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Abstract 

The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior 
studies in particular, has been inferential in nature and has focused on identifying and interpreting 
statistically significant effects within the sample under study. While this framework is well-suited for 
hypothesis testing approaches, achieving the modern goal of precision medicine requires a different 
framework that is predictive in nature and that focuses on maximizing the predictive power of models 
and evaluating their ability to generalize beyond the data that were used to train them. However, few 
tools exist to support the development and evaluation of predictive models in the context of 
neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive 
modeling approaches in the field. Further, existing tools for lesion-behavior analysis are often unable to 
accommodate categorical outcome variables and often impose restrictions on the predictor data. 
Researchers therefore often must use different software packages and analytical approaches depending 
on whether they are addressing a classification vs. regression problem and on whether their predictor 
data correspond to binary lesion images, continuous lesion-network images, connectivity matrices, or 
other data modalities. To address these limitations, we have developed a MATLAB software toolkit that 
supports both inferential and predictive modeling frameworks, accommodates both classification and 
regression problems, and does not impose restrictions on the modality of the predictor data. The toolkit 
features both a graphical user interface and scripting interface, includes implementations of multiple 
mass-univariate, multivariate, and machine learning models, features built-in and customizable routines 
for hyper-parameter optimization, cross-validation, model stacking, and significance testing, and 
automatically generates text-based descriptions of key methodological details and modeling results to 
improve reproducibility and minimize errors in the reporting of methods and results. Here, we provide 
an overview and discussion of the toolkit’s features and demonstrate its functionality by applying it to 
the question of how expressive and receptive language impairments relate to lesion location, structural 
disconnection, and functional network disruption in a large sample of patients with left hemispheric 
brain lesions. We find that impairments in expressive vs. receptive language are most strongly associated 
with left lateral prefrontal and left posterior temporal/parietal damage, respectively. We also find that 
impairments in expressive vs. receptive language are associated with partially overlapping patterns of 
fronto-temporal structural disconnection, and that the associated functional networks are also similar. 
Importantly, we find that lesion location and lesion-derived network measures are highly predictive of 
both types of impairment, with predictions from models trained on these measures explaining ~30-40% 
of the variance on average when applied to data from patients not used to train the models. We have 
made the toolkit publicly available, and we have included a comprehensive set of tutorial notebooks to 
support new users in applying the toolkit in their studies.  
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1. Introduction 

Lesion-symptom mapping is an important methodology in neurology and cognitive neuroscience 

(Damasio and Damasio, 1989; Rorden and Karnath, 2004). While early approaches to lesion-symptom 

mapping relied on post-mortem examinations of brain tissue to establish associations between lesion 

location and neurological deficits, modern approaches rely primarily on 3-dimensional lesion images 

derived from non-invasive neuroimaging technologies such as computerized tomography (CT) and 

magnetic resonance imaging (MRI). The statistical methods used to map the observed neurological 

deficits to the underlying neuroanatomy can be divided into two primary categories: 1) mass univariate 

statistical approaches that separately model the lesion-symptom relationships for each predictor (e.g., 

voxel), and (2) multivariate statistical approaches that model the lesion-symptom relationship for all 

predictors (e.g., voxels) simultaneously within a single unified model (Moore et al., 2024). Traditional 

approaches to modeling lesion-symptom relationships are inferential in nature – models are fit to a 

single dataset, and inferences about the underlying lesion-symptom relationships are drawn based on 

the results of statistical tests on the model parameters. While inferential modeling is critical for drawing 

evidence-based conclusions about how observed symptoms relate to the underlying neuroanatomy, 

robust predictive models are necessary to achieve the goal of translating basic lesion research into 

clinical applications (Poldrack et al., 2020). There is accordingly growing interest in developing and 

evaluating predictive models that learn generalizable lesion-symptom relationships and that allow for 

prediction of cognitive and behavioral outcomes in independent datasets. The development of research 

tools that facilitate the development, evaluation, and application of such models is therefore of high 

importance. 

However, currently available tools for lesion-symptom research are designed primarily for inferential 

modeling applications and offer limited built-in functionality for predictive applications (DeMarco et al., 

2018; Pustina et al., 2017a; Zhang et al., 2014). While there is also widespread interest in incorporating 

lesion-derived network features such as parcel and tract-level summary statistics, disconnection 

matrices, and functional connectivity networks into lesion-symptom models (Bowren et al., 2022; Griffis 

et al., 2019, 2021; Olafson et al., 2023; Sperber et al., 2022), existing tools are often inflexible in terms of 

the types of inputs that they can accommodate (e.g., binary NIFTI images, specific parcellations, etc.). 

The lack of publicly available research tools that feature a wide range of modeling approaches, 

customizable predictive modeling options, and the ability to handle a diverse range of input features is 

particularly detrimental given both the growing emphasis on developing generalizable predictive models 

of lesion-symptom relationships, and the increasingly common incorporation of lesion-derived features, 

such as lesion-derived networks inferred from ‘connectome’ data, or disconnection matrices into lesion-

symptom modeling workflows.   

Here, we describe a new publicly available software tool designed to support both inferential and 

predictive modeling of brain-behavior relationships, with an emphasis on applications in lesion research. 

This tool includes multiple multivariate and mass-univariate modeling approaches appropriate for 

modeling both continuous (i.e., regression approaches) and categorical (i.e., classification approaches) 

outcomes, features built-in statistical testing frameworks to evaluate statistical significance at the model-

level and coefficient-level, and includes built-in and customizable routines for predictive modeling that 

include hyper-parameter optimization, repeat nested cross-validation with repartitioning, cross-

validation permutation testing, and the ability to combine the outputs of different models to improve 
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predictive performance (i.e., model stacking). Importantly, this tool can flexibly accommodate different 

types of predictor data, including binary lesion segmentations, continuous lesion-network maps, 

anatomical summaries of the lesion (e.g., tract disconnection and parcel damage estimates), and 

adjacency matrices (e.g., “disconnectomes”), allowing for identical analysis approaches to be applied 

across a range of predictor modalities and facilitating the rigorous and systematic comparison of models 

utilizing different types of input features. Finally, this tool features both a simple-but-flexible graphical 

user interface (GUI) and an easily customizable scripting interface, making it maximally accessible while 

also providing a high level of customizability, flexibility, and scalability.  

2. Tool Overview 

Software Requirements 

The tool is written in the MATLAB programming language (TheMathWorks), and it was developed and 

tested using MATLAB version R2022b. The tool requires the MATLAB Statistics and Machine Learning 

Toolbox for core model implementations (required for core toolbox functionality), the MATLAB Image 

Processing Toolbox for NIFTI file input/output (required for reading/writing NIFTI image files), the 

MATLAB Bioinformatics Toolbox (required for False Discovery Rate Correction), and the MATLAB Parallel 

Processing Toolbox for parallel processing functionality (not required but recommended). The GUI was 

created using the MATLAB App Designer, and tutorial scripts for the scripting interface are provided as 

MATLAB Live Notebooks. The toolkit is designed to leverage the MATLAB Parallel Processing Toolbox 

whenever possible, greatly reducing the time required to run computationally intensive analyses such as 

hyper-parameter optimization, permutation testing, or bootstrap resampling, although parallel 

processing is not required. 

Data Modalities 

Behavioral outcomes of interest may be either continuously distributed (e.g. a score on a neuro-

psychological test) or categorical (e.g. the presence vs. absence of a deficit). Accordingly, this tool 

features comprehensive modeling options appropriate for both continuous and binary categorical 

behavioral outcomes (see Modeling Approaches section).  

The predictor data in traditional lesion-symptom mapping analyses correspond to binary voxel-based 

lesion segmentations. However, newer methods such as “lesion-network mapping” and “disconnectome-

mapping” often produce continuously varying estimates of network (dis)connectivity (Joutsa et al., 

2022a; Sperber et al., 2022). There is therefore a need for comprehensive modeling tools that can 

accommodate diverse predictor modalities. Accordingly, the toolkit does not impose restrictions on the 

modality of the predictor data. Through the GUI, it includes dedicated functions to load and format 

imaging data contained in subject-level NIFTI files, connectivity/adjacency matrices stored in text or CSV 

files, and arbitrary predictor arrays stored in text or CSV files. Through the scripting interface, it can 

accommodate any arbitrary data matrix where rows correspond to observations and columns 

correspond to predictors. 

Modeling Approaches 

The toolkit provides users with an array of different modeling options, allowing them to select the most 

appropriate modeling approach given their research goals and constraints. This also allows for direct 

comparisons of different modeling approaches within the same software package, facilitating 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.606046doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606046
http://creativecommons.org/licenses/by-nd/4.0/


methodological research. Importantly, it allows users to straightforwardly evaluate the stability of results 

across multiple modeling approaches, as recommended by recent guidelines for conducting lesion-

symptom research (Moore et al., 2024). 

Model Implementations 

The toolkit includes the following mass-univariate modeling approaches: Pearson correlations 

(implemented using the MATLAB corr() function), t-tests (equal or unequal variances; implemented using 

the MATLAB ttest2() function), Brunner-Munzel tests (implemented using scripts hosted here: 

https://github.com/robisoe/Brunner-Munzel-test-for-matlab), and binary logistic regressions 

(implemented using the MATLAB fitglm() function). 

