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Abstract
Obesity and diabetes is a worldwide public health problem among women of reproductive age. This narrative review
highlights recent epidemiological studies regarding associations of maternal obesity and diabetes with neurodevelopmental
and psychiatric disorders in offspring, and provides an overview of plausible underlying mechanisms and challenges for
future human studies. A comprehensive search strategy selected terms that corresponded to the domains of interest (maternal
obesity, different types of diabetes, offspring cognitive functions and neuropsychiatric disorders). The databases searched for
articles published between January 2010 and April 2019 were PubMed, Web of Science and CINAHL. Evidence from
epidemiological studies strongly suggests that maternal pre-pregnancy obesity is associated with increased risks for autism
spectrum disorder, attention-deficit hyperactivity disorder and cognitive dysfunction with modest effect sizes, and that
maternal diabetes is associated with the risk of the former two disorders. The influence of maternal obesity on other
psychiatric disorders is less well studied, but there are reports of associations with increased risks for offspring depression,
anxiety, schizophrenia and eating disorders, at modest effect sizes. It remains unclear whether these associations are due to
intrauterine mechanisms or explained by confounding family-based sociodemographic, lifestyle and genetic factors. The
plausible underlying mechanisms have been explored primarily in animal models, and are yet to be further investigated in
human studies.

Introduction

Obesity among women of reproductive age increased
globally from 2005 to 2014, although the rates varied
widely between countries [1]. More than 30% of U.S.
women aged 20-39 years were defined as obese

(BMI≥30 kg/m2) in 2011-2014 [2]. The rise in the pre-
valence of obesity in this group is deemed as a major
determinant of an increased risk of type 2 diabetes mellitus
(T2DM) and gestational diabetes mellitus (GDM). Diabetes
is characterized by elevated blood glucose levels, impaired
insulin secretion, and/or peripheral resistance to insulin
action. A systematic literature review reported in 2013 that
worldwide up to 16.0% of women in reproductive age
(20–49 years) were affected in pregnancy by diabetes, and
the highest prevalence was found in the South-East Asia
Region at 25.0% while in the North America and Caribbean
Region the prevalence was 10.4% [3]. Around 87.5% of
maternal diabetes cases are GDM, 7.5% are pre-pregnancy
type 1 diabetes mellitus (T1DM), and 5% are T2DM [4].
Moreover, the prevalence of maternal diabetes is steadily
increasing [5].

Maternal obesity has adverse effects on fetal outcomes,
such as prematurity and congenital anomalies, as well as
increases the risk for offspring adiposity, and disorders of
offspring cardio-metabolism, respiration and cognition
[6–9]. Besides, maternal obesity are reported to increase
risks for offspring neuropsychiatric disorders, such as
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autism spectrum disorder (ASD), attention deficit hyper-
activity disorder (ADHD), anxiety and depression, schizo-
phrenia and other neuropsychiatric disorders [10] (Table 1).
While the association between maternal obesity and off-
spring neuropsychiatric disorder has been extensively stu-
died, especially for ASD, the influence of maternal diabetes
on offspring neuropsychiatric disorders, other than ASD
and ADHD [11–16], is less well explored. Likewise, little is
known regarding the size of the joint effects of maternal
pre-pregnancy obesity and different types of maternal dia-
betes on neuropsychiatric outcomes in offspring [12].
Maternal obesity is highly comorbid with T2DM and GDM
[17], and proposed mechanisms of their associations with
offspring neuropsychiatric disorders overlap between obe-
sity and diabetes [18].

Studies where the outcomes are compared between sib-
lings discordant for the exposure can enable control of
unmeasurable familial confounding as they intrinsically
control for maternal genetic factors and environmental
exposures that have remained constant or comparable across
pregnancies. However, this study design is less applicable
where exposure-discordant siblings are scarce, e.g., for
exposure being maternal T1DM.

Because of the increasing numbers of pregnant mothers
with obesity and/or diabetes, and available preventive and
treatments opportunities, it is important to identify the
relationship between gestational environment and offspring
neuropsychiatric disorders. In this review, we aimed to
narratively describe the reported findings about associations
of maternal pre-pregnancy obesity and diabetes with off-
spring neuropsychiatric disorders, and to provide an over-
view of the plausible underlying mechanisms, as well as
challenges for future research.

Data sources and search strategies

The databases including Web of Science, PubMed and
CINAHL were comprehensively searched by using combi-
nations of key words that corresponded to the domains of
interest: “offspring OR child*” AND “cognitive develop-
ment OR cognitive functions OR neurodevelopmental dis-
orders OR neuropsychiatric disorders OR mental health OR
psychiatric disorders OR brain development OR ASD OR
autism spectrum disorder OR ADHD OR attention-deficit
hyperactivity disorder OR schizophrenia OR psychosis OR
affective disorder OR behavioral disorders OR intelligence
disability OR IQ” AND “mother* OR pregnan* OR women
of reproductive age” AND “maternal obesity OR maternal
BMI OR Body Mass Index OR adiposity OR overweight
OR obesity” AND “type 1 diabetes OR type 2 diabetes OR
gestational diabetes OR diabetes insipidus OR diabetes
mellitus OR DM OR diabetes”. The publication periodTa
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interval was from January 1, 2010 to April 1, 2019. This is a
narrative review as opposed to a systematic review, which is
one of its limitations.

