
1SCientifiC REPOrTS | 7: 16744  | DOI:10.1038/s41598-017-16914-0

www.nature.com/scientificreports

Automated VSS-based Burn Scar 
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Texture and Color Features of 
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Assessment of burn scars is an important study in both medical research and clinical settings because 
it can help determine response to burn treatment and plan optimal surgical procedures. Scar rating has 
been performed using both subjective observations and objective measuring devices. However, there 
is still a lack of consensus with respect to the accuracy, reproducibility, and feasibility of the current 
methods. Computerized scar assessment appears to have potential for meeting such requirements but 
has been rarely found in literature. In this paper an image analysis and pattern classification approach 
for automating burn scar rating based on the Vancouver Scar Scale (VSS) was developed. Using the 
image data of pediatric patients, a rating accuracy of 85% was obtained, while 92% and 98% were 
achieved for the tolerances of one VSS score and two VSS scores, respectively. The experimental results 
suggest that the proposed approach is very promising as a tool for clinical burn scar assessment that is 
reproducible and cost-effective.

Burns are known to be one of the most common domestic injuries, especially among children, and a stressful 
problem of critical care1. Burns are characterized by skin damage that terminates skin cells of the affected area. 
The classification of burns includes 4 categories2: epidermal, superficial partial-thickness, deep partial-thickness, 
and full-thickness. The recovery from a burn injury depends on the level of severity, where more severe burns 
require the emergency of medical treatment in order to avoid complications and death. After burn healing, scar-
ring is a concerning issue of both body image and physical function to patients with burn injuries. In addition, 
the quantification of the characteristics of burn scars has important implications for monitoring of the healing 
process, comparison and assessment of different surgical interventions that would turn out to enable more opti-
mal treatment and provide more effective pre-operative counseling. Thus, it is important to evaluate the severity 
of burn scars, and several tools and instruments have been developed for assessing one or more aspects of burn 
scars to improve the quality of life of the patient3.

For burn scar treatment, it is necessary to make accurate and reproducible clinical findings of scar assessment 
so that various interventions and treatments can be consistently interpreted and compared on a universal basis4. 
Since the introduction of the Vancouver Scar Scale (VSS)5, more than ten scar rating scales have been developed 
to contribute to the standardization of scar therapy and enhancement of the assessment4. A review of scar scales 
and scar measurement instruments suggested that there is a need for the development of an optimal scar scoring 
system so that pathologic scarring can be better treated6. In addition to the subjective assessment of burn scars, 
objective scar evaluations have been carried out by measuring the physical properties of the scar such as its 
height or its vascularity. In general, measures of scar severity are suggested to be based on color (pigmentation), 
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dimensions (area, thickness and volume), texture, biomechanical properties (pliability and elasticity), patho-
physiological disturbances (oxygen tension, water loss and moisture content), tissue microstructure, and pain7. 
However, it is still difficult to obtain an overall scar rating using objective measurement devices because many 
expensive instruments such as the tonometer, dermaspectrometer, or chromometer are required, in addition to 
the requirement of experienced users, making the assessment time-consuming and impractical in busy clinical 
settings8–10.

There are few attempts in developing computerized image analysis of wound healing and wound assess-
ment11–14, and even less in computerized quantification of burn scar assessment since the work on a finite element 
modeling of scar image and elasticity for determining a relative elastic index that shows some correlation with 
the VSS between 1 and 5 scored by a physician over four patients15. Being motivated by the demand for develop-
ing effective methods for burn scar assessment, we present here some methods for extracting texture and color 
features of VSS-rated burn scars in digital images, which can be learned by computer algorithms for automated 
scar rating. It appears that the proposed method is the first of its type in an effort to develop a machine-learning 
assisted tool for the VSS-based rating of scar characteristics. Although the VSS is one of the most commonly 
adopted methods for burn scar assessment in clinical practice to date4,7,16, it has drawbacks. Several studies have 
shown that the VSS does not have strong evidence for validity and reliability, in particular reference to large or 
irregular scars8,17, and it does not take into account other information such as pain and itch, and other func-
tional and psychological conditions of scars4. It should be therefore pointed out that this study did not attempt to 
improve the reliability of the VSS, but to automate the VSS-based burn scar assessment by machine learning of 
the knowledge given by clinical experts, where the computerized assessment can be reproducible and economical.

