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Pericentromeric heterochromatin is maintained in a condensed structure by repressive
epigenetic control mechanisms and perturbation of these may cause diseases. The
chromosome 1q12 region harbors the largest pericentromeric heterochromatin domain in
the genome and is among the most common breakpoints in both solid and hematopoietic
cancers. Furthermore, the 1q arm is frequently amplified in cancer and this may support
tumorigenesis by increasing the dosage of the many oncogenes of this genomic region.
Recent studies have provided insight into the mechanisms leading to loss of 1q12 stability
and 1q amplification and DNA hypomethylation seems to play a prominent role. This may
be the result of decreased activity of DNA methyltransferases and instrumental for 1q12
destabilization or arise secondary to perturbation of other important epigenetic
mechanisms that control repression of pericentromeric heterochromatin. Polycomb
proteins were recently demonstrated to epigenetically reprogram demethylated 1q12
pericentromeric heterochromatin in premalignant and malignant cells to form large
subnuclear structures known as polycomb bodies. This may influence the regulation
and stability of 1q12 pericentromeric heterochromatin and/or the distribution of polycomb
factors to support tumorigenesis. This review will discuss recent insight into the epigenetic
perturbations causing the destabilization of 1q12 pericentromeric heterochromatin and its
possible implications for tumor biology.

Keywords: cancer, genomic instability, chromosome 1q12, pericentromeric heterochromatin, polycomb group
proteins, synovial sarcoma, breakpoint X, genomic amplification
INTRODUCTION

Loss of genomic stability is an enabling feature of tumor progression, in which elevated rates of
mutations and numerical/structural chromosomal deviations drive the development of cancer
hallmarks (1). Generally, there are three different types of genomic instability: base pair mutation,
microsatellite instability and chromosome instability (2). The latter describes events associated with
mitotic missegregation that lead to changes in chromosome number and chromosome
rearrangements that produce abnormal chromosome structure. Such chromosomal rearrangements
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may be non-random involving specific parts of the genome and
multiple studies have implicated pericentromeric/juxtacentromeric
heterochromatin (PCH) in this type of genomic instability.
The largest PCH domain in the genome is located at the
chromosome 1q arm and comprises a megabase stretch of
satellite II and III DNA repeats. Similar structures are present at
other chromosomes such as 9 and 10, but these are smaller and have
different satellite DNA compositions. The cellular functions of PCH
still remain largely elusive, but these gene poor regions appear to
support centromere function in mitosis and be essential for
architectural and topological organization of the nuclear
department (3–5). Importantly, the 1q PCH seems to play a
prominent role in tumorigenesis.
CHROMOSOME 1q12 BREAKAGE AND 1q
AMPLIFICATION IN SOLID CANCERS

This 1q PCH domain is among the most frequent breakpoint
sites in cancer (6, 7). For instance, the most frequent karyotypic
aberration in breast cancer involves 1q PCH, leading to
isochromosomal formation, translocation (often to 16p) or less
often deletion of the whole 1q arm (8). This may in some cases be
the only karyotypic change in breast cancer tumors, suggesting a
role in tumorigenesis (9). In melanoma, the 1q arm is frequently
amplified with about 25% of cutaneous primary tumors and
metastases exhibiting 1q copy number gain (10) and was found
to correlate with the transition from melanoma in-situ to
invasive lesions (11). The presence of 1q12 aberrations in
melanoma was confirmed by another study, where as many as
90% of chromosome 1 rearrangements occurred in the 1q12
region confirming the importance of chromosome 1q PCH in
chromosome 1 instability (12). In this line, copy number gain at
chromosome 1q is also among the most frequent genomic
alterations in hepatocellular carcinoma (13–16) and in some
cases this again involves the 1q12 region (17, 18). Strikingly, 1q
amplifications are also highly frequent in a number of pediatric
solid cancers, including tumors of the CNS (19, 20) and kidney
(21, 22).
CHROMOSOME 1q12 BREAKAGE AND 1q
AMPLIFICATION IN HEMATOPOIETIC
CANCERS