Autism spectrum disorder (ASD)

Maternal pre-pregnancy obesity and the risk for
offspring ASD

ASD is characterized by developmental delays, commu-
nication difficulties, deficits in social functioning, and ste-
reotyped, restricted and repetitive behaviors (American
Psychiatric Association, APA) [19]. The association
between maternal obesity and offspring ASD has been
extensively reviewed confirming an increased risk of ASD
in offspring of obese mothers [20–22].

A systematic review and meta-analysis involving
943,293 children and 30,337 cases searched up to March
2018 found that both maternal obesity (OR= 1.41, 95%
CI= 1.19–1.67) and maternal overweight (OR= 1.16, 95%
CI= 1.05–1.27) were significantly associated with ASD in
offspring [23]. Similarly, another meta-analysis including
509,167 participants and 8403 diagnosed cases reported that
maternal overweight and obesity was found to have 28 and
36% higher risk for ASD than normal weight during pre-
pregnancy or pregnancy [24]. These results are consistent
with the other meta-analysis studies [25, 26].

The largest nationwide cohort study including 649,043
births between 2004 and 2014 in Finland showed that obese
mothers had 28% increased risk of having a child with ASD
compared with mothers with a normal BMI after adjusting
for potential confounders (HR= 1.28, 95% CI= 1.06–1.55)
[12]. Also, a population-based, case-control study including
1004 children aged 2–5 years in California, USA between
2003 and 2010 showed that mothers with obesity were 60%
more likely to have a child with ASD (95% CI= 1.10–2.37)
[27]. Moreover, a Swedish population-based cohort study
including 333,057 participants born 1984–2007 showed that
both maternal and paternal obesity were associated with
increased risk of ASD in offspring (ORmaternal= 1.94, 95%
CI= 1.72–2.17; ORpaternal= 1.47, 95% CI= 1.12–1.92)
[28].

However, a population-based, prospective Norwegian
cohort study including 92,909 children born from 1999 to
2009 did not replicate the maternal obesity-offspring ASD
association (OR= 1.09, 95% CI= 0.74–1.59) [29]. Further,
the association between maternal obesity and the risk
of ASD was not supported by a study using
sibling–comparisons [28], which indicated that maternal
BMI may be a proxy indicator for familial risk factors such
as socio-economic status (SES) and genetic background
[28, 30]. However, the aforementioned studies reporting

positive association were adjusting for various potential
familial factors suggesting that obesity-associated intrau-
terine environment explains at least some of the maternal
obesity-offspring ASD association.

Maternal diabetes and the risk for offspring ASD

Maternal diabetes was found to be positively associated
with ASD risk in offspring, based primarily on studies of
GDM. A systematic review and meta-analysis published in
2018 involving 16 studies reported that GDM was asso-
ciated with ASD in children (RR= 1.48, 95% CI=
1.26–1.75) [16]. Another meta-analysis of mothers with
diabetes before or during pregnancy, i.e., not only GDM,
involving 12 studies also demonstrated an increased risk of
ASD in offspring. The pooled RR was 1.72 (95% CI=
1.24–2.41) among case-control studies, and 1.48 (95%
CI= 1.25–1.75) among cohort studies [31].

A large, multiethnic clinical longitudinal cohort study in
California including 322,323 singletons born in
1995–2009 showed that the ASD risk in offspring after
adjusting for potential confounders was associated with
both maternal GDM diagnosed by the 26th gestational week
(HR= 1.42, 95% CI= 1.34–2.32) and maternal preexisting
T2DM (HR= 1.33, 95% CI= 1.07–1.66) [14]. Similarly,
in a prospective national cohort study including 66,445
pregnancies in the USA, GDM was found to be associated
with increased risk of ASD (OR= 1.76, 95% CI=
1.34–2.32) [32].

However, the results from other studies investigating the
association between diabetes and offspring ASD have been
conflicting. For example, a large Finnish nationwide cohort
study including 649,043 newborns between 2004 and 2014
did not find any clear effects of neither GDM nor PGDM on
ASD risk in normal-weight mothers (ORGDM= 1.06, 95%
CI= 0.88–1.28; ORPGDM= 0.54, 95% CI= 0.20–1.44)
[12]. Another retrospective longitudinal cohort study
including all live births (129,733 births) among residents in
a Canadian province between 1990 and 2002 found that
neither diabetes before the onset of pregnancy nor GDM
was associated with ASD (ORDM= 1.98, 95% CI=
0.94–4.16; ORGDM= 1.29, 95% CI= 0.90–1.83) [33]. The
discrepancy between findings could possibly be influenced
by different BMI profiles between different cohorts in
mothers with T2DM or GDM and in mothers without
diabetes.