Methods
Ethics.  This study was approved by the Regional Ethical Board (REB), and conducted in compliance with the 
“Ethical principles for medical research involving human subjects” of the Helsinki Declaration. Guardians for 
research subjects for this study were provided a consent form describing this study and providing sufficient infor-
mation for subjects to make an informed decision about their child’s participation in this study. The consent form 
was approved by the REB for the study. Before a subject underwent any study procedure, an informed consent dis-
cussion was conducted and written informed consent was obtained from the legal guardians attending at the visit.

Participants’ characteristics.  The participants were hospitalized or outward pediatric burn patients with 
dermal or full thickness thermal burns who met the following entrance criteria.

Inclusion criteria.  1) Males or females of 6 months-6 years old, 2) thermal burns caused by scalding, 3) partial 
thickness (superficial or deep dermal) or full thickness burn wounds requiring temporary skin cover according 
to the burn surgeon responsible for the patient, 4) signed informed consent from all legal guardians, and 5) burn 
of no more than 72 hours old after injury.

Exclusion criteria.  1) Other severe cutaneous trauma at the same site as the burn (to be treated) or previous 
burn at the same treatment site, 2) inappropriate to participate in the study, for any reason, in the opinion of the 
investigator, 3) severe cognitive dysfunction or psychiatric disorder, 4) a skin disorder that is chronic or currently 
active and which the investigator considers will adversely affect the healing of the wound or involves the areas to 
be examined in this trial, and 5) patients with a known sensitivity to silver.

Subjective scar assessment.  The scars of 6 months after injury were subjectively evaluated using the 
Vancouver Scar Scale (VSS)5, of which description is shown in Table 1. The VSS was designed based on physical 
parameters relating to the wound healing and maturation, cosmetic appearance of wounds, and the function of 
the healed skin5. The VSS characterizes burn scars by their pigmentation, vascularity, pliability, and height. For 
the measure of pliability, which is one of the biomechanical properties of the scar, several measurement tech-
niques can be used such as suction (the cutometer was used in this study), tonometry, torsion, adherence, revis-
cometry, ballistometry, quantitative electrical methods, as well as ultrasound and magnetic resonance imaging7,18. 
The resemblance to normal skin has the score of 0, while a greater score indicates a greater pathologic condition 
of the burn scar. These labeled scars were used for the machine training and validation of the automated scar 
assessment in this study.

Burn scar images.  Each wound site was photographed using a digital camera COOLPIX P500 (Nikon 
Corporation, 2011) with flash card memory. The photographs were taken using the zoom facility, where the 
camera was as near as possible to the patient while including the entire treated area. The time the patients had 
been sitting between undressing to the point of evaluation and the time the photos were taken was standardized 
to be 10 minutes to maintain the consistency of the VSS-based assessment according to the scar color appearance.

The burn scars of 13 patients were selected in this study based on their available image data. The areas of the 
scars include abdomen, palmar right arm wrist, elbow pit, chest, shoulder, neck, back, chest/flank, lower arm, 
upper arm, axilla, and buttock. The regions of the scars were manually cropped out of the original images of the 
partial bodies. The numbers of the cropped images assessed with the VSS total score of 0 = 3, VSS total score of 
1 = 9, VSS total score of 2 = 2, VSS total score of 4 = 1, VSS total score of 5 = 1, VSS total score of 7 = 5, VSS total 
score of 8 = 1, and VSS total score of 9 = 2.