The toolkit also includes implementations of the following multivariate modeling approaches: ridge- and 

LASSO-penalized regressions implemented using the MATLAB fitrlinear() function, ridge and LASSO 

penalized linear classifiers implemented using the MATLAB fitclinear() function, partial least squares 

regression and partial least squares classification implemented using the MATLAB plsregress() function, 

linear and non-linear support vector regressions and classifiers implemented using the MATLAB fitrsvm() 

and fitcsvm() functions, and ensemble regression and classification models (e.g., bagged or boosted tree 

models) implemented using the MATLAB fitrensemble() and fitcensemble() functions. 

Cross-validation and Hyper-parameter Optimization Routines 

The toolkit includes built-in cross-validation routines for evaluating out-of-sample prediction 

performance. The default approach is k-fold cross-validation, where the dataset is partitioned into a 

specific number of groups represented by the variable k, and each fold is iteratively used as a “test” set 

while the remaining folds are used to train the model (e.g. a 5-fold partition of 100 subjects would have 

20 subjects per fold, with 80 used for training and 20 used for testing at each iteration). Leave-one-out 

(LOO) cross-validation, where the model is iteratively fit on data from N-1 “train” samples and the held-

out sample is used as the “test” set, is also supported. While both approaches provide estimates of out-

of-sample prediction performance, the k-fold approach is often faster due to needing to fit only k models 

instead of N models. The two approaches also differ with respect to the bias vs. variance of the 

estimates, with k-fold being generally recommended for predictive analyses (Poldrack et al., 2020; 

Scheinost et al., 2019), motivating our decision to use it by default. For k-fold approaches, repeated k-

fold splits with repartitioning of train/test folds may be performed to obtain estimates of performance 

across different partitions of the data in order to mitigate partition noise. These routines allow 

researchers to evaluate how well predictive models can be expected to generalize to data not used to 

train the models. 

Hyper-parameters in multivariate models are variables that control model behavior and that must be 

pre-specified before training the model. For PLS approaches, hyper-parameters correspond to the 

number of PLS components used to fit the model. For SVMs, they correspond to the BoxConstraint, 

KernelScale, and (for SVR) epsilon parameters (see MATLAB fitrsvm()/fitcsvm() documentation). For 

regularized linear models, they correspond to the regularization parameter lambda that controls the 

shrinkage of the model coefficients. For bagged tree ensemble models, they correspond to the 

NumLearningCycles and MinLeafSize parameters that control the number of weak learners and minimum 

number of leaf node observations, respectively (see MATLAB fitrensemble()/fitcensemble() 

documentation). Since hyper-parameters are not learned during model training, cross-validation 
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provides a principled way to tune the hyper-parameters of multivariate models by identifying the hyper-

parameter value(s) that minimize out-of-sample prediction error.  

Hyper-parameter tuning can be performed within a cross-validation analysis by using a nested cross-

validation approach (Scheinost et al., 2019). Nested cross-validation involves first partitioning the full 

dataset into “outer train” and “outer test” sets, as in typical cross-validation schemes. Then, the “outer 

train” set is further partitioned into “inner train” and “inner test” sets, with these “inner” partitions 

being used to optimize model hyperparameters (i.e., by identifying the hyperparameters that minimize 

prediction errors on the “inner test” set) and the “outer” partitions being used to fit and evaluate the 

performance of models trained with optimized hyperparameters (e.g., for a nested 5-fold approach with 

100 subjects, the 80 subjects in the “outer training” set at a given iteration would be split into “inner 

training” and “inner test” sets with 16 subjects per fold, with 64 used for training and 16 used for testing 

at each iteration). For cross-validation analyses with multivariate models, nested cross-validation is used 

by default.  

For all cross-validation analyses, user-specified data transformation steps such as variable 

standardization and confound regression (see next sub-section) are performed within the cross-

validation loop to prevent data leakage and ensure separation of training and test datasets (Poldrack et 

al., 2020; Scheinost et al., 2019). Optionally, the user can stratify cross-validation partitions according to 

a user-specified stratification variable (e.g., the outcome variable) to ensure representation of different 

portions of the data distribution across partitions (Varoquaux et al., 2017). For continuous stratification 

variables, stratification is performed by dividing the dataset into groups based on the quartiles of the 

stratification variable, while for categorical stratification variables, stratification is performed according 

to the corresponding categories. Stratification may be particularly useful for highly skewed behavioral 

data or categorical variables with heavily imbalanced classes. 

Confound Mitigation Strategies 

Researchers often wish to remove variance associated with one or more nuisance variables, such as 

lesion volume or age, from the outcome variable prior to performing inferential lesion-symptom 

mapping analyses (Moore et al., 2024). Accordingly, the toolkit includes a flexible confound regression 

option that allows researchers to specify confounds that they want to regress from the outcome prior to 

proceeding with the modeling analyses. If selected, any confound variables specified by the researcher 

as predictors will be regressed from the outcome prior to performing the main analyses, and the 

residuals from this regression will be designated as the new outcome variable. We note that for cross-

validation analyses, all confound regressions are performed on the “training” data, and the resulting 

models are then applied to the “test” data to obtain the residualized outcome in order to avoid data 

leakage. 

For lesion-symptom mapping analyses using voxel-level lesion data as predictors, the direct total lesion 

volume control (DTLVC) approach described by Zhang and colleagues (2014), which transforms each 

patient’s lesion by dividing the voxel values by the square root of the lesion volume such that the 

transformed lesion array has a unit norm equal to 1, may also be used. This approach is intended to 

downweigh the contributions of large lesions at each voxel and is less conservative than the nuisance 

regression approach to controlling lesion volume effects in support vector regression models (DeMarco 

et al., 2018). However, we note that this approach was originally developed for support vector models, 

and its effects on other models have not been thoroughly evaluated. An important avenue for future 
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work is therefore to systematically characterize the effects of data processing choices such as DTLVC on 

different modeling strategies. We hope to facilitate these types of methodological studies by making this 

toolkit available to the research community.  

Statistical Inference 

Mass-Univariate Models 

Mass-univariate analyses typically rely on null hypothesis significance testing (NHST) to identify imaging 

features (e.g., voxels, edges, etc.) that exhibit statistically significant bivariate associations with the 

outcome of interest (Mirman et al., 2017). For mass-univariate analyses, classical parametric significance 

tests and non-parametric permutation-based significance tests are both supported by the toolkit, with 

non-parametric permutation-based tests being utilized by default.  

Permutation testing involves constructing an empirical null distribution for the statistic of interest by 

iteratively shuffling the outcome variable to break any true relationship between the predictors and 

outcome before refitting the model to the shuffled outcomes. Statistical significance is determined by 

comparing the statistic obtained from the original analysis against the null distribution obtained from the 

permutation analyses. Specifically, the p-value is computed as the number of null statistics at least as 

extreme as the observed statistic, divided by the number of permutation iterations plus one. 

Permutation testing for mass-univariate analyses can be performed either at the level of each individual 

model (e.g., voxel-wise permutation tests) or across all models simultaneously (e.g., whole-brain 

permutation tests). The toolkit performs whole-brain permutation tests using the continuous family-wise 

error rate (cFWER) control method (Mirman et al., 2017) by default. This approach, which is an extension 

of the commonly used “Max-T” approach, controls the probability that a specified number of results are 

false positives at the nominal alpha level across all models simultaneously (e.g., 100 voxels at a=0.05). It 

was chosen as the default because it has been shown to outperform similar methods such as cluster 

extent correction or false discovery rate (FDR) correction in mass-univariate analyses of small patient 

samples (Mirman et al., 2017). It is applied at voxel count thresholds of [1, 10, 50, 100, 500, 1000], 

providing the user with results across a range of thresholds as recommended by Mirman and colleagues 

(2017).  

Individual model-level (e.g., voxel-level) permutation p-values can also be obtained, although this is 

disabled by default due to the large number of permutation iterations required to achieve predictor-level 

p-values small enough for FWER corrections to be viable in voxel-based analyses. Additionally, classical 

parametric individual model-level p-values can also be obtained for mass-univariate analyses. For either 

permutation-derived or parametric model-level p-values, multiple comparisons correction can be 

applied via either the Benjamini-Hochberg method for false discovery rate (FDR) control (Benjamini and 

Hochberg, 1995) or the Bonferroni-Holm method for FWER control (Aickin and Gensler, 1996). 

Model-level Tests for Multivariate Models 

Currently, there is not consensus on how to best perform statistical inference in multivariate lesion-

symptom mapping analyses, and a wide range of approaches are used in the literature (Corbetta et al., 

2015; DeMarco et al., 2018; Pustina et al., 2017a; Zhang et al., 2014). We take the perspective that in the 

context of multivariate models, there are two “levels” of statistical inference that are relevant to model 

interpretation. The first is “model-level” inference, which focuses on the interpretability of the full model 
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(e.g., “does the model capture a meaningful relationship between the predictors and the outcome?”). 