Maternal pre-pregnancy obesity and diabetes in
combination and the risk for ASD

The joint effect size between maternal obesity and diabetes
on offspring ASD has been reported to be larger than that of
obesity or diabetes alone. The Boston birth cohort study
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between 1998 and 2014 among 2734 children reported
three-fold increased risks for ASD of maternal pre-
pregnancy obesity and pre-gestational diabetes (PGDM) in
combination (HR= 3.91; 95% CI= 1.76–8.68), as well as
maternal obesity and GDM in combination (HR= 3.04;
95% CI= 1.21–7.63) [15]. Recently, a Finnish population-
based cohort study consisting of 649,043 participants born
between 2004 and 2014 showed that ASD risk in offspring
was three- to six-fold increased for mothers with insulin-
treated PGDM and obesity (HR= 3.64; 95% CI=
1.63–8.16), as well as for mothers with insulin-treated
PGDM combined with severe obesity (HR= 6.49; 95%
CI= 3.08–13.69) compared to normal-weight nondiabetic
mothers [12]. The corresponding joint effects of GDM with
obesity and severe obesity were HR= 1.56 (95% CI=
1.26–1.93) and HR= 1.37 (95% CI= 1.04–1.81), respec-
tively [12].

Attention‐deficit/hyperactivity disorder
(ADHD)

Maternal pre-pregnancy obesity and the risk for
offspring ADHD

ADHD is marked by an inattention and/or hyperactivity-
impulsivity that interferes with functioning or development.
The impact of maternal obesity on offspring ADHD has
been reviewed in the past five years. For example, a sys-
tematic review and meta-analysis including 41 studies
published before April 2017 indicated that maternal pre-
pregnancy obesity increased the risk of ADHD in offspring
(OR= 1.62, 95% CI= 1.23–2.14) [25].

Recently, a large, population-based nationwide cohort
study in Finland consisting of 649,043 births between 2004
and 2014 reported that maternal pre-pregnancy obesity was
associated with offspring ADHD after adjusting for poten-
tial confounders (OR= 1.44, 95% CI= 1.28–1.63) [12].
Further, a prospective pregnancy cohort from Sweden,
Denmark and Finland involving 12,556 school-aged chil-
dren indicated that obese mothers had an approximately
doubled risk of ADHD in offspring (OR= 1.89, 95% CI=
1.13–3.15) [34]. Besides, a longitudinal study reported that
maternal pre-pregnancy BMI played a predictive role in the
poorer psychosocial development, as evidenced by lower
social competence and higher externalizing symptoms in
offspring [35].

Additionally, a large population-based cohort study of
673,632 children born in Sweden between 1992 and
2000 showed that maternal obesity was associated with an
increased risk of offspring ADHD (HR= 1.64, 95% CI=
1.57–1.73) after adjustment for measured covariates. In full-
sibling comparisons of the same cohort, however, the

associations no longer remained (HR= 1.15, 95% CI=
0.85–1.56) [36]. Similarly, another population-based sib-
ling-comparison study consisting of 4682 children in the
upper Midwest of the USA between 1995 and 2013 found
no statistically significant association between maternal
obesity and ADHD risk among siblings, although one unit
higher BMI increased the risk of offspring ADHD by 4.2%
(95% CI= 1.02–1.06) at maternal level [37]. The two
sibling-comparison studies suggested that besides the major
exposures of interest, other unmeasured familial lifestyle-
related characteristics associated with obesity and ADHD
may explain part of the maternal obesity–offspring ADHD
associations detected [7]. Hence, similar to the case for
maternal obesity-offspring ASD association, the sibling
analyses do not support an intrauterine environmental
causality, however the rigorous adjustments in the other
studies for various potential familial factors support some
degree of involvement of an obesity-associated intrauterine
environment.

Maternal diabetes and the risk for ADHD

Studies have explored the relationship of both maternal
GDM and maternal pre-pregnancy diabetes to the risk of
offspring ADHD. A longitudinal cohort study including 212
preschool children with ADHD in New York found that
GDM was associated with an over 2-fold increased risk for
ADHD (OR= 2.20; 95% CI= 1.00–4.82) in offspring at
age 6 years compared with those unexposed [11]. A large
population-based cohort study including 649,043 births in
Finland between 2004 and 2014 studied normal-weight
mothers and found smaller effects of GDM on offspring
ADHD risk (HR= 1.15; 95% CI= 1.01–1.30) [12].
Moreover, a retrospective birth cohort study including
333,182 singletons born in 1995–2012 within Kaiser Per-
manente Southern California hospitals found that the
adjusted HRs for offspring ADHD were 1.26 (95% CI=
1.14–1.41) for GDM requiring antidiabetic medication, and
0.93 (95% CI= 0.86–1.01) for GDM not requiring anti-
diabetic medication, compared with children unexposed in
utero to diabetes [13]. Exposure to T1DM had an adjusted
HRs for ADHD in children at 1.57 (95% CI= 1.09–2.25),
and 1.43 (95% CI= 1.29–1.60) for T2DM [13]. Further, a
longitudinal nationwide register-based cohort study invol-
ving 2,274,713 in Norway from 1967 to 2012 reported that
pre-pregnancy T1DM was associated with an increased risk
for ADHD in offspring after adjusting for potential con-
founders (OR= 1.6; 95% CI= 1.3–2.0), while exposure to
maternal T2DM was not associated with offspring ADHD
risk (OR= 1.1; 95% CI= 0.7–1.8) [38].