To increase the sample size for machine learning and validation, each cropped image was divided into 9 
sub-images of equal size, giving the total of 24 × 9 = 216 sub-images. This division of images has been a practice 
adopted for classifying images with limited samples19,20. Figure 1 shows examples of the cropped images of the 
burn scars of 8 different VSS total scores.



www.nature.com/scientificreports/

3SCientifiC REPOrTS | 7: 16744  | DOI:10.1038/s41598-017-16914-0

Texture features.  Gray-level co-occurrence matrix.  The gray-level co-occurrence matrix (GLCM)21 is a 
commonly used method for texture analysis. The GLCM tries to capture the numbers of pairs of pixels that are 
separated by a certain distance and direction, and have the same gray levels. The value of a GLCM element is 
defined as
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in which fu and fv are pixels at locations u and v and having intensity values p and q, respectively, which are sepa-
rated by the lag h, ∧ stands for the logical AND operator,  is the set of the image intensity levels, and n(h) is the 
total number of pairs of pixels offset by h.

The probability of the co-occurrence of p and q with respect to h is
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where n(h) is the total number of pairs of pixels offset by h.
The probabilities of the GLCM defined in Equation (2) allows a variety of definitions of GLCM features. In 

this study, the following 19 GLCM features were utilized: entropy21, energy21, correlation21, contrast21, sum of 
squares (variance)21, sum average21, sum variance21, sum entropy21, difference variance21, difference entropy21, 
information measures of correlation21, autocorrelation22, dissimilarity22, homogeneity22, cluster prominence22, 
cluster shade22, maximum probability22, inverse difference23, and inverse difference moment normalized23.

Semi-variogram.  The semi-variogram (SV) is a statistic developed in geostatistics24. The SV measures the aver-
age decreasing similarity between two random variables with increasing distance that separates the two random 
variables. In terms of probability, the estimation of the SV does not require the knowledge of the mean of the 
random function. The SV of an image is defined as20
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where f(xi) is the image intensity at xi, h is a distance, and m(h) is the total number of pairs of pixels separated by h.

Local binary patterns.  The method of local binary patterns (LBP) provides a procedure for quantifying the local 
image structure, of which local neighborhoods can be encoded with a binarizing process. In general, the value of 
the LPB code of a pixel at location u is defined as25
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Scar characteristics Score

Pigmentation

Normal color 
(resembling nearby skin) 0

Hypopigmentation 1

Hyperpigmentation 2

Vascularity

Normal 0

Pink 1

Red 2

Purple 3

Pliability

Normal 0

Supple 1

Yielding 2

Firm 3

Banding 4

Contracture 5

Height

Normal (flat) 0

<2 mm 1

2 mm–5 mm 2

>5 mm 3

Maximum total score 13

Table 1.  The Vancouver Scar Scale (VSS)5.



www.nature.com/scientificreports/

4SCientifiC REPOrTS | 7: 16744  | DOI:10.1038/s41598-017-16914-0

where fu and fv are respectively intensity values of the pixel at u, and surrounding pixels v V0, , 1= … − , whose 
center is at u, in the circle of radius R, and b(x) is either 1 or 0 if x ≥ 0 or otherwise, respectively.

Color features.  RGB space.  An RGB image is an image of color pixels, where each color pixel is a triplet 
corresponding to the red, green, and blue components of an RGB image. The RGB color space has been utilized as 
a color model for computerized analysis of digital photographs of burn scars7. The RGB information of the burn 
scars can be extracted with the first four central moments (mean, variance, skewness, and kurtosis) of the images.

Figure 1.  Digital images of 8 VSS classes of burn scars.
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HSV space.  The RGB color space can be transformed into the HSV (hue, saturation, value) color space, which 
is considered to be close to human experience and description of color sensation reflecting tint tin (hue), shade 
(saturation), and tone (value)26. As it is a transformation from the RGB space in this study, further color informa-
tion from the HSV space can be extracted with the use of the histogram.