The second is “coefficient-level” inference, which focuses on the interpretability of the individual model 

coefficients (e.g., “which voxels show reliable contributions to the model?”). While many multivariate 

lesion-symptom mapping studies do not evaluate or report model-level tests, we believe that model-

level tests are nonetheless important for contextualizing coefficient-level results – the interpretation of a 

significant model coefficient should be contingent on the quality of the model fit.  

For this reason, we take the perspective that explicit model-level statistical tests are needed to 

contextualize the interpretation of coefficient-level results in inferential applications of multivariate 

models. We propose a two-step workflow for lesion-symptom inference on inferential (i.e., 

“explanatory”) multivariate models. This approach involves first performing model-level evaluations to 

inform model interpretation (including determining whether the model should be interpreted at all), and 

then proceeding to perform coefficient-level inference if the model passes at least one model-level 

evaluation. Model-level evaluations also allow for inferences about the joint effects of all predictors 

simultaneously (e.g., at the level of the full voxel coefficient map – Pustina et al., 2017a) even if the 

individual model coefficients do not survive multiple comparisons corrections and prevent inferences 

about the effect of any individual predictor. Model-level evaluations can be performed in the toolkit 

using either permutation testing, or full-sample cross-validation testing.  

Permutation tests are performed on the in-sample model fit and intend to determine whether the model 

fits better than expected if there were truly no relationship between the predictors and the outcome 

variable. This is achieved by first generating a distribution of model fit statistics obtained from empirical 

null models and then comparing that distribution against the observed model fit statistic. This is 

performed in the same way as described for mass-univariate analyses in the previous section (i.e., the 

outcome is shuffled to break the true association with the predictors), with the exception that a single 

model is fit using all predictors at each permutation iteration. For regression models, the model mean 

squared error (MSE) is used as the model fit statistic, while for classification models, the model area 

under the ROC curve is used (Poldrack et al., 2020). A significant p-value indicates that the model fits the 

data better than expected if there were no true relationship between the predictor matrix and the 

outcome variable, i.e. that the model is capturing a potentially meaningful relationship between the 

predictors and the outcome, justifying further inference on model coefficients. 

Full-sample cross-validation tests can be used to determine whether predictions generated by the model 

for new data points (i.e., data not used to train the model) exhibit a statistically significant relationship 

with the true observed outcomes at the level of the full sample, and is the approach used to test for 

map-level significance in the LESYMAP software package (Pustina et al., 2017a). This approach aims to 

avoid caveats of in-sample model fit statistics (e.g., overfitting) in high-dimensional multivariate models 

by using a nested cross-validation framework to optimize model hyper-parameters and obtain out-of-

sample predictions for each observation in the dataset. For each repetition of the k-fold cross-validation 

procedure, one out-of-sample prediction is obtained for each observation in the full dataset. If repeated 

cross-validations are performed, then the predicted outcomes are summarized across repetitions of the 

cross-validation procedure by taking the mean or median (i.e., for regression) or the mode (i.e., for 

classification) across all repetitions, resulting in a single summary out-of-fold prediction for each 

observation in the full dataset. The group-level association between these out-of-fold predictions and 

the true observed outcomes is then evaluated using either Pearson correlation (i.e., for continuous 

outcomes) or Fisher’s exact test (i.e., for categorical outcomes) to obtain a parametric p-value reflecting 
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the probability of obtaining an association at least as extreme as the observed association if there were 

no true relationship between the model predictions and the observed outcomes. A significant p-value 

indicates that the model is capturing a statistically meaningful association between the predictor data 

and the outcome variable across all out-of-fold predictions for the dataset, justifying further inference on 

the model coefficients. We note that while this test employs a cross-validation framework, the result of 

this test should not be used as the primary measure of a model’s out-of-sample prediction performance 

since it is computed using the out-of-fold predictions for the whole dataset (Poldrack et al., 2020). In 

addition, for regression models, the cross-validation correlation does not consider the magnitudes of 

prediction errors but only the linearity of the relationship between the predicted and observed 

outcomes (Poldrack et al., 2020; Scheinost et al., 2019). The full-sample cross-validation results should 

therefore be regarded as a group-level summary estimate of the association between model predictions 

and observed outcomes across the full sample under study, reflecting the ability of the model to capture 

meaningful associations that generalize beyond the data it was trained on (Pustina et al., 2017a). 

While both of these approaches utilize a null hypothesis significance testing framework, they 

nonetheless take different perspectives on model-level inference – permutation tests concern the in-

sample quality of model fit, while full-sample cross-validation tests concern the expected out-of-sample 

generalizability of the model, which are different but complementary perspectives on model inference 

(Bzdok and Yeo, 2017). In-sample model fit statistics (e.g., R-squared, classification accuracy) obtained 

from multivariate models should be interpreted with caution due to the tendency of these models to 

overfit to the training sample, especially for highly flexible models such as support vector models using 

non-linear kernels (Poldrack et al., 2020). Given that such models can produce good fits even in the 

absence of a true relationship (e.g., see permutation test results using in-sample MSEs for the non-linear 

support vector models in Supplementary Figures 7-9), we consider the test of out-of-sample 

generalizability to be most informative since it explicitly evaluates whether the model is capturing a 

relationship that generalizes beyond the training dataset. However, the full-sample cross-validation test 

approach may not be viable in smaller datasets, and permutation testing has the advantage of testing 

the exact model that is being used for coefficient-level inference (i.e., in cross-validation testing, many 

models are trained and evaluated, which may differ from the final group-level model). We therefore 

recommend that researchers thoughtfully consider whether one approach (or both approaches) is most 

appropriate given their dataset, research question, modeling strategy, and other factors. 

Coefficient-level Tests for Multivariate Models 

The second level of inference for multivariate models is coefficient-level inference, which seeks to draw 

conclusions about the effects of individual predictors in the model. For example, after obtaining a 

statistically significant result from a model-level test, a researcher may wish to draw inferences about the 

effects of individual predictors in the model (e.g., individual voxel peaks). The statistical significance of 

the individual predictors (e.g., voxels) is then evaluated separately from the statistical significance of the 

overall model.   

Existing tools use varying approaches to coefficient-level inference that include voxel-level permutation 

tests (Zhang et al., 2014), cluster-level permutation tests (DeMarco et al., 2018), or avoiding it altogether 

in favor of model-level inferences on a sparse model (Pustina et al., 2017a). These approaches have 

potential drawbacks. For example, in high-dimensional analyses such as voxel-based lesion analyses, 

voxel-level permutation tests require a huge number of permutation iterations before it is possible to 
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obtain p-values small enough to survive multiple comparisons corrections at typical alpha levels (e.g., 

0.05) - for a typical analysis including 156,919 2mm isotropic voxels, more than 3 million permutation 

iterations would be required before it was possible to obtain p-values small enough to pass Bonferroni 

correction at the p < 0.05 threshold. On the other hand, cluster-level permutation tests require that the 

user specify an a priori uncorrected p-value threshold for cluster formation (discussed in detail in 

Mirman et al., 2017), and they only allow for the inference that there is an effect for at least one of the 

voxels within each significant cluster (Woo et al., 2014). While other approaches, such as the 

permutation-based “Max-T” approach, have been applied to multivariate lesion-symptom mapping 

analyses in the literature (Ivanova et al., 2021; Jiang and Gong, 2024), it’s unclear if/when these and 

related approaches such as the cFWER approach (Mirman et al., 2017) are appropriate for multivariate 

models where all individual predictor effects (1) are potentially of interest, (2) are conditional on the 

values of all other predictors in the model and don’t directly reflect the strength of each predictor’s 

bivariate association with the outcome, and (3) do not directly reflect the strength of the relationship 

captured by the full model (e.g., a null model that performs much worse than the observed model could 

nonetheless have larger model coefficients at some voxels, which can’t happen in the mass-univariate 

context). Accordingly, while both voxel-level permutation tests and cFWER permutation tests are 

implemented in the toolkit and can be used with multivariate models, we caution against their use for 

the reasons outlined above, and they are disabled by default.   

Resampling techniques such as the jack-knife and bootstrap (Griffis et al., 2019; Kohoutová et al., 2020; 

Yourganov et al., 2018) can be used to estimate the stability of the model coefficients across repeated re-

fitting to different data samples, and they provide a straightforward way to identify statistically robust 

predictors in multivariate models. This is our preferred approach for supporting coefficient-level 

inference in multivariate models. Unlike permutation tests, which aim to determine whether the 

magnitudes of the model coefficients are greater than expected if there were no relationship between 

the predictor matrix and outcome variables, resampling approaches aim to estimate whether the 

population parameters for the model coefficients are reliably different from zero. These approaches 

naturally accommodate the inter-dependence among model coefficients in multivariate models and do 

not depend on the assumption of “voxel-level exchangeability” required for permutation tests. 

Accordingly, the toolkit uses bootstrap testing as the default approach to coefficient-level inference for 

multivariate models. Bootstrap testing, which uses random resampling with replacement to iteratively 

refit the model and estimate the distribution of model parameters, allows for confidence interval 

estimation (parametric or non-parametric) on model coefficients, and for parametric significance testing 

using z-statistics computed from the mean and standard deviation (i.e., bootstrap standard error) of the 

bootstrap distribution (Kohoutová et al., 2020). The Benjamini-Hochberg FDR procedure and the 

Bonferroni-Holm FWER procedure are used to correct for multiple comparisons, and results are 

thresholded using both procedures by default to provide both liberal and conservative corrected p-value 

estimates on model coefficients.  