In hematopoietic cancers, gain of chromosome 1q is also one of the
most common cytogenetic aberrations. It is very well described in
multiple myeloma (MM) where up to 40% of patients with
abnormal karyotypes exhibit chromosome 1 rearrangements (23–
25). The primary mechanism for 1q amplification in MM has been
described as a process called “jumping translocation”, where the 1q
arm translocates to several recipient chromosomes and the 1q copy
number can increase over time (26–29). This syndrome frequently
involves 1q12 PCH, which seems to acquire self-propagating
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mobile properties that drives continuous duplication/deletion
events. In most patients, this results in 1q copy numbers of 3 to
4, but in some patients a process called “1q12–21 breakage-fusion-
bridge cycle amplifications” can generate ladders of 1q12–21
amplicons (30). 1q jumping translocations are also common in
multiple other types of hematopoietic cancers and are also observed
in solid cancers (31). The involved breakpoints seem to vary with
1q10–21 depending on the cancer type.
THE ROLE OF CHROMOSOME 1q
AMPLIFICATION IN CANCER
DEVELOPMENT

It is evident that gain of chromosome 1q is a recurrent aberration
in many types of cancer and is invariably associated with poor
outcomes and disease recurrence (26, 32–39). The 1q arm host
many well-known oncogenes such as NRAS, JUN, MYCL, TAL1,
BLYM, LCK, of which the amplification may increase expression
levels and thereby support tumorigenesis. However, a number of
additional candidate genes have been identified that may also be
of importance. Genes of 1q21–23 are of special interest since this
region is frequently subject to local amplification (17, 40–43) and
this more often appears in aggressive tumors with metastatic
potential and resistance to chemotherapy (44–47). In a study of
breast cancer, 1q21–23 genes were directly implicated in the
phenotype of breast cancer cells. The region was amplified in
10% to 30% of primary tumors and 70% of recurring tumors and
was associated with early relapse and resistance to chemotherapy
(48). This phenotype was attributed to the S100A family genes,
which was demonstrated to support oncogenic traits on breast
cancer cells. This region includes several other potential
oncogenes such as ALC, which is frequently amplified and
overexpressed in hepatocellular carcinoma and increase
tumorigenicity in mouse models (49) as well as MCL-1, which
contributes to survival of multiple myeloma cells, and correlates
with poor prognosis (50). Candidates such as RAB25, NES,
CRABP2, HDGF and NTRK1 among others remain less
characterized (22, 51). Thus, many genes on 1q21–23 and 1q
in general may be involved in tumorigenesis and most likely
different genes may give selective advantages to different subsets
of tumors. This may explain the frequent amplification of the 1q
arm in cancer.
EPIGENETIC CONTROL OF 1q12
PERICENTROMERIC
HETEROCHROMATIN REPRESSION

The mechanism of chromosome 1q amplification involving 1q12
PCH rearrangements seems to involve unfolding of the 1q12
PCH (Figure 1) (29, 52–57), which may result from
decondensation of the chromatin structure. We have
demonstrated that this unfolding implicates 1q12 PCH in the
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formation of chromatin bridges during mitosis and the
formation of post-mitosis micronuclei (57), which are both
clear signs of genomic instability and indicative of 1q12
instability. This destabilization of 1q12 PCH may arise from
loss of epigenetic control of chromatin structure.

In most types of healthy cells, PCH is contained in a repressed
state to maintain its stability. This is achieved by a specific
epigenetic footprint, including H3K9me3, deposited by the
SUV39H1/2 lysine methyltransferase. This mark recruits
heterochromatin protein 1 (HP1) that interacts with other
epigenetic factors to implement a repressive state, involving
additional repressive marks such as DNA methylation and
H4K20me2/3 (4, 58). Over the recent years, novel players in
structural maintenance of PCH have been identified. This
includes species of non-coding RNA transcribed from these
regions, showing that PCH is not as transcriptional silent as
previously anticipated. Interestingly, these ncRNAs have been
demonstrated to be implicated in the repression of PCH by
different mechanisms. For instance, PCH RNAs are processed by
dicer and the resulting siRNAs target PCH to facilitate H3K9
methylation (59). Other studies have demonstrated that HP1
binding to PCH is RNA-dependent and involves long non-coding
RNA. Importantly, in several studies core phenotypes of cancer cells
have been attributed to overexpression of PCH satellite RNAs (59).