L*a*b space.  CIE L*a*b* (CIELAB), which is different from the Lab color space, is a chromatic value color 
space specified by the International Commission on Illumination (CIE in French), where typically L* = 0 or 
100 respectively indicates black or diffuse white, a* has negative or positive value respectively indicates green 
or magenta, and b* has negative or positive value respectively indicates blue or yellow. CIELAB space describes 
all the colors visible to the human eye and was used for studying scar measurement techniques in27. Similarly, 
CIELAB is transformed from the RGB space, further color information from the CIELAB space can be extracted 
with the use of the histogram. For short notation, CIELAB will be denoted as Lab from now on.

Error-correcting output codes.  The approach of error-correcting output codes (ECOC)28,29 is an ensemble 
technique designed for handling multi-class classification problem with binary classifiers. ECOC reduces the 
classification of multiple classes to a set of binary classifiers by learning one classifier for each pair of classes. In 
comparison with other multi-class classification models, it was reported that ECOC resulted in better classifica-
tion accuracy30.

ECOC classification requires a coding design and a coding scheme. The coding design determines the classes 
to be trained with binary learners, and a decoding scheme determines how the results obtained from the binary 
classifiers are combined by using a loss function. The learners used in this study are support vector machines 
(SVM), optimized support vector machines (OSVM) using Bayesian optimization31, k-nearest neighbor (k-NN), 
linear discriminant analysis (LDA), and naive Bayes (NB) methods32,33. The classification by the ECOC works by 
assigning a new observation to the class that minimizes the overall loss for all binary learners.

Results
Texture and color features of 216 divided images of the burn scars were extracted for machine learning and vali-
dation of the automated scar rating. For the texture analysis, the color images were converted to grayscale images. 
For the GLCM-based texture, 19 features that have been described before were computed for each image, where 
the gray-level co-occurrence matrices were calculated using an offset of one pixel away to the right of the pixel of 
interest. The SV for each image was computed with 10 lags in vertical and horizontal directions. Parameters of the 
LBP were specified as follows: number of neighbors used to compute the LBP for each pixel = 8, radius of circular 
pattern = 1, no rotation information, and linear interpolation. For the extraction of the color information of the 
scars, the first four central moments (mean, variance, skewness, and kurtosis) were computed for the RGB space, 
and histograms with 4 bins computed for the HSV and Lab spaces. All feature vectors were then standardized to 
have the mean of zero and the standard deviation of one, while still keeping the shape properties (skewness and 
kurtosis) of the original feature vectors. One-versus-one coding was used in the ECOC method provided in the 
R2017 Matlab Statistical and Machine Learning toolbox. For the k-NN learner, k was chosen to be 1. Results and 
comparisons of different combinations of features classified with various ECOC-learners are presented as follows.

Tables 2 and 3 show the leave-one-out (LOO) cross-validation results of the five ECOC-learners (k-NN, LDA, 
NB, SVM, and OSVM) using texture and color features, respectively. The LDA and NB learners were excluded in 
further experiments because of their relatively low performance.

Tables 4, 5, and 6 show the leave-one-out (LOO) cross-validation results of the ECOC-OSVM, ECOC-SVM, 
and ECOC-k-NN using combinations of texture and color features, respectively.

Learner GLCM LBP SV GLCM + SV GLCM + LBP LBP + SV LBP + SV + GLCM

k-NN 41.09 73.61 56.02 63.86 81.68 74.07 79.21

LDA 36.14 53.24 54.63 63.37 58.91 57.41 59.41

NB 30.20 53.24 41.20 51.85 69.44 69.91 70.83

SVM 42.57 73.61 49.54 60.19 71.30 74.54 75.46

OSVM 41.58 70.83 58.80 62.04 70.83 79.63 75.46

Table 2.  LOO cross-validation of ECOC models using texture features.

Learner RGB HSV Lab RGB + HSV RGB + Lab RGB + HSV + Lab

k-NN 65.28 36.57 31.02 65.28 68.52 68.98

LDA 54.17 40.74 37.04 64.35 57.87 63.89

NB 37.96 30.10 12.50 37.96 18.06 24.07

SVM 58.80 41.20 37.50 63.43 58.33 61.57

OSVM 62.96 43.52 39.35 65.74 64.81 72.69

Table 3.  LOO cross-validation of ECOC models using color features.
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Table 7 shows the confusion matrix of the LOO cross-validation of ECOC-OSVM using combined (LBP, 
SV) and (RGB, HSV, Lab) features, where the accuracy for exact classification = 85.19%, for one-score toler-
ance = 92.13%, and for two-score tolerance = 98.15%, as shown in Table 4.