Similarly, maternal pre-pregnancy T1DM was associated
with an increased risk of offspring ADHD (RR= 1.31, 95%
CI= 1.03–1.63) in a large register-based cohort study

Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric. . . 1989



including 983,680 individuals born in Denmark from 1990
to 2007 [39],, and in a retrospective cohort study involving
15,615 individuals born in Sweden between 1970 and 2012
(HR 1.35; 95% CI= 1.18–1.55) [40].

Overall, there is support for that exposure to maternal
T1DM increases the offspring risk of ADHD modestly. The
influence of GDM or T2DM on offspring ADHD risk is less
clear. Various maternal and birth factors were adjusted for
in aforementioned studies, again proposing some involve-
ment of intrauterine environment, however, sibling pair
analyses have not been reported. For T1DM, sibling pair
analysis would require very large populations as exposure-
discordant siblings are rare.

Maternal pre-pregnancy obesity and diabetes in
combination and the risk for offspring ADHD

Only few studies have considered the combined effects of
maternal obesity and diabetes on the risk of ADHD in
offspring. Among the two studies on this topic, a pro-
spective birth cohort study including 2,734 mother-child
pairs at the Boston Medical Center from 1998 to 2014
reported that there was no association with offspring
ADHD, neither for maternal pre-pregnancy obesity–GDM
(HR= 1.20, 95% CI= 0.49–2.93), nor for maternal pre-
pregnancy obesity–PGDM (HR= 1.06, 95% CI=
0.34–3.36) [15]. Similarly, another population-based
nationwide cohort study including 649,043 births in Fin-
land between 2004 and 2014 found no combined associa-
tion of maternal obesity and insulin-treated PGDM with risk
for offspring ADHD compared to normal-weight mothers
without PGDM (HR= 1.00, 95% CI= 0.32–3.10) [12].
This study, however, found a markedly higher risk for
ADHD for offspring of severely obese mothers with insulin-
treated PGDM (HR= 6.03, 95% CI= 3.23–11.24;
HRno diabetes, severe obesity=1.88, 95% CI= 1.58–2.23). This
study also indicated that the joint effect of maternal GDM
combined with obesity, or severe obesity, increased the risk
for offspring ADHD (HRGDM, obesity=1.64, 95% CI=
1.42–1.88) compared with that of mothers with only obesity
(HRno diabetes, obesity=1.44, 95%CI= 1.28–1.63) [12].

Cognitive function and intellectual ability

Maternal pre-pregnancy obesity and the risk for
offspring cognitive and intellectual function

The impact of maternal obesity on cognitive function and
intelligence development in the offspring has been reviewed
[10, 20, 22, 41]. A meta-analysis published in 2018 repre-
senting 36 cohorts indicated that maternal pre-pregnancy
overweight or obesity was associated with increased risk of

offspring developmental delay (OR= 1.58, 95% CI=
1.39–1.79) and emotional/behavioral problems (OR= 1.42;
95% CI= 1.26–1.59) [25]. An increasing number of long-
itudinal, prospective, and observational studies have
explored the association between maternal pre-pregnancy BMI
and cognitive performance in the offspring [42–48]. Among
these previous studies, most studies suggested that maternal
pre-pregnancy obesity was associated with low IQ, including
poorer motor, spatial, and verbal skills. [42–45, 48–50] Also a
prospective population based cohort of 19,517 children at 5
and 7 years of age in the United Kingdom showed that
maternal pre-pregnancy BMI was negatively associated with
children’s cognitive performance. The relationship appeared to
become stronger as children got older, although the overall
effect size was modest [42]. To address potential paternal
confounding, a few studies considered not only maternal but
also paternal BMI [43, 44, 48]. Wherein, a Danish national
birth cohort study including 1783 mothers reported that
increased maternal and paternal pre-pregnancy BMI were
associated with lower offspring IQ at similar effect sizes after
adjusting for potential confounders, suggesting that not only
the intrauterine environment was involved [43]. However,
findings from two southern European birth cohort studies from
Spain and Greece found that maternal BMI effect estimates on
infant cognitive development were greater than those of
paternal BMI [44], which was consistent with mainly
maternal-specific or intrauterine effects. Moreover, one study
including two cohorts, one British (N= 5000) and the other
Dutch (N= 2500), showed that neither maternal nor paternal
pre-pregnancy overweight were consistently associated with
child cognitive abilities [48]. Thus, when interpreting the
findings potential unidentified genetic and familial confound-
ing factors and ongoing brain maturation to early adulthood
should be considered.

Maternal diabetes and the risk for offspring
cognitive and intellectual function

Maternal PGDM and GDM have been studied as potential
factors impairing cognitive function in childhood [51–54].
In particular, a systematic review and meta-analysis
including 12 studies and 6140 infants assessed the cogni-
tive abilities in children (up to 14 years) of diabetic and
non-diabetic mothers, and found no significant difference
[55]. A large family-based prospective cohort study (N=
664,871 from 543,203 families) linking nation-wide regis-
ters in Sweden reported that maternal GDM was associated
with lower educational achievement and IQ scores among
men at 16–18 years after adjustment for potential con-
founders including also maternal pre-pregnancy BMI, while
there was no such association within siblings [53]. Thus,
this association was likely due to common shared familial
characteristics such as familial socioeconomic position,
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known to influence both educational attainment and GDM,
rather than intrauterine mechanism [53].