An important link between PCHs and aging has is also well
established and may further tie PCH dysregulation to cancer
development (60). Evidence from many different models of cellular
senescence and organismal aging suggests that the aging process is
associated with PCH loss. For instance, one of the core markers of
heterochromatin, H3K9me3, is gradually reduced during aging and
even though senescent cells display the formation of senescence-
associated heterochromatin foci (SAHF) this is accompanied by a
global loss of heterochromatin (61, 62). Similar results have emerged
from premature aging syndromes. This includes Hutchinson–
Gilford progeria (HGPS), which is associated with H3K9me3 and
HP1 loss and is caused by inactivation of Lamin A (63, 64), an
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important factorofheterochromatin regulationat thenuclear lamina.
The mechanisms underlying age-related epigenetic reprogramming
of (pericentromeric) heterochromatin and their role in the aging
process remain largely elusive, but this and its possible relationship
with PCH dysregulation in cancer should be further investigated.

In the recent years, also Polycomb group (PcG) repressive
complexes have been acknowledged as regulators of PCH
silencing. There are at least two types of PcG complexes, PcG
repressive complex 1 and 2 (PRC1 and PRC2), which have been
detected in different variants with distinct compositions and
functions (65). PRC1 specifically recognizes H3K27me3
catalyzed by PRC2 and has E3 ubiquitin ligase activity for
H2A, while PRC2 specifically interacts with H2AK119ub
produced by PRC1. Originally, PRC2 deposition on chromatin
was believed to exclusively mediate PRC1 recruitment, but recent
studies have revealed a more complex mechanism for PcG
deposition. PcG proteins were traditionally specifically associated
with facultative heterochromatin which was considered to be
repressed by mechanisms distinct from those of PHC repression,
but several studies have demonstrated that under some
circumstances, PcG proteins can be found associated with PCH
(66–70). The interplay between PcG and HP1 mediated silencing
mechanisms in repression of PCH in homeostasis remains
largely uncharacterized.
THE ROLE OF DNA METHYLATION
IN DESTABILIZATION OF 1q12
PERICENTROMERIC HETEROCHROMATIN