Table 8 shows the confusion matrix of the LOO cross-validation of ECOC-SVM using combined (LBP, SV, 
GLCM) and (RGB, HSV, Lab) features, where the accuracy for exact classification = 82.87%, for one-score toler-
ance = 91.20%, and for two-score tolerance = 97.69%, as shown in Table 5.

Features Exact
One-score 
tolerance

Two-score 
tolerance

(LBP + SV) + (RGB + HSV + Lab) 85.19 92.13 98.15

(LBP + GLCM) + (RGB + HSV + Lab) 76.85 89.35 96.30

(LBP + SV + GLCM) + (RGB + HSV + Lab) 82.41 91.67 98.15

Table 4.  LOO cross-validation of ECOC-OSVM using combined texture and color features.

Features Exact
One-score 
tolerance

Two-score 
tolerance

(LBP + SV) + (RGB + HSV + Lab) 82.41 90.74 97.69

(LBP + GLCM) + (RGB + HSV + Lab) 74.54 85.65 95.37

(LBP + SV + GLCM) + (RGB + HSV + Lab) 82.87 91.20 97.69

Table 5.  LOO cross-validation of ECOC-SVM using combined texture and color features.

Features Exact
One-score 
tolerance

Two-score 
tolerance

(LBP + SV) + (RGB + HSV + Lab) 79.17 91.20 95.37

(LBP + GLCM) + (RGB + HSV + Lab) 78.22 87.96 92.59

(LBP + SV + GLCM) + (RGB + HSV + Lab) 81.19 88.43 94.91

Table 6.  LOO cross-validation of ECOC-k-NN using combined texture and color features.

VSS total score 0 1 2 4 5 7 8 9

0 20 5 1 0 1 0 0 0

1 4 74 1 0 2 0 0 0

2 0 1 17 0 0 0 0 0

4 0 0 1 8 0 0 0 0

5 0 0 0 0 9 0 0 0

7 0 1 0 0 0 36 2 6

8 0 0 0 0 0 1 8 0

9 0 0 0 0 0 6 0 12

Table 7.  Confusion matrix of LOO cross-validation of ECOC-OSVM using combined (LBP, SV) and (RGB, 
HSV, Lab) features.

VSS total score 0 1 2 4 5 7 8 9

0 22 3 1 0 1 0 0 0

1 8 72 1 0 0 0 0 0

2 3 0 15 0 0 0 0 0

4 0 0 0 9 0 0 0 0

5 0 1 0 0 8 0 0 0

7 2 0 0 0 0 35 3 5

8 0 0 0 0 0 3 6 0

9 0 1 0 0 0 5 0 12

Table 8.  Confusion matrix of LOO cross-validation of ECOC-SVM using combined (LBP, SV, GLCM) and 
(RGB, HSV, Lab) features.
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Table 9 shows the confusion matrix of the LOO cross-validation of ECOC-k-NN using combined (LBP, SV, 
GLCM) and (RGB, HSV, Lab) features, where the accuracy for exact classification = 81.19%, for one-score toler-
ance = 88.43%, and for two-score tolerance = 94.91%, as shown in Table 6.

Discussion
Using textures (Table 2), either GLCM, LBP, or SV, SVM achieved the best result for GLCM, both k-NN and SVM 
achieved the best for LBP, and OSVM resulted in the highest accuracy for SV. The performance of the SVM and 
NB learners are highest with the combination of the three texture features, OSVM is highest with the combination 
of LBP and SV, LDA is highest with the combination of GLCM and SV, and k-NN has the highest performance 
with GLCM and LBP. Using color features (Table 3), both k-NN and OSVM achieved highest results with the 
combination of the three color spaces, SVM and LDA are highest with the combination RGB and HSV, and NB 
is highest with either RGB or the combination of RGB and HSV. Analysis of these experimental results generally 
suggests the effectiveness in combining individual texture and color features for classifying the images of burn 
scars.