Depression, anxiety, psychosis and eating
disorders

Depression is characterized by a depressed mood, loss of
interest and a feeling of worthlessness, whereas anxiety is
characterized by worried thoughts, fear and associated
physical symptoms. Only few human studies have investi-
gated if maternal obesity is associated with offspring mood
or anxiety disorders, and for maternal diabetes exposure no
report on offspring mood and anxiety disorders was found.
A population-based cohort study from the Western Aus-
tralian Pregnancy Cohort including 2,868 live births fol-
lowed 17 years indicated that maternal pre-pregnancy
obesity was associated with childhood affective problems
including depression and anxiety (OR= 1.72, 95% CI=
1.11–2.67) [56].

Psychosis is a dissociation from reality based on irregular
thoughts and changes of cognitive function. A qualitative
review including four studies with 305 cases of schizo-
phrenia and 24,442 controls showed that maternal pre-
pregnancy obesity was associated with 2- to 3-fold
increased risk of schizophrenia in offspring, although
maternal schizophrenia and hence possible genetic con-
founding was not taken into account [57]. A population-
based cohort study of 526,042 individuals born in Sweden
between 1982 and 1989 reported a weak U-shaped asso-
ciation between maternal early-pregnancy BMI and the risk
for non-affective psychosis in offspring, and the matched-

sibling analyses found no association between maternal
overweight (HR= 1.11, 95% CI= 0.73–1.68) or obesity
(HR= 0.56, 95% CI= 0.23–1.38) and risk for non-
affective psychosis in offspring [58]. Eating disorders
include anorexia, bulimia and binge-eating disorder. A
population-based Australian pregnancy cohort study
including 1,383 offspring followed prospectively from 14 to
20 years of age found that maternal early-pregnancy BMI
associated positively with the risk of eating disorders in
offspring (OR= 1.10, 95% CI= 1.05–1.15) [59].

Brief overview of potential pathways and
mechanisms

Confounded by parental genetic and familial postnatal
environmental factors, it is challenging to explore under-
lying mechanisms explaining the putative associations
between maternal obesity/diabetes and offspring neurode-
velopmental and psychiatric disorders. However, animal
models can provide putative causal links between exposure
to maternal obesity/diabetes and some behavioral symptoms
or functionalities associated with human neurodevelop-
mental and psychiatric disorders in offspring (Fig. 1).
Rodent models on high fat diet (HFD) or with hypergly-
cemia have been used in this context supporting a role of the
intrauterine environment [20, 60–63]. Offspring to pregnant
dams of these models display altered behaviors such as
hyperactivity, reduced sociability and anxious and
depressive-like behaviors [20]. The potential underlying
mechanisms between prenatal HFD exposure and offspring
neurodevelopment have been reviewed previously [64].

Fig. 1 Pathways linking
maternal obesity and diabetes
with potential
neurodevelopmental and
psychiatric disorders in
offspring. Genetic inheritance,
pre-pregnancy and pregnancy
effects of a metabolically
dysregulated environment, and
postnatal effects of psychosocial
stress, malnutrition and the
microbiota are illustrated.
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Here, we give a brief overview of the putative key
mechanisms of how model and human maternal obesity and
diabetes can influence offspring neurodevelopment.

During the human pregnancy, insulin resistance is gra-
dually elevated to ensure adequate nutrition for the fetus.
Thus, postprandial glucose levels, basal and stimulated
insulin secretion, and hepatic glucose production are ele-
vated. An obese and/or diabetic state can exacerbate the
normal pregnancy-related metabolic changes. Insulin resis-
tance, hyperinsulinemia, elevated plasma leptin levels and
low-grade inflammation are commonly seen in obese and/or
diabetic pregnant mothers [65–69], also in a non-pregnant
severely obese women [70]. These metabolic and inflam-
matory states affect the placenta and thereby influence the
exchange of nutrients between the mother and the fetus.
Thus, these states leads to increased placental transfer of
glucose and fatty acids, placental inflammatory cytokine
release and influences the placenta’s production of hor-
mones and growth factors that are crucial for embryonic
development [71–74]. The elevated levels of glucose, fatty
acids, leptin, inflammatory cytokines and chemokines also
directly expose the fetus as these molecules can pass the
placenta [75]. Consequently and importantly, fetal secretion
of insulin is increased in response to elevated glucose levels
passed over from the mother, and so is fetalinsulin resis-
tance [76]. Exposure of the fetus to maternal obesity and
diabetes has in rodent models been suggested to have long-
lasting effects on organ development and function, includ-
ing also neuroendocrine regulation and brain development
[64], through hyperglycemia [77], oxidative stress [78, 79],
lipotoxicity [80, 81], inflammation [82–84] and the asso-
ciated hormones insulin and leptin [20, 66, 85]. The long-
lasting effects can also be mediated by epigenetic
modifications.