Studies over the recent years have provided some mechanistic
insight into the destabilization of 1q12 leading to genomic
rearrangement of 1q. An important factor seems to be DNA
hypomethylation, which is ubiquitously recognized in tumors and
mainly affects CpG residues of repeated DNA sequences (71).
Hypomethylation of PCH satellite DNA is a common event in
FIGURE 1 | Model for 1q12 pericentromeric heterochromatin involvement in rearrangement of the 1q arm. The megabase 1q12 pericentromeric heterochromatin is
composed of satellite II and III DNA repeats. In multiple types of cancer, this domain unfolds and becomes instable, leading to rearrangement and amplification of the 1q arm.
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cancer and may perturb normal control of chromatin structure (8,
55, 72–74). The first clue to the importance of DNAmethylation in
regulation of 1q12 PCH stability came from the disorder
Immunodeficiency, Centromeric instability and Facial anomalies
(ICF). This disease is characterized by decondensation and
rearrangements of PCH regions, including 1q12, and has been
demonstrated to be caused by inactivating mutations in the gene
encodingDNAmethyltransferase 3B (75, 76). Also in cancer, DNA
methyltransferase genes are frequency deleted ormutated and their
inactivation can cause genomic instability (77). In linewith this, loss
ofDNAmethylation has been associatedwith 1q12 PCH instability
in cancer cells (Figure 2, left) (55, 78–80). For instance,
hypomethylation of 1q12 was associated with 1q copy number
gain in breast cancer (78) and a strong correlation between
hypomethylated Sat2 sequences and 1q copy number gain with a
1q12 breakpointwas found inhepatocellular carcinoma (55). In the
latter study, hypomethylation of Sat2 was also detected in normal
tissues adjacent to the tumor in many patients, suggesting that this
aberration occurs as an early event in the progression towards
malignancy. Furthermore, 1q12 PCH unfolding and instability can
be induced in various cell types by treatment with DNA
methyltransferase inhibitors (72, 74, 81). Thus, loss of DNA
methylation seems to be instrumental for 1q12 unfolding and
destabilization in cancer cells, but causality between DNA
methyltransferase inactivity and 1q rearrangement still remains to
be demonstrated. Deregulation of other factors that affect DNA
methylation or epigenetic regulation of heterochromatin
compaction in general may also drive loss of structural
Frontiers in Oncology | www.frontiersin.org 4
maintenance and destabilization 1q12 PCH (Figure 2, middle).
One example is the histone demethylase KDM4A, which causes
rereplication and site-specific copy number gains of 1q12 and
1q21 (82).
PcG PROTEINS IN EPIGENETIC
REGULATION OF 1q12
PERICENTROMERIC HETEROCHROMATIN

We, and others, have recently demonstrated that 1q12 PCH
undergoes epigenetic reprogramming by PcG proteins in
premalignant and malignant lesions (74, 81). In many different
typesof cancer, PcGproteins canbe found in relatively largenuclear
aggregates referred to as PcG bodies. We have showed that PcG
bodies are in fact nuclear subdomains in which PRC1 accumulates
on the 1q12 PCH (74). Inmelanoma, these structures are present in
up 80%of tumorswithPcGexpression and also frequently found in
benign nevi, but not in any of the investigated normal tissues. This
suggests that epigenetic reprogramming of 1q12 PCH is an early
premalignant event in melanoma development and perhaps in
other cancer diseases. Interestingly, the formation of PcG bodies
correlatedwith loss of 1q12 satelliteDNAmethylation andageneral
reduction in total DNAmethylation levels (74), suggesting that this
change in the epigenetic profile of 1q12 PCH was initiated by
cellular hypomethylation. This was supported by the induction of
PcG bodies in primary melanocytes by treatment with DNA
methyltransferase inhibitors. In this scenario, loss of DNA
FIGURE 2 | Different models for perturbation of 1q12 pericentromeric heterochromatin stability. (Left) Hypomethylation of satellite DNA in cancer cells leads to loss of
epigenetic repression and subsequent unfolding and destabilization of 1q12 PCH. This may be caused by inactivation of DNA methyltransferases. (Middle) Deregulation of
epigenetic mechanisms (other than DNA methylation) controlling the repression of 1q12 PCH may lead to unfolding and destabilization of 1q12 PCH associated with a
secondary loss of DNA methylation. (Right) 1q12 pericentromeric DNA is epigenetically reprogrammed into PcG domains in response to loss of DNA methylation. These
domains (i.e., PcG bodies) may be targeted by SSX proteins ectopically expressed in cancer cells leading to 1q12 PCH unfolding and instability.
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methylation and repressive factors such as HP1 and H3K9Me2/3
that in concert repress PCH in normal cells may act as nucleation
sites for PRC1 binding. Indeed, PcG complexes have been
demonstrated to bind to hypomethylated DNA (83–85).
Interestingly, the epigenetic reprogramming of 1q12 PCH into
PcG domains correlated with increased expression of 1q12
satellite RNA. Whether these RNA species were instrumental for
the deposition of PRC1 complexes on 1q12 PCH remains to be
determined. The features of the observed epigenetic reprogramming
of 1q12 PCH (i.e. loss of DNA methylation and increased satellite
transcription) were similar to those described in association with
destabilization of 1q12. However, cancer cells with PcG bodies
exhibited no unfolding of 1q12 PCH and no signs of genomic
instability. With this in mind it can be speculated that PcG bodies
are formed as a compensatory repressivemechanism to loss of DNA
methylation-mediated repression. PcG bodies have also been
suggested to work as molecular sponges to sequester PcG proteins
thereby depleting them from other genomic sites (81).
SSX-MEDIATED DESTABILIZATION OF
PcG-REPRESSED 1q12
PERICENTROMERIC HETEROCHROMATIN