In the combination of texture and color features for automated assessment of VSS-based burn scars, the 
OSVM achieved the highest classification rates in terms of the best results of exact assignment = 85.19%, assign-
ment with one-score tolerance = 92.13%, and assignment with two-score tolerance = 98.15%, as shown in Table 4 
and the corresponding confusion matrix shown in Table 7. The SVM achieved the second highest classification 
results, where the best of exact = 82.87%, one-score tolerance = 91.20%, and assignment with two-score toler-
ance = 97.69%, as shown in Table 5 and the corresponding confusion matrix shown in Table 8. The k-NN came 
third in performance, where the best of exact classification = 81.19%, one-score tolerance = 88.43%, and assign-
ment with two-score tolerance = 94.91%, as shown in Table 6 and the corresponding confusion matrix shown in 
Table 9. The best results obtained from the OVSM, SVM, and k-NN are based on the combinations of (LBP, SV, 
RGB, HSV, and Lab), (LBP, SV, GLCM, RGB, HSV, and Lab), and (LBP, SV, GLCM, RGB, HSV, and Lab), respec-
tively. The results reflect the OSVM is most favorable in using the complimentary LBP and SV texture features for 
the classification of burn scar images, as by mathematical definitions, this can be explained in that the SV statistic 
expresses the global spatial structure of an image, while the LBP method attempts to gain insight into the local 
image structure.

As shown in the three confusion matrices (Tables 7, 8, and 9), the classification results are distributed along the 
main diagonals of the matrices, particularly for the OSVM (Table 7), where only small numbers of misclassified 
samples are far off the main diagonal. Such distributions of the classified samples indicate the strong performance 
of the classifiers even in case of misclassification.

The above expression is based on the assumption that the spatial autocorrelation structure is isotropic, which 
implies the semi-variogram depends only on the magnitude of the lag (h). When the spatial autocorrelation pat-
tern changes in different directions in the sampling space, an anisotropic semi-variogram can be of more appro-
priate use. Geometric and zonal properties of anisotropy have been introduced to model the semivariogram34. 
The geometric anisotropy is imposed when the range of the semivariogram varies in different directions. The 
zonal anisotropy is a phenomenon when the range and sill of the semivariogram are not constant. Furthermore, 
the results suggest the usefulness of the combination of texture and color features for automated VSS-based scar 
rating. However, the technical analysis for the best texture-color feature combination has been an open issue35, 
and needs further study. Another issue is about the class imbalance in pattern classification32, in which some 
classes are represented with larger training samples while others with only a few. Here, each of the classes for the 
VSS total scores of 4, 5 and 8 has only 9 samples, while the classes for the VSS total scores of 1 and 7 have 81, and 
45 samples, respectively. However, for ECOC-OSVM, the number of misclassification for the VSS total scores 
of 4 and 8 is only one while that for the VSS total scores of 5 is zero, suggesting that the class imbalance is not a 
hindrance to the present classification. Similar observations are also found in the classification using ECOC-SVM 
and ECOC-k-NN.

It has been reported that various objective measures for burn scar assessment can be based on color, tex-
ture, dimensions, biomechanical properties, pathophysiological disturbances, tissue microstructure, and pain/
sensation7. Here, although based on the VSS evaluation for rating the total scores of the scars, we only take into 
account the information of color and texture, where the first relates to erythema and pigmentation that signifi-
cantly reveal the appearance of a scar, and the latter is concerned with the smoothness, roughness, and irregular 