Metabolic hormones

As aforementioned, insulin resistance is gradually elevated
during pregnancy causing increased plasma insulin levels.
An obese and/or diabetic state can exacerbate these
pregnancy-induced changes in maternal insulin levels as
insulin resistance, hyperinsulinemia and low-grade inflam-
mation are commonly seen in these states [70]. Inflamma-
tion, often initiated in white adipose tissue of obese
subjects, is known to induce insulin resistance by inhibiting
insulin receptor signaling [86]. Insulin resistance in GDM is
associated with elevated levels of TNF-α and pro-
inflammatory cytokines during pregnancy [87]. Insulin
does not pass the placenta, but glucose do, so the fetus
becomes exposed to the maternal glycemic state, and in the
event of hyperglycemia or fetal insulin resistance it secrets
more fetal insulin. Moreover, insulin is an important growth

factor in brain development [88]. Increased peripheral
insulin levels results in insulin resistance which itself has
large effects on the brain and have been associated with
depression [89–92].

Leptin is mainly produced by adipose tissue, and leptin
receptors are widely distributed in the central nervous sys-
tem [93]. Leptin resistance is common in an obese state, one
potential mechanism being reduced leptin transport across
the blood-brain barrier due to elevated levels of triglycer-
ides. Hence, plasma leptin levels are elevated in obesity.
Maternal plasma leptin levels are increased during normal
pregnancy, likely because of production in the placenta. In
obese pregnant women, leptin levels are elevated in plasma,
placenta, umbilical cord and fetus compared to non-obese
pregnant women. Leptin is produced also by the fetus and is
potentially involved in offspring brain development, likely
through activation of pro-inflammatory cytokines with
downstream effects on neurotransmitters influencing beha-
viors. Thus, leptin signaling stimulates pro-inflammatory
cytokine secretion and influences cortisol release, serotonin
and dopaminergic pathways, brain-derived neurotrophic
factor (BDNF) signaling and hippocampal synaptic plasti-
city [93]. Altered leptin levels have been implicated in
depression [94]. Elevated early childhood leptin levels in
plasma, but not in cord blood, have been associated with an
increased risk for autism [95], and associations between
leptin levels and other behaviors have been reported from
rodent models [93].

Oxytocin is produced primarily by the hypothalamus
while its receptors are present both in the nervous system
and peripherally, e.g., the adipose tissue. Elevated oxytocin
levels influence food intake, adipose tissue metabolism and
insulin sensitivity [96, 97]. Oxytocin deficient mice develop
late-onset obesity despite normal food intake. Male off-
spring to pregnant dams on HFD had upregulated oxytocin
receptor mRNA through epigenetic changes in the devel-
oping hippocampus [98]. Oxytocin modulates a wide range
of neurotransmitter and neuromodulator activities and is
well known to regulate social behavior, and might be linked
to the pathogenesis of neuropsychiatric disorders, such as
autism, schizophrenia and eating disorders [99, 100].
Additionally, oxytocin levels were reported to be critical for
the developmental GABA switch from being excitatory to
being an inhibitory neurotransmitter in rats [101], while
lack of this switch induced autism-like behavior.

Epigenetic effects of maternal obesity and
diabetes

The effects of hyperglycemia are in rodent models partly
mediated by epigenetic changes, being modifications of
histones, DNA and noncoding RNAs ultimately influencing
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gene expression [102]. Indeed, maternal hyperglycemia is
associated with increased DNA methylation in specific
genes in offspring, inducing chronic effects for offspring
development [103]. Furthermore, methylation-mediated
epigenetic mechanisms for intergenerational susceptibility
to metabolic disorders were found in a mouse model for
GDM [104]. Epigenetic effects of obesity and diabetes on
the offspring have in models been shown to occur not only
at the fetus level, but also already in the oocyte and sperm
[103–106] implying an influence of both maternal and
paternal metabolic disorder [103–107]. Reported DNA
methylation changes of maternal metabolic state with
putative effects in the brain include, but are not limited to,
those on offspring leptin signaling [93, 108].

In addition to metabolically induced epigenetic changes
in the nuclear genome, the effects of maternal obesity and
diabetes on mitochondria and mitochondrial dysfunction
[109] might be considered a possible mediator of maternal-
specific effects on the offspring, since mitochondrial DNA
is inherited from the mother. Mitochondrial dysfunction has
been suggested to be a mechanism underlying the patho-
genesis of a range of neuropsychiatric disorders such as
depression, schizophrenia and bipolar disorder [110].

Immune activity effects

Low-grade inflammation is commonly seen in obese and/or
diabetic pregnant mothers. Pro-inflammatory cytokines
passing the placenta to the fetus exposing the offspring
brain during gestation are known to influence the devel-
opment of neural pathways regulating behavior, such as the
hypothalamic-pituitary-adrenal (HPA) axis, and ser-
otonergic and dopaminergic systems and BDNF levels [60].
IL-6 is an early key pro-inflammatory cytokine. A recent
longitudinal study found that maternal IL-6 concentrations
during pregnancy were associated with neonate differences
in functional brain networks for social, emotional and
cognitive development, and subsequently in concert with
working memory performance in 2-year-old offspring
[111]. Higher levels of IL-6 may lead to offspring cognitive
and behavioral deficits by altering the formation of synapses
[112]. Pro-inflammatory cytokines, as well as BDNF,
influence the differentiation and survival of neurons,
synaptic plasticity and hence functional connectivity,
essential for neurodevelopment and behavior, where also
microglia play a key role [113, 114].