Evaluating Prediction Performance for Multivariate Models 

The evaluation of model performance in an independent dataset is necessary to establish the predictive 

power of a model, and is an important first step towards translating a model into real-world applications 

(Poldrack et al., 2020; Scheinost et al., 2019). However, it is often not possible or practical for researchers 

to obtain an independent dataset that is well-suited for evaluating the out-of-sample prediction 

performance of their model. Cross-validation strategies provide a way for researchers to evaluate the 
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predictive performance of their model(s) within a single dataset. As described in the earlier section on 

cross-validation, these approaches involve partitioning the dataset into non-overlapping “train” and 

“test” sets, fitting the model to the “train” set, and then evaluating the out-of-sample prediction 

performance by applying the fitted model to the “test” set.  

Multiple estimates of out-of-sample predictive performance are provided for predictive analyses using 

cross-validation. For regression models, these include the mean squared error of prediction, explained 

variance score, sum-of-squares-based prediction R2, and Pearson correlation between predicted and 

observed values (Poldrack et al., 2020). For classification models, these include the overall classification 

accuracy, classification accuracy for each class, and the area under the ROC curve (Poldrack et al., 2020). 

Under the default repeat k-fold nested cross-validation scheme, these measures are computed for each 

test fold for each repeat of the cross-validation procedure. These measures, along with the individual 

test set predictions, model coefficients, and hyper-parameters for each test fold for each repeat are 

stored along with the full cross-validation partitions in a file that is saved by default at the end of the full 

cross-validation analysis.  

Permutation testing can be used to evaluate the statistical significance of cross-validation performance in 

predictive analyses (Scheinost et al., 2019). For permutation testing, the outcome variable is permuted 

prior to each permutation iteration, which corresponds to a full run of the entire cross-validation 

procedure (e.g., if the original analysis used 5 repeats of 5-fold cross-validation, then a single 

permutation iteration would correspond to 5 repeats of 5-fold cross-validation with a permuted 

outcome variable). For each permutation iteration, performance measures are summarized across folds 

and across repeats to generate a single summary performance measure for the full cross-validation run 

(e.g., average MSE over all folds and repeats), yielding an N_permutations x 1 distribution of summary 

performance measures which are then compared against the corresponding summary performance 

measure from the original cross-validation analysis to yield a permutation p-value. For regression 

approaches, the performance measure is the MSE, while for classification approaches, the performance 

measure is the area under the ROC curve (Poldrack et al., 2020). A significant p-value indicates that 

average out-of-sample prediction performance of the model reliably outperforms those of empirical null 

models, supporting conclusions about the predictive power of the model. 

Additional Features for Predictive Modeling 

Model Stacking 

The toolkit also allows for users to fit multiple different models (e.g., lesion-symptom mapping, lesion-

network mapping, disconnection matrix analyses, etc.) to predict the same outcome in a given sample, 

and then combine the predictions from these models with the goal of improving prediction performance 

(Olafson et al., 2023; Pustina et al., 2017b). The simplest approach involves summarizing (e.g., averaging) 

predictions across different models (Olafson et al., 2023), while more complex approaches involve 

“stacking” the predictions across models into an N_subjects-by-N_models predictor matrix that is then 

used as input to a second “meta-model” that is trained (using the original CV partitions) to predict 

outcomes using the stacked predictions from the base models as predictors (Pustina et al., 2017a). The 

implementation in the toolkit allows the user to run each individual “base” model with a “model 

stacking” flag, generating identical cross-validation partitions for different models applied to the same 

dataset (e.g., lesion, disconnection, etc.). Alternately, the cross-validation partitions for a previously 

trained model can be designated for training subsequent models on the same patient sample. After 
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running the individual “base” models, the entire cross-validation routine can be re-run using the 

predictions obtained from the base models as predictor features for the new “meta-model”.  

Applying Trained Models to New Datasets 

When practical, it is ideal to apply fully trained models to a fully independent dataset to evaluate 

prediction performance. This is facilitated by a built-in prediction function that simply takes as inputs the 

result output file containing the fully trained model from the original run (these are saved together by 

default) along with a new predictor matrix with the same columns as the original predictor matrix used 

to train the model, and that outputs predictions for each observation in the new dataset. If any data 

transformations were applied to the predictor data during the original analysis (e.g., variable 

standardization, DTLVC, etc.), then these transformations are applied to the new data using the 

parameters obtained from the training dataset in the original analysis.  

Toolkit Interface  

The toolkit features a simple, yet flexible graphic user interface (GUI) that can be called from the 

MATLAB command window. This allows users to interactively select input data, configure analysis 

parameters, define the output location, and run the analysis without needing to write any code. A fully 

configured analysis using the main GUI is shown in Figure 1. An overview of the options implemented in 

the GUI along with an example workflow are provided in the User Manual that is included with the 

toolkit. Analysis steps are printed to the command window, and after analyses are complete, main 

modeling results are printed to the command window and are also saved to a text file along with the 

standard result outputs in a pre-specified result directory. There are two separate GUIs, one for running 

individual modeling analyses, and the other for running stacked modeling analyses.  
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Figure 1. Main Toolkit Interfaces. A. A complete analysis configured using the GUI. B. The same analysis 

configured using the scripting interface. Both panels show a fully configured lesion-deficit modeling 

analysis that includes hyper-parameter optimization, repeat nested 5-fold cross-validation with 

permutation testing, and fitting a final inferential model to the full dataset with permutation testing for 

model-level significance and bootstrap testing for coefficient-level significance. The GUI also shows 

selection of nuisance regressors for illustration purposes. Using either interface, it is simple to quickly 

configure and run complex modeling analyses.  

The toolkit also features a scripting interface that allows for users to flexibly design and implement 

custom analyses by defining and modifying fields and corresponding values within a MATLAB structure 

array (struct) type variable called “cfg” (short for configuration). Once specified, this “cfg” variable can 

be provided as the input argument to core toolkit functions to run custom analyses with user-defined 

options and parameters. This facilitates the creation of custom analysis scripts and simple wrapper 

functions that can run analyses at scale via e.g., high-performance computing clusters. An example end-

to-end script configuring and running an analysis that includes hyper-parameter optimization, repeat 

nested 5-fold cross-validation with permutation testing, and fitting a final inferential model to the full 

dataset with permutation testing for model-level significance and bootstrap testing for coefficient-level 

significance is shown in Figure 1B. As noted earlier, multiple MATLAB Live Notebooks are included with 

the toolkit. These provide step-by-step tutorials that illustrate how to implement custom inferential and 

predictive analyses using different modeling implementations and predictor modalities (i.e., lesion data 

formatted as NIFTI images, functional lesion-network maps formatted as NIFTI images, parcel-wise 

disconnection matrices formatted as text files, ROI summary measures formatted as text files) via the 

scripting interface, and provide a detailed overview of the result outputs. 

Toolkit Output 

Results files 

Analysis results are saved as .mat files containing a “model_results” struct for inferential/full-sample 

modeling analyses (along with the trained model for multivariate models), and a “cv_results” struct for 

cross-validation analyses. These files contain performance measures, relevant analysis parameters, and 

other relevant information for evaluating and interpreting the model results. All initial analysis 

parameters (including the random seed and state) and relevant data (e.g., model hyper-parameters) are 

saved with the final modeling results by default. This ensures that all information needed to reproduce 

the results is available even if the script that produced the results is modified or lost after running the 

analysis. Users can also opt to save the full outputs of permutation testing and resampling procedures 

(i.e., these were used to generate the histograms in Figures 4-7), but they are not saved by default due 

to the large size of the resulting files. 

Imaging files 

For NIfTI predictor inputs, different NIfTI images can be output along with the results files depending on 

the specific analysis performed. These include unthresholded and statistically thresholded (e.g., FDR or 

FWE-corrected) model coefficient and test statistic maps. The maps will be output in the same space and 

resolution as the original input data and accompanying user-specified brain mask. For lesion analyses, a 

lesion frequency map (i.e., a heatmap indicating the frequency of damage at each voxel) is produced by 

default along with a map encoding the correlation between lesion status at each voxel and overall lesion 
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volume (see Figure 2). These maps provide valuable information about the spatial distribution of lesions 

and about the relationship between lesion topography and lesion size in the sample under study, and 

they can provide important context for understanding potential confounds and for interpreting results. 

For adjacency matrix inputs that are provided along with a table of node coordinates, model coefficients 

can be output as .node and .edge files for viewing in external viewers (e.g., ball-and-stick images in 

Figure 3B,E). 

Automated Report Generation.  

The toolkit also automatically generates “boiler plate” text in paragraph form that describes the main 

details of the methods and results to facilitate accurate reporting and enhance reproducibility. These 

text descriptions are stored as fields in the “model_results” struct and are also saved as text files in the 

specified results directory. Examples are provided in Supplementary Material 1 for several of the 

analyses reported later in the paper. 