VSS total score 0 1 2 4 5 7 8 9

0 18 5 2 1 1 0 0 0

1 3 75 1 2 0 0 0 0

2 0 5 13 0 0 0 0 0

4 0 0 0 9 0 0 0 0

5 2 0 0 0 7 0 0 0

7 2 4 0 0 1 27 6 5

8 0 0 0 0 0 0 9 0

9 0 1 0 0 0 5 0 12

Table 9.  Confusion matrix of LOO cross-validation of ECOC-k-NN using combined (LBP, SV, GLCM) and 
(RGB, HSV, Lab) features.
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characteristics of a scar surface that has a significant effect on the subjective opinion about the scar7. Pliability and 
height criteria of the VSS were not included in the feature extraction process. Taking into account 3-dimensional 
analysis is immediately feasible in the proposed method to include thickness and volume in the classification so 
that the computerized assessment can be more robust, while other properties and factors of burn scars can be 
independently augmented to further enhance the assessment.

An objective burn scar assessment using finite element analysis of salient image features and elastic property 
of scars was carried out in15 with the inclusion of four patients. However, this study only suggested the correlation 
between subjective VSS-based rating with the relative elastic indices that is inconclusive due to the limited data. 
In general, with further exploration of other methods for extracting effective texture, color, and dimensional 
features of the scar together with advanced machine learning methods and sufficient training data, we expect that 
the proposed approach for automated assessment of burn scars would be clinically useful in terms of the trade-off 
of costly objective scar measuring devices.

The k-fold cross-validation is a method to improve over the holdout validation, where the data set is separated 
into a training set and a testing set. For the k-fold cross-validation, the data set is divided into k subsets, and the 
holdout method is repeated k times. For each validation, one of the k subsets is used as the test set and the other 
k-1 subsets are put together as a training set. The k-fold error is computed as the average error for all k trials. The 
leave-one-out (LOO) cross validation is the k-fold cross validation, with k equal to N that is the number of data 
points in the set. This indicates that the classifier is trained for N times with the data except for one sample, and 
a prediction is made for the untrained sample. In this study, different inter-appearance scars (sub-image samples 
obtained by dividing different scars) and different intra-appearance scars (sub-image samples obtained by divid-
ing the same scar) were used to test the algorithm, where information about the pliability and height of the scars 
were not possibly taken into consideration by means of two-dimensional data in the training and testing phases. 
The classification with the exclusion of the pliability and height of the scars resulted in 85% accuracy. It can be 
expected that if the two sources of information were included in the classification, the cross-validation rate could 
have been higher or possibly as high as 98% accuracy that was obtained with the two-score tolerance as shown 
in Table 4.

Conclusion
Texture-color image analysis and machine learning methods for automated evaluation of burn scars using train-
ing data labeled with the VSS total scores have been presented and discussed. The cross-validation accuracies 
obtained from the error-correcting output coding with an optimized support vector machine learner using com-
bined texture and color features are promising for overall scar rating as an objective and reproducible measure, 
which is very cost-effective in comparison with the use of other objective scar measurement instruments. The 
proposed approach used the VSS scores for machine learning in this study, but can be used for learning other scar 
rating methods. Furthermore, texture and color features of the phenotypic characteristics of burn scars can be 
useful for gaining insight into the association between the genetic information and wound outcomes of patients36. 
The proposed approach is also potential for the development of telemedicine-based assessment of burn scars via 
the transmission of digital images from cell-phone based multimedia37,38.

In this study, only Caucasian pediatric patients and VSS total scores being up to 9 were included in the 
VSS-based automated assessment due to the data availability. Automated VSS-based assessment of non-Caucasian 
patients, including children and adults as well as the full range of VSS total scores, will be our on-going and future 
investigation when more clinical data become available. The automated classification would be more effective 
if different automated scar assessment systems will be designed according to skin colors of different races, age 
groups, and gender.

In summary, we have developed an automated assessment approach that can reliably produce VSS scores to 
match those provided by human medical experts. Using other scoring systems such as the POSAS or other objec-
tive measurement tools for studying the correlation with the VSS to be incorporated in automated image analysis 
is worth considering in our future research.

Data and software availability.  Image data and Matlab codes used in this study are available at the first 
author’s (T.D.P.) personal homepage: https://sites.google.com/site/professortuanpham/codes.
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