Microglia are motile myeloid cells in the brain, which
play a critical role in neurodevelopment through regulating
both neurogenesis and pruning, besides having traditional
macrophage-type roles. Excess exposure to pro-
inflammatory cytokines in the developing brain induces
improper activation of microglia, resulting in improper

support and regulation of neuronal activity, impeding neu-
ron differentiation and survival [113, 115, 116]. Rodent
studies showed that dysregulation of microglia is associated
with autism and schizophrenia [117], and microglia play an
active part in obesity-related cognitive decline by phago-
cytosis of synapses [118].

Glucocorticoids and the hypothalamic-
pituitary-adrenal (HPA) axis

Inflammation is known to upregulate the HPA axis [119].
The HPA axis regulates the neuroendocrine stress response
through circulating cortisol, or in rodent corticosterone. A
long-term overactive HPA axis increases the risk for
impaired hippocampal glucocorticoid receptor (GR) feed-
back, elevated stress susceptibility and depressive and
anxiety phenotypes. In mice and rats, maternal HFD has
been reported to lead to increased maternal levels of corti-
costerone, which under this diet more readily passed
through the placenta to the fetus [120]. The offspring had
long-term elevated corticosterone levels, a dysregulated
HPA-axis and were more sensitive to stressors with
amygdala playing a role [121]. In humans, higher maternal
early pregnancy BMI was reported to be associated with
lower morning salivary cortisol in the offspring at adult age
[122]. The placenta is a main source of corticotrophin
releasing factor (CRF) [123], which feeds back to both the
fetal and maternal pituitary to secrete ACTH stimulating
cortisol/corticosterone production [124, 125]. Placental
CRF plays a crucial role in regulating the fetal HPA axis
[124, 126]. In rodent studies, the reduced HPA axis sensi-
tivity and anxiety-like behaviors in offspring of dams with
overactive HPA axis during pregnancy was in part
explained by an attenuated hippocampal GR expression
[127, 128]. Also immune activity and psychosocial stress
causes elevated glucocorticoid levels [129]. Maternal psy-
chosocial stress is known to long-term modify the offspring
HPA axis activity epigenetically towards increased stress
sensitivity [130] and suicide risk [131, 132].

Serotonergic and dopaminergic system
effects

Changes in development of the serotonergic system and in
serotonin signaling have been observed in rodent and non-
human primate models owing to maternal inflammation or a
HFD, leading to increased risk for behavioral abnormalities
in offspring [133–135]. Altered dopamine sensitivity, as
well as abnormal dopamine and BDNF expression are also
documented in rats of mothers fed with HFD [60, 136, 137].
Moreover, maternal inflammation, modeled with IL-6 and
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leptin, has been associated with dopamine signaling in
offspring [138]. Serotonin and dopamine are known key
neurotransmitters in psychopathology, and have together
with BDNF been suggested by a growing body of evidence
to also be linked to the pathogenesis of several neu-
ropsychiatric disorders [99, 139].

The gut-brain axis

Another putative link from maternal obesity and diabetes to
offspring neuropsychiatric disorders is a putative maternal
gut-fetal brain axis. HFD dramatically alters the intestinal
microbiota, and the gut bacterial microbiota is less diverse
and more inflammatory in persons with obesity or diabetes
[140]. A less diverse gut microbiota has been reported also
in psychiatric patients, and feces from patients with ASD,
depression or schizophrenia transferred to the rodent intes-
tine produced disorder-related behaviors and biochemical
modulations [141–143]. The gut microbiota communicates
with the enteric nervous system in the gastrointestinal
organs, which signals via vagus and ganglia to the central
nervous system. In fact, gut bacteria show species-specific
production of neuroactive substances, e.g., dopamine, ser-
otonin and GABA neurotransmitters. Other key routes of
the gut-brain axis include the bacterial fermentation meta-
bolites short chain fatty acids (SCFAs), and immune acti-
vation, both regulating the function of the intestinal and
blood-brain barriers [144]. The SCFAs pass the blood-brain
barrier and have broad effects on nervous system physiol-
ogy such as mitochondrial function and microglial
maturation and activation [145, 146]. SCFAs at physiolo-
gical levels regulate early growth and proliferation of
human neural proliferating cells [147]. Thus, gut microbiota
metabolites, such as SCFAs, might have an effect on the
offspring neurodevelopment and hence mediate a putative
maternal-gut fetal-brain axis. Also, a maternal gut bacterial
flora activating Th17-cell has been reported to increase the
risk of rodent offspring behavior and brain structure
abnormalities resembling ASD after exposure to maternal
immune activation, such as infection [148]. Both disrup-
tions in neuronal architecture by direct intracerebral action
through interleukin-17a pathway, and altered signatures of
gut microbiota have been documented in offspring with
maternal immune activation [72].