Limitations  

There are several limitations to the current version of the toolkit that should be noted. The toolkit does 

not currently feature the cluster-level multiple comparisons correction for voxel-level permutation tests 

that is featured in the SVR-LSM Toolkit (DeMarco et al., 2018). Nonetheless, it does feature the option 

for whole-brain cFWER correction of permutation test results, providing an alternative to voxel-level 

multiple comparisons corrections, although this is primarily intended for mass-univariate models 

(Mirman et al., 2017). For classification models, only binomial outcomes are supported in the initial 

release, although support for multinomial outcomes could be added in future releases. While ensemble 

models are currently supported by the toolkit, they are currently restricted to predictive modeling 

applications and do not perform statistical testing on model fits or model coefficients. However, they do 

generate estimates of predictor importance using the MATLAB functions 

oobPermutedPredictorImportance() for “Bag” models and predictorImportance() for boosted ensemble 

models, allowing for the characterization of important predictors. Finally, the toolkit currently is only 

available in the MATLAB programming language, which requires a paid license to use, and depends on 

several MATLAB toolboxes. Even so, MATLAB is very commonly used in neuroimaging and lesion-

symptom research, and several other existing toolkits are implemented in MATLAB as well (e.g., NiiStat, 

SVR-LSM). In the future, the toolkit could potentially be adapted to other languages such as Python or R 

to increase accessibility. 

3. Example Analyses 

Datasets 

To illustrate the functionality of the toolkit, we performed both inferential and predictive modeling 

analyses using real lesion and behavioral data from a sample of patients with left hemispheric brain 

lesions drawn from the Iowa Lesion Registry. Two behavioral measures from the Multilingual Aphasia 

Battery were used - the Controlled Oral Word Association Test (COWA) and the Token Test. The COWA is 

a commonly used measure of expressive language function, while the Token Test is a commonly used 

measure of receptive language function. To demonstrate toolkit functionality, we employed both 

regression and classification approaches. For classification models, published cut-off scores (Rey et al., 

1999) were used to define impaired vs. not impaired group labels. A total of 348 patients had data for 
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the COWA, and a total of 282 patients had data for the Token Test. Dataset demographics are 

summarized in Table 1. 

 

Table 1. Demographic data. For Age (years), Education (years), Handedness, and TSO (time since onset - 

years), data are shown as mean(SD). For etiology fields, data are shown as counts. Stroke (I) = Ischemic 

Stroke, Stroke (H) = Hemorrhagic Stroke. 

Lesion masks were segmented and registered to the MNI-152 brain template as described in previous 

publications using data from the Iowa Lesion Registry (Bowren et al., 2022). Due to the large number of 

memory intensive modeling analyses performed in this study, lesion data were resampled to 3mm 

isotropic resolution for analyses of voxel-based lesion images to reduce computational requirements. 

The Lesion Quantification Toolkit (Griffis et al., 2021) was used to generate parcel-level disconnection 

matrices for each patient by embedding each patient’s lesion mask into the HCP-1065 streamline 

tractography atlas (Yeh, 2022) and identifying streamlines that intersected the lesion using the 

DSI_Studio software package as described in (Griffis et al., 2021). The parcellation was constructed by 

combining a 200-region functional parcellation of the cortex (Schaefer et al., 2018) with subcortical 

parcels from the Freesurfer DTK subcortical parcellation, cerebellar parcels from the Cerebellum-SUIT 

parcellation (Diedrichsen, 2006), and the brainstem parcel from the Harvard-Oxford anatomical atlas 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Functional lesion-network maps (Joutsa et al., 2022a) were 

generated by using each patient’s lesion as a seed region in resting-state functional connectivity analyses 

conducted in the GSP1000 normative subject sample described in previous studies (Joutsa et al., 2022b) 

using the principal component functional disconnection method (Pini et al., 2021), yielding for each 

patient a single continuously varying network map reflecting the strength of each voxel’s normative 

functional connectivity to the lesion. 

Lesion Frequency and Lesion Volume Correlation Maps 

Lesion frequency maps and lesion volume correlation maps were automatically generated for the lesion 

analyses. Maps for the sample of patients with data for the COWA are shown in Figure 2A. Analogous 

maps are shown for the sample of patients with data for the Token Test in Figure 2B. The peak lesion 

overlaps for both patient samples were located in the left lateral prefrontal cortex, underlying white 

matter, and basal ganglia (Figure 2, top rows). The peak correlations between voxel lesion status and 

lesion volume for both patient samples were located along the posterior portion of the sylvian fissure 

and included ventral somato-motor regions, primary auditory regions, and posterior insular regions 

(Figure 2B, bottom row).   

Age % Male % White Education Handedness TSO Stroke (I) Stroke (H) Tumor Other
COWA 50.88(15.61) 54 95 12.61(4.21) 81.22(52.47) 3.10(5.68) 219 57 30 42
Token 51.16(14.4) 62 95 12.73(3.99) 79.50(55.0) 3.04(3.21) 183 46 19 34
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Figure 2. Lesion frequency maps and lesion volume correlation maps. A. The top row shows lesion 

frequencies for the sample of patients with data for COWA (i.e., voxels shown in hot colors are damaged 

more frequently). The bottom row shows correlations between voxel lesion statuses and lesion volume 

(i.e., damage to voxels shown in hot colors is associated with larger lesions). B. The same maps are 

shown for patients with data for the Token Test.   

Analysis 1: Mass-Univariate Lesion-Behavior Mapping 

First, we ran a traditional mass-univariate lesion-symptom mapping analysis using the “municorr” option 

in the toolkit. This approach computes point-biserial linear correlations between the lesion status at 

each voxel and the outcome measure of interest. We set the “minimum lesion affection” threshold to 10 

(i.e., a voxel must be lesioned in at least 10 patients to be included in the analysis), and we performed 

the analyses both with and without lesion volume regression to illustrate the effects of lesion volume 

regression on the resulting statistical maps. We also performed mass-univariate correlations between 

each language outcome and (1) the parcel-to-parcel structural disconnection matrices, and (2) the fLNM 

maps. For all analyses, statistical significance was determined using the cFWER permutation testing 

method (Mirman et al., 2017) using 10,000 permutation iterations. Disconnection and fLNM analyses 

were also performed with and without lesion volume regression. Results were considered significant if 

they survived an FWE-corrected p-value threshold of p<0.05 and a voxel count threshold of v=100.  

Results are shown in Figure 3. Analyses were run on a Linux system with 16 cores and 251GB of memory. 

The lesion analysis for COWA completed in 0.51 minutes, and the lesion analysis for Token Test 

completed in 0.39 minutes. Without lesion volume regression, both lesion-behavior analyses yielded 

large swaths of significant voxels throughout the left MCA territory, although the strongest correlations 

for COWA were located more anteriorly in lateral prefrontal regions and the underlying deep white 

matter, (Figure 3A) while the strongest correlations for the Token Test were located more posteriorly in 

temporal/parietal regions and the underlying deep white matter (Figure 3A). Lesion volume exhibited 

significant correlations with both the COWA (r=0.30, p<0.001) and Token Test (r=0.52, p<0.001). To 

mitigate lesion volume effects, we regressed lesion volume from each outcome and performed the 

mass-univariate analyses using the residualized outcomes. After lesion volume regression, the significant 

voxels for COWA vs. Token Test more clearly localized to frontal vs. temporal/parietal structures that 

included the deep white matter, respectively (Figure 3A). Notably, analyses of both COWA and Token 

Test implicated voxels in canonical “language” areas (Friederici and Gierhan, 2013) and in regions that 

have previously been identified as “white matter bottlenecks” in the deep prefrontal and deep temporal 

white matter (Griffis et al., 2017; Mirman et al., 2015; Turken and Dronkers, 2011).  
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Analyses using the structural disconnection matrices revealed that impairments on the COWA and Token 

Test were associated with widespread patterns of structural disconnection involving frontal, temporal, 

parietal, and sub-cortical/cerebellar regions (Figure 3B). Lesion volume regression had minimal impact 

on either disconnection pattern (Figure 3B – top rows vs. bottom rows), and the thresholded upper 

triangular portions of the matrices from analyses with vs. without lesion volume regression were highly 

similar (COWA: Dice Coefficient = 0.73; Token Test: Dice coefficient = 0.61). The disconnection patterns 

associated with impairments on COWA and Token Test were also highly similar to each other (Dice 

coefficient = 0.91) and remained similar with lesion volume regression (Dice coefficient = 0.59).   

Analyses using the fLNM maps revealed that impairments on the COWA and Token Test were associated 

with lesions exhibiting normative functional connectivity to similar fronto-temporo-parietal networks 

(Figure 3C; Dice coefficient = 0.63). Lesion volume regression had minimal impact the COWA fLNM 

pattern (Dice coefficient = 0.85) but substantially reduced the extent of the Token Test fLNM pattern 

(Figure 3B – top rows vs. bottom rows; Dice coefficient = 0.42) such that it only included areas proximal 

to the lesion sites identified in the lesion analyses with lesion volume regression (Figure 3A). 