The formation of PcG bodies in premalignant and malignant cells
is interesting in relation to the expression of SSX (synovial
sarcoma, breakpoint X) proteins in cancer. This family consists
of 9 highly identical members only expressed in pre-meiotic male
germ cells of healthy individuals (86, 87). However, these proteins
are also expressed in most types of cancer due to demethylation of
their gene promoters (86, 88–91). A link between SSX molecules
and PcG proteins in chromatin regulation has been demonstrated
in multiple studies and SSX proteins target PcG bodies (57, 92–
94). Importantly, we have recently shown that SSX proteins
deplete PcG bodies in cancer cells and induce genomic
instability (93, 95). Further studies demonstrated that SSX
proteins promote the unfolding and derepression of 1q12 PCH
during replication (57). In turn, this led to segregation
abnormalities during anaphase and generation of genomic
instability in the form of anaphase bridges and micronuclei
(Figure 2, right). Depletion of PcG factors from cells with PcG
bodies did not phenocopy SSX expression in these cells, suggesting
that the structural modification of 1q12 PCH inflicted by SSX
proteins was a direct effect of SSX binding to this chromatin
domain rather than being caused by the depletion of PcG factors.
These results implicate SSX proteins in destabilization of PcG
repressed 1q12 PCH. Whether this is instrumental for the 1q12
rearrangements seen in solid and hematological cancers remains
an important subject of investigation.
CONCLUSION

Given the frequency of 1q rearrangements in cancer and the
obvious contribution of 1q12 PCH it seems of high importance
to understand the etiology and consequences of this genomic
Frontiers in Oncology | www.frontiersin.org 5
perturbation. Several questions remain unanswered in regard to
the deregulation of 1q12 PCH. It is important to better
understand the highly complex machinery maintaining
epigenetic control of this domain, including the contribution of
individual factors. For instance, the role on non-coding RNA
species in stabilization and destabilization of 1q12 PHC (and
other PHC domains) still remains largely elusive. Another
subject where we have only scratched the surface is the
surprising conversion of 1q12 PCH into PcG domains in
premalignant and malignant cells. This may occur as a
consequence of loss of DNA methylation, but it remains
elusive what these cell types gain from this. Important clues
may come from the involvement of PcG proteins in multiple
facets of tumorigenesis or from the recent implication of PCH in
senescence development (80, 96). Further understanding of other
factors that may destabilize 1q12 PCH, such as KDM4A or SSX,
will be equally important.

Attention should also be given to investigating the involvement
of 1q amplifications in tumorigenesis. This chromosome arm
contains multiple oncogenes, which may increase their
expression through genetic amplification and contribute to
acquisition of cancer hallmarks. However, only few of these
genes have been investigated and much work remains on
characterizing the role of individual genes in different cancer
diseases. This will not be trivial since different genes may be
important in different cancer types and several genes may work in
concert to promote the development of cancer hallmarks.
Furthermore, it must be emphasized that further progress in this
research field will be driven by a coordinated understanding of the
genetic, molecular and functional events that cooperate to support
tumor development and progression. In this context, tumor
heterogeneity and genetic mosaicism should be considered as
important contributing factors. Thus, analysis of genetic
aberrations and RNA/protein expression at the single-cell level
will be highly important. While the road to a complete
understanding of the role of instability of PCH domains in
cancer remains challenging it may bring novel diagnostic,
prognostic or therapeutic opportunities.
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