionine cycle. Homocysteine (HCY), a degradation product of SAM, is converted 

to methionine by the enzyme methionine synthase (MS), utilizing a folate derivative, or by betaine homocysteine methyl transferase (BHMT) 

utilizing betaine (a choline derivative) as a methyl donor. In addition, HCY is a precursor for the biosynthesis of cysteine and the primary 

intracellular antioxidant, glutathione (GSH). The enzyme MS covalently adds a methyl group to the dopamine D4 receptor (DRD4), which 

transfers the methyl group to lipopolysaccharides. In mammals, folate, methionine, and vitamins B6, B9 and B12 required by these path-

ways, must be obtained from the diet or intestinal bacteria. Methionine may also be obtained from degradation of proteins.  
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136, 2]. In fact, the Nobel Laureate (twice), chemist Linus 
Pauling, advocated for nutritional interventions in psychiatry 
in the 1960s [137].  

 Aberrant folate metabolism has been detected in autistic 

patients. In an impressive series of experiments, James et al. 

[138-141] detected aberrant levels of metabolic markers for 

the folate-methionine-transulfuration hub in patients and 

their mothers. For instance, decreased levels of methionine 

cycle (e.g. methionine, SAM, S-adenosylhomocysteine 

(SAH), adenosine, and HCY), and trans-sulfuration pathway 

(e. g. cystathionine, cysteine and total glutathione (oxidized 

(GSH) + reduced GSSG)), metabolites were detected. Also 

reported was an increase in other methionine cycle (e.g. 

SAM, adenosine) and transulfuration (e.g oxidized glu-

tathione) pathway metabolites. In 2006, James et al. [138] 

linked SNPs in genes within the folate cycle (in the reduced 

folate carrer (RFC), methylenetetrahydrofolate reductase 

(MTHR), the methionine cycle (COMT), and the transsul-

furation pathway (glutathionine-S-transferase (GST) to 

autism. In a preliminary study, James et al. [141] demon-

strated that a nutritional treatment regime (supplementation 

with methylcobalamine (methylated vitamin B6), and folic 

acid) improved but did not normalize abnormal metabolite 

blood values. An analysis of the effect of nutritional supple-

mentation on disease symptoms was not measured, although 
anecdotal improvements were reported. 

CONCLUSION 

 In summary, genetic and environmental components of 

schizophrenia and other neuropsychiatric diseases point to 

the importance of the folate-methionine-transulfuration 

pathway. This idea is exciting because this hub presents 

novel targets for drug development, and may lend them-
selves to nutrition interventions.  

 Folate supplementation has been successful in the pre-

vention of spina bifida and related abnormalities. Similar 

therapies may decrease risk and severity for neuropsychiatric 

disease. Faulty DNA replication and epigenetic marking dur-

ing brain development and adult neurogenesis may impact 

occurrence, presentation and dynamics of neuropsychiatric 

disease. Simply providing excess folate may not be useful 
(see [142]).  

 Reed and colleagues [143-146] have developed a dy-

namic model of the interaction of the folate and methionine 

cycles at the protein level. The Reed model is consistent with 

published data but does not yet include the entire folate-

methionine-transulfuration hub, nor has the model been 

tested experimentally. However, this model is a beginning, 

and reminds us that an understanding the complex, dynamic 

behaviors of metabolic pathways are required to developed 

individualized nutritional and/or medical interventions in 
patients.  
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