Results for lesion-behavior analyses using other mass-univariate methods included in the toolkit (i.e., 

Brunner-Munzel Test, Unequal Variance T-Tests, Logistic Regressions) are provided in Supplemental 

Figure 1. Lesion-behavior results were highly consistent across all mass-univariate methods. Together, 

the mass-univariate results suggest that impairments on the COWA and Token Test localize to distinct 

lesion locations and are associated with partially overlapping patterns of structural and functional 

disconnection. They also demonstrate the utility of lesion volume regression for increasing the specificity 

of localizations in the presence of correlations between lesion volume and the behavioral outcomes of 

interest. 
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Figure 3. Mass-univariate lesion, structural disconnection, and functional lesion-network analyses of 

expressive and receptive language impairments. A. Results of analyses using voxel-based lesion maps. 

The maps show unthresholded correlations between voxel lesion statuses and COWA scores. Voxels 

surviving the FWEp<0.05, v=100 threshold for the analyses without lesion volume regression are 

outlined in black, and voxels surviving this threshold for the analyses with lesion volume regression are 

outlined in white. B. Results of analyses using parcel-to-parcel structural disconnection matrices. Top 

rows show results for analyses without lesion volume regression, and bottom rows show results of 

analyses with lesion volume regression. C. Results of analyses using fLNM maps. Top rows show results 

for analyses without lesion volume regression, and bottom rows show results of analyses with lesion 

volume regression. All analyses are thresholded using the FWEp<0.05, v=100 threshold. 

Analysis 2: Multivariate Lesion-Behavior Regression 
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Next, we performed multivariate regression analyses using partial least squares (PLS) regression models 

using the “plsr” option in the toolkit. We opted to perform both inferential and predictive analyses in 

order to both (a) identify lesion locations with statistically significant model coefficients, and (b) to 

evaluate the out-of-sample predictive power of models trained on lesion location. To mitigate the effects 

of lesion volume without removing variance from the outcome variables, the lesion data were 

transformed using the direct total lesion volume control (DTLVC) approach (Zhang et al., 2014). 

The inferential modeling approach involved fitting the PLS models to the full dataset, performing model-

level tests, and then performing coefficient-level tests to identify significant lesion predictors. Model-

level tests were performed by evaluating the cross-validation correlation across the full sample using the 

average out-of-fold predictions from 5 repeats of a nested 5-fold cross-validation analysis, and by 

evaluating the in-sample model fit relative to empirical null models using permutation tests with 1000 

permutation iterations. The number of PLS components to include in each model was determined using 

5 repeats of 5-fold cross-validation; components were added to the model until the addition of a new 

component increased the average out-of-sample MSE (Abdi, 2010; Griffis et al., 2019).  

All multivariate analyses were run using the UI Argon high-performance computing cluster. The full 

multivariate lesion analysis for COWA completed in 30.45 minutes, and the full multivariate lesion 

analysis for Token Test completed in 24.62 minutes. We note that runtime varied substantially depending 

on the modeling approach used (e.g., the RBF kernel SVR lesion analysis reported in Supplemental 

Figure 3 completed in 847.15 minutes).  

Results are shown in Figure 4. Model-level tests using the full sample cross-validation correlation (Figure 

4A - scatterplots) and permutation tests (Figure 4A – histograms) yielded statistically significant results. 

We proceeded to evaluate the model coefficients for the full inferential model using bootstrap z-tests 

(Kohoutová et al., 2020) with 1000 bootstrap iterations. Overall, the coefficient maps produced by the 

inferential modeling analyses (Figure 4B) were highly consistent with the results obtained from the 

mass-univariate correlation analyses with lesion volume regression (Figure 3A), supporting the 

conclusion that the strongest lesion predictors of impairments on the COWA vs. Token Test exhibit 

distinct frontal vs. temporal localizations, although we note that the lesion predictors identified by the 

multivariate analyses using DTLVC extended beyond the more restricted localizations identified by the 

mass-univariate analyses with lesion volume regression (Figure 3A).  

Next, we performed predictive analyses to evaluate the ability of the PLSR models to generalize beyond 

the samples used to train them. These analyses involved performing 5 repeats of nested 5-fold cross-

validation, with hyper-parameter tuning being performed in the inner loop and evaluating the average 

out-of-sample prediction performance (i.e., averaged across folds and repeats). To determine the 

statistical significance of the average cross-validation performance estimates, a permutation test with 50 

permutation iterations was performed on the full cross-validation procedure. The predictive analyses 

indicated that both models explained ~35-40% of the variance on average in unseen patient samples 

(Figure 4C – bar graphs), which was statistically significant as indicated by the permutation tests of the 

full cross-validation procedures (Figure 4C – histograms). Similar prediction performance was observed 

for other types of multivariate models, and the use of DTLVC generally improved prediction performance 

for most models evaluated relative to not using DTLVC (Supplementary Figures 2-3, 6-7). This is 

consistent with the results reported by Zhang and colleagues (2014), but more work is necessary to fully 

characterize the effects of DTLVC on predictive performance and localization accuracy for different types 
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of multivariate models. Together, these results provide insights into the ability of models trained on 

voxel-based lesion location data to predict chronic impairments on these tests in unseen patient samples 

and indicate that models trained on lesion location can account for nearly 40% of the performance 

variation when applied to unseen patient samples.  

 

Figure 4. Multivariate lesion-behavior modeling of expressive and receptive language impairments A. 

Model-level tests evaluate whether there is a significant relationship between lesion location and 

behavior for the inferential models. The scatterplots show the full sample cross-validation correlations 

between average (across folds and repeats) out-of-fold predictions and observed scores for each 

outcome. The histograms show the actual observed MSE within the dataset (vertical dashed redline) 

relative to the permutation null distribution of MSE values. B. Coefficient-level results evaluate which 

regional brain-behavior relationships reach statistical significance within the inferential models. The 

unthresholded model coefficient maps are shown for each model. Voxels surviving at an FDRp<0.05 

threshold are outlined in black, and voxels surviving an FWEp<0.05 threshold are outlined in white. C. 

Results of the predictive analyses estimate how much variance can be explained in held out data. The 

bar graphs show the fold-averaged cross-validation R2 values (and standard deviations) for each 

repetition of the cross-validation analyses. The horizontal dashed red lines indicate the average across all 

folds and repetitions. The histograms show the distribution of actual MSE scores across folds and repeats 

(blue histograms) along with the average MSE across all folds and repeats (black vertical line) and show 

the permutation null distribution of average (across folds and repeats) MSEs from the permutation tests 
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on the cross-validation results (orange histograms). Note – model coefficients shown in (B) and (E) have 

been rescaled proportional to the maximum and minimum values in the maps. 

Analysis 3: Multivariate Lesion-Behavior Classification 

Next, to illustrate the application of the toolkit to categorical outcome data, we used PLS classification 

models to model the dichotomized outcome labels as a function of lesion location using the “pls_da” 

option in the toolkit. This analysis mirrored Analysis 2 but aimed to predict the binarized class labels 

corresponding to “impaired” (label=1) and “not impaired” (label=-1) patient sub-groups. By default, 

misclassification costs are equal for both groups. However, when there are group imbalances, modifying 

the misclassification costs can improve identification of the minority group. Here, misclassification costs 

for the “impaired” groups were set to reflect the difference in group representations in the dataset. For 

the COWA models, 42.82% of patients were assigned to the “impaired” group, and the misclassification 

cost for the “impaired” group was set to 1.3 times that of the “not impaired” group. For the Token Test 

models, 29.79% of patients were assigned to the “impaired” group, and the misclassification cost for the 

“impaired” group was set to 2.3 times that of the “not impaired” group. Predictions from PLS 

classification models are continuously varying prediction scores that must be dichotomized into group 

labels, and the default dichotomization approach is to take the sign of the predictions. Here, we used the 

prediction scores and class labels to construct an ROC curve. Then, we used the misclassification cost 

matrix and the ROC curve to identify optimal score cut-offs for dichotomization. For predictive analyses, 

the optimal score cut-offs were identified using the training folds and then applied to the prediction 

scores from the test folds to avoid data leakage. Otherwise, model training and statistical testing 

mirrored the approach described for Analysis 2.  

The results of these analyses are summarized in Figure 5. Model-level tests of the inferential models 

using both the full sample cross-validation Fisher’s Exact Test on the confusion matrices constructed 

from the mode out-of-fold predicted class labels (Figure 5A – confusion matrices) and permutation tests 

of the inferential models fit to the full patient samples (Figure 5A – histograms) yielded statistically 

significant results, supporting evaluation of the model coefficients. Inspection of the coefficient maps 

from the inferential models indicated that the lesion locations that predicted the “impaired” group label 

were largely consistent with those identified by the regression analyses of the continuous task 

performance scores from Analysis 2 (Figure 5B vs. Figure 4B). Relative to the regression results from 

Analysis 1, the voxels that survived FWE correction for the Token Test exhibited a small but significant 

anterior and dorsal shift from the posterior temporal lobe to the posterior sylvian fissure (Figure 5B vs. 

Figure 4B), although the voxels that survived FDR correction were largely consistent across the two 

analyses. Notably, these results were highly consistent with the results of mass-univariate logistic 

regression analyses (Supplemental Figure 1). For the predictive analyses, both models had average out-

of-sample AUCs of ~0.8, which were statistically significant as indicated by the permutation tests of the 

full cross-validation procedures (Figure 5C). Similar prediction performance was observed for other types 

of multivariate models, and as for regression models, the use of DTLVC generally improved prediction 

performance for most models evaluated relative to not using DTLVC (Supplementary Figures 4-5, 8-9). 