Genetic factors

As a result of the altered intrauterine environment, as
aforementioned, neurogenesis/apoptosis, synaptic pruning,
neuronal migration, and neuronal connection could be
affected [149, 150]. The symptom and functionality

outcomes might also in part depend on factors such as
genetic and postnatal factors. Obesity and type 2 diabetes
are known to be heritable, the inherited susceptibility of
which relate to accumulation of many common DNA var-
iants [151]. Recent genome-wide-association-studies
(GWAS) revealed that more than 200 loci associated with
type 2 diabetes and obesity traits [152–154]. Neurodeve-
lopmental and psychiatric disorders are also moderately
(depressive, anxiety, eating and sleeping disorders) to
highly (ASD, AHDH, bipolar and psychotic disorders)
heritable [155]. Notably, children with ADHD or ASD have
been reported to have an enhanced risk for developing
obesity [156, 157]. One possibility is that obesity and
neurodevelopmental disorders share some common genetic
or metabolic pathways. GWAS loci associated with obesity
have been shown to be nearby genes involved in appetite,
energy homeostasis and mood regulation [158–160].
Additionally, the gene for β2-Adrenoceptor (ADRB2, a G
protein-coupled receptor) was involved in the circulatory,
muscle, and digestive system. This gene was also linked to
insulin resistance [161], obesity/diabetes [162, 163], and
psychiatric disorders such as autism [164].

Finally, maternal pre-pregnancy obesity and diabetes
seem to jointly potentiate their offspring to adverse neuro-
development [12, 165, 166]. The timing of obesity and/or
diabetes onset might be important in determining the off-
spring neurodevelopmental outcomes. The most vulnerable
period would be peri-conceptional and early pregnancy,
during which period the epigenetic programming, pla-
centation and fetal brain organogenesis happens [167].
Environmental exposures during postnatal life such as
familial parenting style may also influence the offspring
neurodevelopment [168].

Challenges for future research

The extensive adjustment for potential confounders in pre-
vious studies might induce underestimation of effect sizes.
On the other hand, sibling pair analyses suggest the influ-
ence of elusive familial factors on the association between
maternal obesity and offspring ASD and ADHD. Thus, the
causality of the observed associations remains unclear.
Further, ASD and ADHD often co-occur. Future studies
should tease out common and unique factors contributing to
these disorders. Still, experimental research in rodents
clearly supports a causal effect of a dysmetabolic milieu, for
germ cells and fetus, resulting in phenotypic effects
resembling some characteristics of pediatric neurodevelop-
mental and psychiatric disorders. Hence, alongside further
experimental mechanistic research, large sophisticated pro-
spective studies controlling for familial confounding are
needed to obtain further insights into the multiple effectors
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and underlying mechanisms of the observed associations,
such as sibling-comparison and maternal-paternal compar-
ison studies and Mendelian randomization studies. Future
studies should carefully consider gene × environmental
interactions, which are likely underlying most of the neu-
rodevelopmental disorders, hence exposure and diagnoses
outcome data should be combined with multi-omics pro-
filing (genome, epigenome, metabolome). Especially, sib-
ling pair analyses (including twin pairs) combined with
multi-omics profiling (genome, epigenome, metabolome)
would be powerful in delineating specific familial factors.
Here, detailed information and assessments are important,
such as repeated measurements of maternal BMI, body
composition and metabolic status from first trimester and
onwards, as well as specific maternal lifestyle and nutri-
tional factors that might strengthen effects of maternal
obesity and diabetes on offspring neuropsychiatric dis-
orders. Finally, although specific dietary interventions exist,
such as omega-3 supplementation, there is a lack of inno-
vative and effective intervention research starting in the first
trimester with long-term follow-up of offspring regarding
the moderation of maternal metabolic exposures, before or
during pregnancy, on the risk of offspring neurodevelop-
mental or psychiatric disorders [169].

Concluding remarks

This narrative review highlights previous research regarding
associations of maternal obesity and diabetes with neuro-
developmental and psychiatric disorders in offspring. The
associations between maternal obesity on the one hand, and
offspring ASD, ADHD and cognitive function on the other
hand, have been extensively studied in large cohorts with
results displaying modest effect sizes after adjustment for
confounding maternal and birth factors. Those effects are
reported to likely be explained in part by an obesity-
associated intrauterine milieu, and in part by maternal
genetic background and other familial factors. The impor-
tance of the latter factors was concluded through analyses
applying a sibling analysis design or a paternal-maternal-
comparison. The influence of maternal obesity on other
psychiatric disorders is less well studied, but there are
reports of associations with increased risk for offspring
depression, anxiety, schizophrenia and eating disorders, at
modest effect sizes. The effect of maternal T2DM and
GDM on offspring ASD, and that of maternal T1DM and
GDM on offspring ADHD have been explored, again
revealing modest positive effect sizes. Here, there are no
reports of sibling analyses or maternal-paternal compar-
isons. Notably, a few studies have reported larger effect
sizes on risks for ASD and ADHD for mothers with both
obesity and diabetes, which might reflect a more

metabolically impaired intrauterine milieu. This review also
provides an overview of plausible underlying mechanisms,
which support both an actual involvement of a metaboli-
cally dysregulated intrauterine milieu on neurodevelopment,
and familial factors, although interpretation of rodent model
findings into the human case must be done with caution.
The current knowledge on effectors in the intrauterine
milieu, which is based primarily on rodent models, proposes
a role of particularly hyperglycemia-induced epigenetic
effects and pro-inflammatory cytokines. Prospective
maternal-paternal comparison and sibling-comparison stu-
dies, experimental animal model studies and randomized
controlled trials are required to examine the causality,
underlying mechanisms and the potential for prevention of
maternal metabolic exposures.
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