These results demonstrate the application of a classification-based approach to lesion-behavior 

modeling. Together with the results from Analysis 2, these results support the conclusion that the 

strongest lesion predictors of impairments on the COWA and Token test tend to localize to distinct lateral 

prefrontal and posterior temporal structures, respectively, but also indicate that voxels throughout the 
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left MCA territory are relevant for discriminating between impaired vs. non-impaired patients. They also 

indicate that models trained on voxel-based lesion data can achieve relatively good performance at 

discriminating between impaired vs. unimpaired patients when applied to unseen patient samples, 

complementing the regression results reported in Analysis 2. 

 

Figure 5. Multivariate lesion-behavior classification of expressive and receptive language impairments. 

A. Model-level tests for the inferential models. The confusion matrices show the full sample cross-

validation classification results using the mode (across folds and repeats) out-of-fold predictions, along 

with the odds ratios (OR) and p-values from the Fisher’s Exact Tests. The histograms show the 

permutation null distributions of ROC AUCs for the inferential models fit to the full dataset, and the 

vertical dashed red lines indicate the observed AUCs of the inferential models. B. Coefficient-level results 

for the inferential models. The unthresholded model coefficient maps are shown each model. Voxels 

surviving at an FDRp<0.05 threshold are outlined in black, and voxels surviving an FWEp<0.05 threshold 

are outlined in white. C. Results of the predictive analyses. The bar graphs show the fold-averaged cross-

validation R2 values (and standard deviations) for each repetition of the cross-validation analyses. The 

horizontal dashed red lines indicate the average across all folds and repetitions. The histograms show the 

distribution of actual AUC scores across folds and repeats (blue histograms) along with the average AUC 

across all folds and repeats (black vertical line), and show the permutation null distribution of average 

(across folds and repeats) AUCs from the permutation tests on the cross-validation results (orange 

histograms). Note – model coefficients shown in (B) and (E) have been rescaled proportional to the 

maximum and minimum values in the maps. 
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Analysis 4: Multivariate Disconnectome-Behavior Regressions 

Next, to illustrate the application of a multivariate modeling approach to whole-brain disconnectomes, 

we performed multivariate regression analyses using the structural disconnection estimates as 

predictors. These analyses were performed identically to Analysis 2 (i.e., PLS regression with lesion 

predictors), but the model predictors corresponded to parcel-to-parcel disconnection matrices obtained 

by embedding each patient’s lesion into the normative tractography dataset; the DTLVC method for 

lesion volume correction was therefore not applied. Only edges (i.e., connections) with disconnection 

severity values of at least 25% in 10 or more patients were included in these analyses.  

The results are summarized in Figure 6. Model-level tests of the inferential models for both the COWA 

and Token Test yielded highly significant full sample cross-validation correlations (Figure 6A – 

scatterplots) and permutation tests (Figure 6A - histograms), supporting further evaluation of the model 

coefficients. Inspection of the coefficient maps indicated that poor performance on the both the COWA 

and Token Test was associated widespread disconnection involving left frontal, temporal, and subcortical 

regions (Figure 6B), consistent with the results of the mass-univariate analyses (Figure 3B). It is worth 

noting that some of the connections with the largest weight magnitudes in the FDR-thresholded maps 

did not survive FWE correction (Figure 6B), highlighting that the strongest predictors in a model fit to the 

full sample may not be the most stable predictors in the model. This may be exacerbated by spatial 

biases in group-level lesion frequencies, as lesions affecting frontal regions were most common in these 

patient samples (Figure 2). The predictive analyses indicated that both models explained ~35-40% of 

variance on average when applied to unseen patient samples, which was statistically significant as 

indicated by the permutation tests of the full cross-validation procedure (Figure 6C).  

These results indicate that the strongest disconnection predictors of impairments on the COWA and 

Token Test map to partially distinct patterns of fronto-temporal and cortico-subcortical structural 

disconnections. They also suggest that models trained on parcel-to-parcel disconnection data perform 

similarly to models trained on voxel-based lesion data for predicting language outcomes. Speculatively, 

since structural disconnection data are likely most useful when they can capture common effects of non-

overlapping lesions (Sperber et al., 2022), the observation that they perform similarly to voxel-based 

lesion data in these analyses may reflect the relatively dense lesion coverage in this sample (Figure 2) 

along with the relatively strict “minimum affection” threshold used to select voxels for inclusion in the 

models (i.e., only voxels with damage in at least 10 patients). Further work is needed to determine 

if/when derived measures such as structural disconnections will improve prediction performance, and 

this is an important avenue for future studies. 
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Figure 6. Multivariate disconnectome-behavior modeling of expressive and receptive language 

impairments. A. Model-level tests for the inferential models. The scatterplots show the full sample cross-

validation correlations between average (across folds and repeats) out-of-fold predictions and observed 

scores for each outcome. The histograms show the permutation null distribution of MSE values for the 

inferential models fit to the full datasets, and the vertical dashed red lines indicate the observed MSEs of 

the inferential models fit to the full datasets. B. Coefficient-level results for the inferential models. The 

unthresholded model coefficient maps are shown each model. Voxels surviving at an FDRp<0.05 

threshold are outlined in black, and voxels surviving an FWEp<0.05 threshold are outlined in white. C. 

Results of the predictive analyses. The bar graphs show the fold-averaged cross-validation R2 values (and 

standard deviations) for each repetition of the cross-validation analyses. The horizontal dashed red lines 

indicate the average across all folds and repetitions. The histograms show the distribution of actual MSE 

scores across folds and repeats (blue histograms) along with the average MSE across all folds and repeats 

(black vertical line), and show the permutation null distribution of average (across folds and repeats) 

MSEs from the permutation tests on the cross-validation results (orange histograms). Note – model 

coefficients shown in (B) and (E) have been rescaled proportional to the maximum and minimum values 

in the maps. 

Analysis 5: Multivariate Functional Lesion Network-Behavior Regression 

Next, to illustrate the application of a multivariate modeling approach to continuous whole-brain 

statistical maps, we performed multivariate regression analyses using the fLNM maps as predictors. 

These analyses mirrored those in Analyses 4, except that the predictor data corresponded to functional 
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lesion-network maps obtained from using each patient’s lesion as a seed in resting-state functional 

connectivity analyses in a normative sample. Only voxels with absolute fLNM t-statistics greater than 5 in 

at least 10 patients were included in the analyses. 

The results of these analyses are shown in Figure 7. Model-level tests of the inferential models for both 

the COWA and Token Test yielded significant full-sample cross-validation correlations (Figure 7A,D – 

scatterplots) and significant permutation tests (Figure 7A – histograms), supporting further evaluation of 

the model coefficients. Inspection of the model coefficients indicated that impairments on both the 

COWA and Token Test were associated with lesions exhibiting functional connectivity to a left-lateralized 

fronto-temporal-parietal network (Figure 7B), consistent with the results of the mass-univariate analyses 

(Figure 4C). Notably, with FWE correction, the map for the Token Test primarily featured weights only in 

the bilateral posterior superior temporal cortex, suggesting that the local connectivity near the critical 

sites identified in Analysis 2 was most reliably predictive of impairment. In contrast, the FWE-corrected 

map for COWA included significant weights in both frontal and temporal cortices, suggesting potentially 

greater contributions of regions distal to the lesion sites identified in Analysis 2. The predictive analyses 

revealed that models trained on fLNM maps explained ~25-30% of the variance on average when applied 

to unseen patient samples, which was statistically significant based on the permutation tests (Figure 7C). 

Notably, the models trained on the fLNM maps performed more poorly at predicting language 

impairments than the models trained on voxel-based lesion maps or parcel-to-parcel structural 

disconnection matrices (Figure 4C; Figure 6C), consistent with the results of previous studies comparing 

structural vs. functional lesion-derived networks for predicting outcomes in patients with brain lesions 

(Pini et al., 2021; Salvalaggio et al., 2020) Speculatively, this could reflect the mixing of signals from 

functionally distinct regions within the lesion mask seed regions, although it could also indicate that 

information about a lesion’s impact on brain structure is more predictive of language impairments than 

information about the functional connectivity patterns associated with the lesion. Further work is 

necessary to clarify if and/or when fLNM data can improve outcome prediction. 
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Figure 7. Multivariate functional network-behavior modeling of expressive and receptive language 

impairments. A. Model-level tests for the inferential models. The scatterplots show the full sample cross-

validation correlations between average (across folds and repeats) out-of-fold predictions and observed 

scores for each outcome. The histograms show the permutation null distribution of MSE values for the 

inferential models fit to the full datasets, and the vertical dashed red lines indicate the observed MSEs of 

the inferential models fit to the full datasets. B. Coefficient-level results for the inferential models. The 

unthresholded model coefficient maps are shown each model. Voxels surviving at an FDRp<0.05 

threshold are outlined in black, and voxels surviving an FWEp<0.05 threshold are outlined in white. C. 

Results of the predictive analyses. The bar graphs show the fold-averaged cross-validation R2 values (and 

standard deviations) for each repetition of the cross-validation analyses. The horizontal dashed red lines 

indicate the average across all folds and repetitions. The histograms show the distribution of actual MSE 

scores across folds and repeats (blue histograms) along with the average MSE across all folds and repeats 

(black vertical line) and show the permutation null distribution of average (across folds and repeats) 

MSEs from the permutation tests on the cross-validation results (orange histograms). Note – model 

coefficients shown in (B) and (E) have been rescaled proportional to the maximum and minimum values 

in the maps. 

Analysis 6: Model Stacking  

Recent work indicates that model stacking, either via averaging predictions across models trained on 

different predictor features (Olafson et al., 2023) or via training a “meta-model” to the predictions of 
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different individual models (Pustina et al., 2017b) may improve predictive performance. We performed 

prediction averaging to combine the predictions of the lesion-behavior and disconnection-behavior 

regression models. This was performed by re-running the predictive cross-validation analyses and, within 

each outer loop, averaging the predictions of the out-of-fold observations across the two models. Results 

are shown in Figure 8. For COWA, there was no improvement in R2 with stacking of the models (Figure 

8A). For Token Test, there was a very small increase in performance relative to the best performing base 

model, but this increase was not statistically significant (signed rank test: p=0.93). More complex model 

stacking approaches, such as fitting a random forest to the predictions of the base models, did not 

provide an advantage over model averaging (not shown). These results suggest that the different 

predictor modalities used here largely capture redundant behaviorally relevant information in these 

patient samples. Ultimately, further work is needed to determine how to best leverage model stacking to 

improve prediction performance. 

 

Figure 8. Model stacking results. A. The boxplots show the out-of-fold R-squared (y-axis) distributions for 

the stacked models, lesion models, structural disconnection models, and fLNM models (x-axis). The 

results for COWA are shown on the left, and the results for the Token Test are shown on the right.  

4. Discussion 

Toolkit Summary 

The methodology of lesion research has continued to evolve over the last 150 years, and progress has 

been especially rapid in recent years regarding the various statistical approaches available for relating 

brain lesions and behavioral outcomes (Moore et al., 2024).  Multivariate lesion-symptom mapping has 

overcome many limitations that were present in earlier voxel-level analyses, and the integration of lesion 

mapping with human connectome data has facilitated our understanding of how lesions disrupt brain 

networks (Boes et al., 2015; Griffis et al., 2021; Sperber et al., 2022; Turken and Dronkers, 2011). 

Here, we described a new software tool for inferential and predictive modeling of neuroimaging 

datasets, with a particular focus on modeling relationships between behavioral outcomes and 

neuroimaging-derived lesion measures. Importantly, this toolkit features a diverse set of tools for both 

inferential and predictive modeling, and features both a GUI and a scripting interface. It includes 

functionality for both mass-univariate and multivariate modeling strategies, includes implementations of 

both classification and regression models, and can flexibly accommodate different predictor modalities 

including NIFTI-formatted imaging data, adjacency matrices, and arbitrary predictor arrays. We 

anticipate that this will support comprehensive analysis approaches and facilitate systematic 

comparisons of different modeling strategies, predictor modalities, and parameter choices (Moore et al., 
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2024). Further, it automatically saves out key analysis parameters and generates “boilerplate” text 

descriptions of key methodological details and modeling results (Supplementary Material) to help ensure 

that methods and results are preserved even if the initial script that generated them is modified or lost. 

Overall, we hope that this tool will help to enhance the rigor and reproducibility of lesion research and 

help to facilitate the translation of this research into clinical applications that require dedicated 

predictive models, such as prognostication after a focal brain injury.   

Lesion Correlates of Impairments on the COWA and Token Test 

We also performed a series of example analyses in relatively large samples of patients with left 

hemisphere brain lesions. We used real imaging and behavioral data for tests of expressive and receptive 

language (i.e., COWA and Token Test) to demonstrate the application of the tool to real-world analysis 

applications. First, we performed mass-univariate analyses and fit inferential multivariate models using 

the full patient samples to identify lesion locations, structural disconnections, and lesion-derived 

functional networks associated with impaired language task performance.  

Impaired performance on the COWA and other category fluency tests has previously been associated 

with damage to frontal, temporal, and parietal regions (Baldo et al., 2006; Biesbroek et al., 2015; Thye et 

al., 2020), although the results have not always been consistent across studies. Notably, one study 

reported that lesion sites associated with both semantic and phonemic fluency were largely confined to 

the left lateral prefrontal cortex (Biesbroek et al., 2015), which is largely consistent with our results. 

However, other studies have reported associations between fluency test performance and lesions to 

temporal areas as well (Baldo et al., 2006; Thye et al., 2020), but we did not observe significant 

associations between damage to temporal areas and impairments on the COWA. Rather, both our mass-

univariate and multivariate analyses implicated a broad swath of left lateral prefrontal cortex including 

the inferior frontal gyrus, the insula, deep white matter, and subcortical structures (Figure 3, Figure 4, 

Figure 5). Even so, the analyses using structural disconnection matrices implicated fronto-temporal 

disconnections (Figure 6), and the analyses using fLNMs also implicated a lateral fronto-temporal 

functional network (Figure 7), indicating that fronto-temporal interactions are likely involved in 

performance on the COWA.  

Impaired performance on the Token Test has previously been associated with lesions affecting the left 

posterior superior/middle temporal cortex and underlying white matter along with the inferior frontal 

gyrus pars triangularis (Adezati et al., 2022; Goldenberg et al., 2007), as well as to disrupted left 

temporal/parietal metabolism (Karbe et al., 1989). Our results are largely consistent with these 

observations, as they primarily implicate left temporal and parietal cortex, the underlying white matter, 

and to a lesser extent areas near the pars triangularis and ventral motor cortex (Figure 3, Figure 4, Figure 

5). Our results also indicate that impairments on the Token Test are associated with structural 

disconnections affecting prefrontal, temporal, and subcortical regions (Figure 6), and with damage to a 

functional network featuring inferior frontal and posterior temporal/parietal cortices (Figure 7). 

Predictive Modeling of the COWA and Token Test 

We also performed predictive modeling analyses using in-sample cross-validation to evaluate the 

predictive power of models trained using lesion location, structural disconnection, and lesion-derived 

functional network features as predictors. Importantly, lesion-based, disconnection-based, and fLNM-

based models were all able to achieve relatively good prediction performance on the COWA, explaining 
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~37%, ~40% and ~32% of the variance in COWA performance on average when applied to unseen patient 

samples, respectively. However, combining these models via model stacking did not improve 

performance (Figure 8), suggesting that the lesion location and fLNM models did not capture unique 

information beyond that captured by the structural disconnection model. Lesion-based, disconnection-

based, and fLNM-based models were also all able to achieve relatively good performance for the Token 

Test, explaining ~38%, ~34%, and ~28% of the variance in Token Test performance when applied to 

unseen patient samples, respectively. In general, DTLVC tended to improve the predictive performance 

of multivariate models (Supplemental Figures 3-9), but more work is needed to systematically evaluate 

the impact of predictor transformations such as DTLVC on model performance. Combining the lesion, 

structural disconnection, and fLNM models via model stacking resulted in a small improvement in 

performance for the Token Test (Figure 8B), with the stacked model explaining ~1% more variance on 

average when applied to unseen patient samples. However, stacking did not improve prediction 

performance for COWA (Figure 8A). Overall, there was not a substantial advantage to performing model 

stacking in these analyses. 

In general, the individual models showed quite good performance that was comparable to or better than 

what has been reported for similar lesion-derived predictive models in the literature (Corbetta et al., 

2015; Olafson et al., 2023; Salvalaggio et al., 2020; Talozzi et al., 2023; Yourganov et al., 2016), even 

though some of these models used strategies that could optimistically bias results (Poldrack et al., 2020; 

Scheinost et al., 2019) such as full-sample feature selection, leave-one-out CV, and correlation as the 

measure of prediction performance (Corbetta et al., 2015; Yourganov et al., 2016). While we did not 

observe a substantial benefit of model stacking in these analyses, it is possible that stacking a larger set 

of models trained on a more diverse set of features would further improve model performance (Pustina 

et al., 2017b). However, it is worth noting that other work has reported similarly modest increases in 

performance when stacking models to predict post-stroke motor outcomes (Olafson et al., 2023). 

Ultimately, more work is needed to determine how to best leverage model stacking to improve 

predictive performance. By making our toolkit available to other researchers, we hope to facilitate 

advances towards identifying optimal strategies for predicting outcomes after brain injury.  

5. Conclusions 

Here, we presented a new open-source software tool for inferential and predictive modeling of 

neuroimaging and lesion data. We have made this tool freely available to the research community with 

the goal of facilitating advanced modeling analyses of lesion and other neuroimaging datasets. To this 

end, we have also included a set of tutorial MATLAB Live notebooks that walk users through a range of 

different analyses using the toolkit and explain each step and the associated inputs, options, and result 

outputs. In addition, we provide a dedicated User Manual that provides step-by-step instructions for 

performing modeling analyses using the GUI. The toolkit, including the tutorial notebooks, can be 

downloaded at (https://github.com/jcgriffis/ibb_toolkit).  
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